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Necrotising enterocolitis (NEC) is one of the most common diseases in neonates and predominantly affects premature or very-low-
birth-weight infants. Diagnosis is difficult and needed in hours since the first symptom onset for the best therapeutic effects.
Artificial intelligence (AI) may play a significant role in NEC diagnosis. A literature search on the use of AI in the diagnosis of NEC was
performed. Four databases (PubMed, Embase, arXiv, and IEEE Xplore) were searched with the appropriate MeSH terms. The search
yielded 118 publications that were reduced to 8 after screening and checking for eligibility. Of the eight, five used classic machine
learning (ML), and three were on the topic of deep ML. Most publications showed promising results. However, no publications with
evident clinical benefits were found. Datasets used for training and testing AI systems were small and typically came from a single
institution. The potential of AI to improve the diagnosis of NEC is evident. The body of literature on this topic is scarce, and more
research in this area is needed, especially with a focus on clinical utility. Cross-institutional data for the training and testing of AI
algorithms are required to make progress in this area.

Pediatric Research (2023) 93:376–381; https://doi.org/10.1038/s41390-022-02322-2

IMPACT:

● Only a few publications on the use of AI in NEC diagnosis are available although they offer some evidence that AI may be
helpful in NEC diagnosis.

● AI requires large, multicentre, and multimodal datasets of high quality for model training and testing. Published results in the
literature are based on data from single institutions and, as such, have limited generalisability.

● Large multicentre studies evaluating broad datasets are needed to evaluate the true potential of AI in diagnosing NEC in a
clinical setting.

INTRODUCTION
Necrotising enterocolitis (NEC) is one of the most serious
conditions in newborns, affecting up to 10% of very-low-birth-
weight infants. In the most premature population, mortality rates
can increase to as high as 60%.1

The precise aetiology remains unclear. However, fundamental
risk factors, such as prematurity, enteral feeding, intestinal
colonisation, and bowel ischaemia, have been well established.2

NEC mainly affects the distal ileum and colon. Clinical symptoms
include feeding intolerance, abdominal distension, and bloody
stools. In the most severe cases, patients may present with
abdominal wall erythema, apnoeic spells, lethargy, and septic
shock.3 The suspected diagnosis is confirmed with typical
findings on abdominal radiography (AR), including pneumatosis
intestinalis (PI), portal vein gas (PVG), and in extreme cases,
pneumoperitoneum.4

In 1978, Bell developed a staging system for NEC, which was
modified by Walsh and Kliegmann in the mid-1980s.5 A
combination of clinical symptoms and AR findings allows for the

grading of interventions and standardised treatment. This widely
adopted classification is based on plain radiology findings, despite
the first reports on ultrasound (US) use for NEC diagnosis being
published before Walsh and Kliegmann5 in the early 1980s.6,7

Abdominal ultrasonography can depict PI, PVG, and pneumoper-
itoneum (in some cases, the head of the AR); however, it also
provides other crucial information, such as bowel wall viability
(thickness or thinning) and free abdominal fluid. These additional
findings are helpful for the diagnosis and management of NEC.
Despite several studies, NEC remains a conundrum. Timely

diagnosis and treatment implementation remain a major chal-
lenge for neonatologists worldwide. Despite numerous efforts,
morbidity rates have not improved over time. This is mainly due to
the fact that early symptoms of NEC are often non-specific and
difficult to distinguish from benign illnesses, such as apnoea of
prematurity or feeding intolerance. Moreover, NEC is a rare
disease; hence, it is difficult to gain professional experience and
develop expertise in its timely diagnosis and treatment. The rarity
of NEC also hinders the creation of effective clinical protocols
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owing to the lack of high-quality data. Electronic health records
are often incomplete and lack crucial information, such as the
outcomes of AR or US studies. Moreover, data collection
procedures vary from country to country, increasing the difficulty
of creating and benchmarking NEC diagnosis protocols.
Artificial intelligence (AI) is a broad discipline with the main

purpose of providing machines the ability to perform actions that
require domain knowledge and intelligence (driving a car,
conducting surgery, patient diagnosis, etc.). Over the last decades,
we have witnessed rapid progress in machine learning (ML), a
subdomain of AI that has also made big strides in healthcare.8 ML
is a data-driven method that can assist in decision making in
healthcare. Data-driven methods are constructed solely based on
retrospective data with no expert input. Despite several reported
successes with retrospective datasets, AI methods have yet to
have an impact on clinical practice8 and experience commercial
success.9

ML is divided into three categories: unsupervised, supervised,
and reinforcement learning. Supervised learning is used when the
ground truth (GT) is available (e.g., whether the newborn has NEC
or not).10 The supervised ML model predicts the GT from the input
data. In data science, the input variables are often referred to as
features or explanatory variables. Among the most popular
supervised ML models are support vector machines (SVMs),
decision trees (DTs), linear regressions (LRs), and naive Bayes
(NB). Unsupervised learning is often used when there is no
available GT or when the goal is to find new patterns in the data.
Typical tasks in unsupervised learning are clustering (grouping
data samples) and anomaly detection (e.g., detecting arrhythmia
in the ECG signal). Reinforcement learning is devoted to training
an agent’s (a car, AI-controlled computer game player, or an
autonomous robotic surgeon) behaviour to achieve the maximum
reward (e.g., successful surgery).11 This type of ML is frequently
used in robotics.
The greatest limitation of AI systems is that they adequately

generalise their behaviour to an unknown environment (e.g.,
diagnosing a patient with previously unseen symptoms). With the

rise of computational capabilities, such as those of artificial neural
networks (ANNs), this issue has been partially overcome. Deep
ANNs have opened the path to a new area of ML: deep learning
(DL). Deep refers to the fact that, in deep networks, information is
processed by several layers of ANN (hundreds or even thousands),
whereas in shallow networks, there are only a few of these. DL has
quickly become the go-to tool for several tasks owing to its
robustness and multiple developed DL architectures of ANN
suited for different problems. For example, the early architectures
of deep convolutional neural networks (CNNs) were able to
improve image recognition tasks by 20% (e.g., if provided a
picture of a horse, the algorithm classifies the picture as showing a
horse) compared with standard computer vision algorithms.12

Currently, state-of-the-art CNNs surpass human performance in
image recognition tasks. Furthermore, deep ANNs completely
transform the abilities of computer programmes to understand
spoken or written languages.13

This narrative review aimed to summarise the currently
available literature on the use of AI in diagnosing NEC, highlight
open issues, and identify future directions for implementing AI in
clinical neonatal practice (Fig. 1).

METHODS
Our study was a narrative review based on a systematic search
strategy to gather facts from the available literature. This is in
contrast to a classic systematic review, which is designed to
provide an answer to a defined empirical question. Our aim was to
gather data on the use of AI in NEC diagnosis. Reports were
included or excluded if they met our inclusion or exclusion criteria,
respectively (Table 1).
PubMed, Embase, arXiv, and IEEE Xplore databases were

searched for this narrative review. In consultation with a research
librarian (K.W.), a standardised search strategy was employed
using a standardised set of keywords and operators, which are
listed in the Appendix. No other filtering or restrictions were
applied in the search strategy. Additional strategies to identify
studies included manual reviews of reference lists from key articles
that fulfilled our eligibility criteria and the use of ‘related articles’
feature in PubMed. The electronic database search was supple-
mented by searching for grey literature: trial protocols through
clinical registers (ISRCTN registry and ClinicalTrials), thesis dis-
sertation (sourced through NDLTD and EthOS), conference
proceedings (searched through Web of Science and Embase),
and other grey literature databases (OpenGrey and Trip database).
Details of the search strategy are presented in the Appendix.

RESULTS
Eight relevant publications were identified. Figure 2 shows a flow
diagram of the selection process. We divided the articles into two
groups based on the type of ML used.

Classic ML in decision support in NEC
Classic ML algorithms (such as DTs, SVMs, and LRs) are often
utilised for supervised learning using clinical data. Clinical data
and other numerical values are often in the form of tabulated
values, and classic ML methods are designed for use with such
datasets. In a paper published by Mueller et al.,14 ANN was used to
diagnose NEC using a retrospective clinical dataset from a single
institution. The authors included a relatively small dataset of 197
premature infants, of whom 67 were diagnosed with NEC. Data
were obtained from the Perinatal Information System (PINS)
database of the Medical University of South Carolina. Fifty-seven
variables from the PINS database were selected as features after
performing a literature review and discussion within an expert
panel, which features may be relevant to the diagnosis of NEC. The
authors investigated the importance of variables that can be used

a
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b

Fig. 1 Clinical and radiographic features of necrotising enteroco-
litis. Panel a shows an infant with a shiny, distended abdomen with
periumbilical erythema. (Photograph courtesy of Dr David Kays,
Department of Pediatric Surgery, University of Florida.) In the
radiograph shown in panel b, the upper arrow points to portal air,
and the lower arrow points to a ring of intramural gas, which is
indicative of pneumatosis intestinalis. (Radiograph courtesy of Dr
Jonathan Williams, Department of Pediatric Pathology, University of
Florida.) In Panel c, the arrow points to an area of necrotic bowel in a
patient with necrotising enterocolitis. (Photograph courtesy of Dr
David Kays, Department of Pediatric Surgery, University of Florida.).
Figure reused Neu and Walker3 with permission from the New
England Journal of Medicine.
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to perform accurate decision making in the case of NEC
prediction. This study did not include the statistical results for
NEC prediction.
Ntonfo et al.15 presented a different approach for NEC

detection. An infrared camera was used for thermal image
acquisition instead of collecting clinical data or radiological
images. After initial image preprocessing operations, thermal
signatures were extracted from newborn abdominal thermal
images. The statistical features acquired from the signatures can
be fed into a classifier for NEC diagnosis. The features showed
different characteristics in children with and without NEC.
Unfortunately, this method was only tested in two newborn
children and should be further investigated.
Irles et al.16 developed two estimation models for intestinal

perforation (IP) based on a back-propagation ANN: (a) at birth and
(b) at birth and during hospitalisation. The study cohort included
three groups: (1) control group without NEC (N= 27), (2) NEC
group (N= 23), and (3) IP (Bell’s stage IIIB) (N= 26). They excluded
15 cases with incomplete clinical information, spontaneous or not
associated with NEC IP, as well as digestive tract malformations.
For further analysis, they chose 113 variables of maternal and
neonatal clinical, feeding, and laboratory parameters from the
medical record data of the neonatal intensive care unit (NICU) in a
single institution. This study aimed to obtain an ANN-based model
to estimate IP associated with NEC diagnosis and investigate key
factors for prediction. The regression coefficient between the
experimental and predicted data is R2 > 0.97. They found that the

male sex was a highly predictive parameter for NEC-associated IP.
However, more studies are needed to confirm that the male sex is
more likely to progress to IP. These models may allow for quality
improvement in medical practice. The main limitation of this study
is its single-centre nature and relatively small dataset.
Lure et al.17 used random forest and ridge logistic regression to

discriminate between NEC and spontaneous IP (SIP). These
diseases are difficult to differentiate without bowel visualisation;
however, ML algorithms accurately separate NEC and SIP. The risk
factors for NEC, including very low gestational age at birth,
placental abruption, and asphyxia, were used as explanatory
variables (tabulated input values). It has been shown that this
method can improve the clinical decision-making process prior to
any surgical intervention. The experiments were conducted using
a dataset of 40 patients collected from the University of Florida.
Lueschow et al.18 suggested that no formal comparison

between the multiple existing NEC definitions has been
performed. They investigated the performance of these definitions
and applied ML techniques to test their ability to diagnose NEC. To
conduct the experiments, a cohort dataset of >200 patients
acquired over 10 years from a single institution was analysed. The
features (explanatory variables) selected for the experiments were
those required for different NEC diagnosis methods: Bell staging,5

modified Bell staging,19 and non-Bell NEC definitions.20,21 For each
NEC definition, six ML classifiers (K-nearest neighbours, simple
neural network, NB, random forest, SVM, and DT) were trained on
the features required by the definition. NEC diagnosis with ML
outperformed traditional criteria in terms of specificity and
sensitivity and opened a discussion for further examination and
the development of new NEC definitions. Moreover, newer
definitions were more accurate than the Bell-based criteria. In
addition, feature importance analysis was performed, and the
authors suggested that features containing values from the
specific range: volume of feeding at NEC onset, and gestational
age, can be more informative than simple, binary (yes/no)
features.

Use of DL in decision support
In this section, we describe publications that use DL algorithms for
NEC diagnosis. Van Druten et al.22 proposed a computer-aided
diagnosis (CAD) system that consists of an ensemble (outputs of
multiple algorithms are combined) of conventional ML and DL
algorithms. The authors used AR images of participants with
radiological patterns consistent with NEC as well as those without
these patterns. Radiologists identified NEC-related patterns on AR
images. No information about the study cohort used was noted.
The classic ML algorithms include a feature extraction algorithm
(e.g., texture-based feature extraction), feature selection, and
classification. This study aimed to produce heatmaps for various
imaging features to highlight NEC pathology on ARs. In the DL
algorithm, ARs were automatically analysed using a deep neural
network for their automatic classification. The CAD-based system
compares and qualifies the prediction accuracy of conventional
ML and DL approaches. As the final output, the algorithm uses a
visualisation technique that highlights areas on the AR images
with NEC features. The authors did not provide any information on
the number of datasets used to develop the methods. However,
no quantitative evaluation has been conducted.
Gao et al.23 proposed a multimodal AI-based system consisting

of feature engineering, ML, and DL algorithms. Feature engineer-
ing in data science is a process of creating additional features from
existing features (e.g., having features a and b, we engineer new
features a/b). A multimodal (as opposed to unimodal) AI model
uses different types of data when computing the output (e.g., the
probability of NEC). They evaluated the proposed system using
ARs and clinical data from a single institution. The study cohort
included 2234 infants, including 1201 non-NEC, 622 NEC, and an
independent group of 411 NEC patients, including surgical and
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Fig. 2 Flow diagram of the study selection process. The search
identified 118 publications, this number was reduced to only 8 by
duplicate removal, screening, and applying eligibility criteria.

Table 1. Inclusion and exclusion criteria used in literature search.

Included Excluded

Neonatal population Population with no neonates

NEC diagnosis Editorials and expert
opinions

Use of AI or ML in NEC diagnosis

Prospective and retrospective
studies

All languages and dates
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medical NEC. Some infants were excluded from the study due to
the lack of complete clinical parameters or poor image quality,
and 827 infants (342 NEC and 385 non-NEC) were selected for the
analysis. They used ARs and clinical data; hence, a multimodal
approach. In Gao et al.’s study, the authors identified significant
features of ARs and clinical data that were closely related to the AI
diagnosis and prediction of the success of surgical intervention for
NEC. The authors found that the AI system was capable of
predicting which NEC patients would have a higher likelihood of
successful surgery. The limitations of this study include the lack of
genetic information, microbiome data, and biochemical para-
meters of the infants. The authors concluded that AI could be used
as an auxiliary diagnostic tool to confirm their results in a
prospective clinical trial.
Lin et al.24 proposed a novel, interpretable neural network-

based architecture solution for independent microbiota DNA
sequences. Multicentre datasets came from two centres and
contained 3595 stool samples from 261 at-risk infants, 75 of whom
developed NEC. The data were collected noninvasively. In
addition, 10 clinical metadata features collected and reported in
both of the two historical studies, including maternal information,
such as age, parity, and biometric data, and details about the birth,
were used. In this study, the authors used DL neural networks to
estimate NEC risk. They introduced a novel ML method called the
‘growing bag’ analysis, which models time evolution. They found
that NEC predictions can be made on an average of 8 days before
disease onset. The system described in this study generates a
longitudinal NEC risk score from a limited set of bacterial taxa and
basic clinical metadata. It allows early and accurate NEC
prediction, with a mean sensitivity and specificity of 86% and
90%, respectively.

DISCUSSION
The number of publications on the use of ML in NEC diagnosis is
small, as we discovered in this study. We found only eight
publications using the inclusion and exclusion criteria. Some of
those publications were conference papers, which typically
underwent a less strict peer-review process, with missing key
information, such as the number of patients. One commonality of
all the papers that we found is the limitations, sometimes severe,
in the size of the data that was used. ML models, particularly DL
models, require high-quality large datasets for model training and
testing. Obtaining such datasets for NEC is difficult owing to the
rarity of the disease that, in our opinion, will hinder the
development of such models in the future compared with other
AI applications for more common diseases. Medical institutions
differ in the ways NEC patients are diagnosed and cared for, which
makes the process of developing robust and generalisable AI
models even more difficult. This heterogeneity of data from
different sources puts even more demand on the amount needed
to create an algorithm that can be successfully used across
different institutions.
Notwithstanding the difficulties associated with the lack of data,

we also found results that encourage the pursuit of AI as a
decision support tool in NEC diagnosis. The best example is the
recent work of Lin et al.24 The authors predicted the future
occurrence of NEC in patients with impressive sensitivity and
specificity of 86% and 90%, respectively. These results are
encouraging and demonstrate the potential of AI in improving
the care of patients with NEC.
In the reviewed work, AI was used to generate inferences from

data acquired at the neonatal stage to diagnose NEC. AI can be
used before conception and during the perinatal and neonatal
stages. ML algorithms can help predict the success rate of in vitro
fertilisation treatment and outcomes,25,26 as well as live births
from embryo data.27 Using images of embryos, AI can increase the
chances of successful implantation and development into

pregnancy28 during the selection process. In the perinatal period,
AI solutions help improve maternal and foetal care, thereby
increasing the chances of successful delivery. The most common
solutions are preterm birth risk assessment,29–31 foetal biometry
measurement,32–34 foetal heart disease detection,35–37 and
computer-assisted fetoscopic surgical treatment.38,39 In NICUs, AI
is useful for monitoring patient vital signs and has been shown to
predict life-threatening situations, including birth asphyxia,
seizures, respiratory distress symptoms, or sepsis.40,41

NEC has an unknown aetiology, and factors present in the
preconception, perinatal, and neonatal stages leading to the
development of NEC in newborns may contribute to the disease.
As such, an AI model capable of accurately diagnosing NEC may
need to consider a whole range of factors and various types of
retrospective data from all stages. As described in the previous
paragraph, there are efforts to construct AI models applied to
different tasks, and the idea of combining all those models and
using the data on the entire spectrum leading to NEC may be a
future solution to create a robust AI system for NEC diagnosis.
However, we note that there is even more demand for data to
create an AI model.
Recommendations from decision support systems are largely

opaque, which means that recommendations are provided;
however, they do not explain why. This is a serious limitation,
especially when used in high-stake decision making, such as in
medicine. Considering that there is an AI tool diagnosing NEC in
newborn children and evaluating whether a specific child with
severe symptoms does not have to undergo the surgery, how can
a physician reconcile such a recommendation if he/she is of a
different opinion? This is especially difficult if a recommendation
comes without an explanation.42

Explaining the complex computations behind AI recommenda-
tions is a subject of worldwide research efforts and will be
important for successful AI solutions used for NEC diagnosis. A
new research area devoted to reliable AI systems was created and
called explainable artificial intelligence (XAI).43 XAI focuses on
developing new algorithms or DL architectures that would help
understand the decisions made by AI systems or generate a
proper explanation. For instance, gradient-weighted class activa-
tion mapping44 is a method for generating explanations
(heatmaps) that can be superimposed over images analysed by
AI. If AI provides an assessment of AR for patterns of PI or others
consistent with NEC, it highlights an image region where these
structures are present. Other algorithms have also been designed
to explain these decisions. These include model-agnostic explana-
tions,45 which use linear relationships to simplify more complex
models, or Shapley additive explanations, which generate
explanations based on the game theory.46 Unfortunately, as of
2022, all XAI methods have significant drawbacks and cannot be
sufficiently generalised to make them more widely used,
particularly in medicine.
There are opportunities to utilise AI decision support systems

for the diagnosis and treatment of NEC. Improvements in the
interpretation of the available data during the diagnostic process
are a natural avenue for using AI, which is also reflected in the
literature. NEC diagnosis is time and resource consuming and is
often performed with AR imaging that uses ionising radiation.
Non-Ionising imaging using US is an optional imaging technique
for NEC with no harmful side effects. The value of US for NEC
diagnosis has been widely recognised in recent years.47 However,
it is difficult to perform and interpret, and AI may help physicians
in performing high-quality examinations as well as in interpreting
US images.
AI has the potential to be invaluable, especially for clinical

practice with little experience in NEC diagnosis. The papers
reviewed here demonstrate the potential of this approach.
However, the road to clinical implementation is unclear, and no
studies have documented successful AI implementation in a
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clinical setting. We found only eight relevant papers on the topic
of this review, which is an important limitation of this study.
Drawing strong conclusions about trends in the literature based
on such a small sample size is impossible.

CONCLUSIONS
In this narrative review, we present the currently available
literature on the use of AI and ML to diagnose NEC in newborns.
Only a small number of publications relevant to this topic were
found. We recognise that there is a substantial need for further
research to fill this gap. AI, especially DL, has the potential to
improve NEC diagnosis and provide predictions of treatment
outcomes, as shown by reviewed work; however, no
literature exists showing its clinical impact. We emphasise that
the opaque predictions of DL models (black-box predictions)
and the lack of large multi-institutional datasets evident from
the review will hinder and slow down the development and
implementation of clinical AI systems for NEC diagnosis in the
near future.
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APPENDIX
Search strategy for narrative review.
PUBMED
(“artificial intelligence”[tiab] OR “artificial intelligences”[tiab] OR AI[tiab] OR “machine
learning”[tiab] OR “machines learning”[tiab] OR “deep learning”[tiab] OR “decision
tree”[tiab] OR “decision trees”[tiab] OR “neural network”[tiab] OR “neural network-
s”[tiab] OR “neural net”[tiab] OR “neural nets”[tiab] OR “medical image processing”[-
tiab] OR “Artificial Intelligence”[Mesh]) AND (“necrotizing enterocolitis”[tiab] OR
NEC[tiab] OR “Enterocolitis, Necrotizing”[Mesh]).
EMBASE
(‘artificial intelligence’:ti,ab,kw OR ‘artificial intelligences’:ti,ab,kw OR ai:ti,ab,kw OR
‘machine learning’:ti,ab,kw OR ‘machines learning’:ti,ab,kw OR ‘deep learning’:ti,ab,kw
OR ‘decision tree’:ti,ab,kw OR ‘decision trees’:ti,ab,kw OR ‘neural network’:ti,ab,kw OR
‘neural networks’:ti,ab,kw OR ‘neural net’:ti,ab,kw OR ‘neural nets’:ti,ab,kw OR ‘medical
image processing’:ti,ab,kw OR ‘artificial intelligence’/exp) AND (‘necrotizing enter-
ocolitis’:ti,ab,kw OR nec:ti,ab,kw OR ‘necrotizing enterocolitis’/exp).
ARXIV
“necrotizing enterocolitis”.
IEEE Xplore
(“artificial intelligence” OR “artificial intelligences” OR AI OR “machine learning” OR
“machines learning” OR “deep learning” OR “decision tree” OR “decision trees” OR
“neural network” OR “neural networks” OR “neural net” OR “neural nets” OR “medical
image processing”) AND “necrotizing enterocolitis”.
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