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Data harnessing to nurture the human mind for a tailored
approach to the child
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Big data in pediatrics is an ocean of structured and unstructured data. Big data analysis helps to dive into the ocean of data to filter
out information that can guide pediatricians in their decision making, precision diagnosis, and targeted therapy. In addition, big
data and its analysis have helped in the surveillance, prevention, and performance of the health system. There has been a
considerable amount of work in pediatrics that we have tried to highlight in this review and some of it has been already
incorporated into the health system. Work in specialties of pediatrics is still forthcoming with the creation of a common data model
and amalgamation of the huge “omics” database. The physicians entrusted with the care of children must be aware of the outcome
so that they can play a role to ensure that big data algorithms have a clinically relevant effect in improving the health of their
patients. They will apply the outcome of big data and its analysis in patient care through clinical algorithms or with the help of
embedded clinical support alerts from the electronic medical records.
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● Big data in pediatrics include structured, unstructured data, waveform data, biological, and social data.
● Big data analytics has unraveled significant information from these databases.
● This is changing how pediatricians will look at the body of available evidence and translate it into their clinical practice.
● Data harnessed so far is implemented in certain fields while in others it is in the process of development to become a clinical

adjunct to the physician.
● Common databases are being prepared for future work.
● Diagnostic and prediction models when incorporated into the health system will guide the pediatrician to a targeted approach

to diagnosis and therapy.

The traditional way we look at the vast evidence is gradually
expanding at a rate that the human mind finds impossible to
process. Hospitals and healthcare-related organizations are gen-
erating an enormous amount of data daily. These data sources
include structural content like electronic health record (EHR) data
on symptoms, vital signs, laboratory data, medication dose, and
unstructured data in the form of progress notes, pathology, and
radiology reports. Ancillary systems connected to EHRs such as
waveforms and pictures are converted into useful data sources.
The platform of genomics, proteomics, and metabolomics forms
the common source of biological data. Social networks, mobile
devices, and self-tracking tools provide sources of rich data. All
these data contribute to so-called “big data”.

HOW BIG IS “BIG DATA”?
As per definition, “big data” is a high-volume, high-velocity, and
high-variety information asset that demands economically sustain-
able innovative forms of information processing for better insight
and decision making.1 There is no cut-off dataset file size (like one

gigabyte or one terabyte) beyond which we can label a dataset as
big data. Instead, the complexity of the data, which demands
advanced technologies to store and analyze, makes it “big data”.2 An
intricate network of systems with various data engineering skills is
required to serve the purpose. One of the most natural approaches
is to divide this extensive record into multiple fragments and store
them across multiple servers. Hadoop, an open-source platform to
store, manage and access data for real-world applications, came into
existence in 2011. Since then, it is used by multiple healthcare
researchers for big data analytics.3–5 One such example is a tool
called CHESS that stores health-related information in the Hadoop
ecosystem. With this tool, Hadoop handles all “big data” issues and
users can download a small fraction and perform their data analysis
using any statistical software.6

BIG DATA ANALYTICS: MACHINE LEARNING AND DEEP
LEARNING
The purpose of big data analytics is to extract information and find
patterns from this big data available from institutional databases
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for research to provide better care and outcome. Application of
advanced statistical methods like machine learning (ML) and deep
learning (DL) has been the key to recent advances in predictive
analytics in healthcare. DL is a specialized subfield of ML, a new
way to train models using learning successive layers of increas-
ingly meaningful representations.7 ML is broadly classified into
supervised, unsupervised, and reinforcement learning (RL) (Fig. 1)
In supervised learning, the model is trained with a labeled

dataset and known target output. The performance of the model
is then validated with the test dataset to check how the model will
perform in unknown/new input data. The performance of these
models is measured by accuracy, sensitivity, specificity, positive

predictive value, area under curve (AUC) for categorical target
variables. For continuous variables, mean squared error, mean
absolute error, root mean squared error, etc. have been used.
Logistic regression, naive Bayes, random forest, artificial neural
network, support vector machines (SVM), and Boosting techniques
(AdaBoost, XG Boost) are a few examples of supervised learning
models. DL models like convolutional neural network (CNN) and
recurrent neural network (RNN) are used to analyze data from
images, video, or audio.
Unsupervised learning, on the other hand, does not have any

fixed target label as output. Here, only input data is provided, and
the model tries to find hidden patterns and draw valuable insights
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Fig. 1 Schematic representation of Big data. Deals with the various sources,analytics and outcome.
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from the unknown dataset by clustering. K-means clustering,
hierarchical clustering, Apriori algorithm are a few examples of
unsupervised learning models. RL is a unique ML technique where
the model has to make a series of decisions to achieve a goal. If
the model makes the right choice, it is rewarded (like +1) and gets
a punishment (like −1) for doing wrong. After several similar trial
and error experiences, the model gradually learns to finish the
task.8

BIG DATA IN PEDIATRICS
The handling of data for research in pediatrics started in 1984, but
the rapid growth phase began with the dawn of the twenty-first
century. The first work of harnessing big data in pediatrics
happened when Anderson et al.9 in the search for a clue to
sudden unexpected infant death, identified maternal smoking as a
risk factor. The major areas where big data is now used include
predictive analysis, diagnostics, therapy of rare and congenital
diseases, pharmacoepidemiology, and pharmacovigilance
(Table 1).

DATA HARNESSED SO FAR
For predictive analysis
Nutrition. Childhood obesity is a growing pandemic that earlier
was considered a problem mainly in high-income countries and
societies but now also occurring, at a rapid rate, in low-income
and middle-income countries.10 XG Boost model used EHR data up
to age 2 years from the Children’s Hospital of Philadelphia11 to
predict childhood obesity from age >2 to ≤7 years. In time, such
models11,12 could be used as real-time predictive health trackers
to alert clinicians of children at high risk of obesity and improve
their decision making. If children with obesity are detected within
five years, then lifestyle modification and early screening may help
to decrease morbidity and improve the quality of life.

Development. Big data has been able to throw some insight into
the management and outcome of children with cerebral palsy
(CP).13 Though much work has been done in children with autism
and attention-deficit hyperactivity disorder14,15 to reduce the time
to diagnosis, the light at the end of the tunnel is yet to be seen.
Large dataset studies have looked at the brain mapping risk for
anxiety. Big data analytics may help to unravel the neurobiology
of pediatric anxiety.16 Pruett et al.17 created a text learning
algorithm that has the potential to enable future studies of
stuttering using existing EHR data, including investigations into
the genetic etiology.

Newborn. There are vast data in the neonatal intensive care unit
(ICU) including medical records, physiological data from the signal
monitor, and video images of movement. The cause of morbidity
and mortality in NICU is primarily centered around premature
infants. We know that a lot of financial and human resources are
evaporated to reduce the burden of newborn mortality. Toward
this end, DL methods are using time-series vital signs data to
predict the risk of mortality in preterm infants.18

There is always the risk of hyaline membrane disease in these
infants, which calls for surfactant and ventilation. These premmies
often develop bronchopulmonary dysplasia (BPD) that is a
preventable disease. Lei et al.19 predicted from clinical records
of 996 premature infants by analyzing 26 variables the risk of
developing BPD. They established that the Random forest model
(AUC 0.929) could help clinicians predict those preterms at risk of
developing the disease to formulate the best treatment plan.
Retinopathy of prematurity (ROP) leads to blindness and is

preventable by early detection. A multi-institutional ROP dataset
consisting of retinal fundus images and clinical factors was
collected as part of the Imaging and Informatics in ROP study.20

The Logistic regression model based on demographics used two
predictors, gestational age and visual severity score, which can be
collected during a single exam, to identify all subjects who will
eventually develop treatment requiring ROP. The study is capable
of identifying children who will not develop ROP and help to
reduce the unnecessary waiting time for the screening of this
disease, let alone intervention.
Available EHR data can identify infants with sepsis in the NICU

hours before clinical recognition.21 Further prospective trials are
required before they can benefit the clinician. Early awareness of
sepsis can alert the clinician for judicious medical management.

Pediatric intensive care. At Children’s Hospital of Pittsburgh,
Pediatric Rothman Index is an analytical tool that is used as an
early warning sign for clinical deterioration.22 The Rothman Index
graphs can predict gradual health declines that can be missed
during handoff between multiple residents and nurses. The
software generates a graph displaying the patient’s conditions
using existing data in the patient’s EMR, a live data feed from the
patent’s continuous monitoring systems, laboratory results, vital
signs, and nursing assessments which updates every 1, 5, and
60min. The analytical tool followed research on a single-center
dataset23 that processed and integrated hundreds of input
variables from a patient's electronic medical record to provide
an accurate assessment of a child in the ICU. They can predict the
patient's risk of desaturation in the next hour24 and may enable
early intervention.
Evaluating the factors leading to death in PICU, the common

causes were shock, multi-organ failure, septicemia with septic
shock, and respiratory failure. Non-invasive ventilation in the form
of high-flow nasal cannulae (HFNC) oxygen therapy is nowadays a
preferred mode in children. The pediatric intensive care unit
(PICU) data were used to make dynamic predictions of HFNC
therapy failure within 24 h of initiation25 for escalating respiratory
support in critically ill children. Comoretto et al.26 predicted
hemodynamic failure development during PICU stay using
machine-learning algorithms (Table 1). A similar data source using
boosted ensembles of the decision tree has the potential to
predict with 75% sensitivity and 70% specificity. They predict
pediatric patients’ likelihood of developing severe sepsis through
automatic monitoring of the patient's EHR.27 These tools will find a
place in the clinical decision support, as it is critical to both
provide monitoring for this particularly vulnerable population and
avoid excessive numbers of false alarms.
Acute kidney injury (AKI) if diagnosed early is now reversible.

Various ML algorithms are being developed from readily available
EHR variables to predict imminent AKI in hospitalized children
accurately.28 PICU data from three centers in the United States and
the United Kingdom were used to train an age-dependent
ensemble model on pre-disease patterns of physiological mea-
surements to improve the outcome of pediatric AKI by providing
early alerting and actionable feedback. This will help in preventing
or reducing AKI by implementing early measures such as
medication adjustment.29

Emergency and ward. When children present with acute pro-
blems in the emergency, triaging these children can be difficult in
a busy emergency room. ML-based triage on data from EHR had
better discrimination ability to predict clinical outcomes and
disposition, with a reduction in under triaging critically ill children
and over triaging children who are less ill.30,31 Gradient boosted
XGB model (AUC 0.82) trained on EHR predicts the probability of
ward to ICU transfers more accurately than standard scoring
schemes and holds promise for early detection of pediatric in-
patients at risk for clinical deterioration in the near future.32

Pediatric cancer. The Childhood Cancer Initiative has spear-
headed efforts toward data sharing to enable the pooling of
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patient-level data for children across the country and the globe.33

They have combined these resources into Cancer Research Data
Commons Ecosystem.34 The neuroblastoma survival prediction35

based on gene expression has helped to provide explanations for
a better understanding of the molecular mechanisms underlying
neuroblastoma. There is a significant improvement in the
treatment outcome prediction of ALL utilizing the SVM algo-
rithm.36 Algorithm developed in genomic data from pediatric AML
patients37 have greater precision and accuracy for germline
variant detection, and integration of multiple such data will
improve risk stratification and therapeutic selection for a better
outcome.

For diagnosis
Infectious disease. Infection remains one of the leading causes of
mortality in children. Automated diagnosis of childhood pneu-
monia in resource-constrained settings, compensating for the
shortage of expensive equipment and highly trained clinicians,
was possible by data mining tools using three vital signs and a
biomarker.38 The diagnosis of acute febrile illness and monitoring
response to acute severe malaria treatment through ML algorithm
based on hematological parameters can be incorporated into
clinical support systems, particularly in endemic settings.39

Genetics. Delay in genetic diagnosis is very common, especially
in low and middle-income counties. Moreover, cautious clinicians
sometimes refer healthy children with atypical facial features for
costly genetic evaluation. In a multinational retrospective study,
Porras et al.40 developed and evaluated a ML-based screening
technology using facial photographs with an accuracy of 88% and
sensitivity of 90%. As the use of mobile health technology is
increasing, as an app, this technology could benefit neonatal
screening in maternity wards. In the current era of telemedicine,
such a tool would help in remote genetic risk stratification and
evaluation of children without requiring them and their families to
visit clinical facilities.

Electrocardiogram/echocardiogram. Due to the use of wear-
ables,41,42 a considerable amount of data is becoming available
for analysis and integration into decision making. Sudden death
episodes in children are common and demand screening for both
acquired and congenital long QT syndrome. The DNN-enabled
QTc algorithm (sensitivity 86%, specificity 94%) in the future
through wearable devices may help to detect QT prolongation
that predisposes to ventricular arrhythmias and sudden cardiac
death in children.43 Hypertrophic cardiomyopathy (HCM) is
another cause of sudden death in children. A CNN-based ECG
model for HCM detection can predict the disease with high
accuracy from the standard 12-lead ECG.44 Prediction models45

(Table 1) identified atrial septal defects from ECGs that will help
predict the disease when the heart murmur remains undetected.
Automatic diagnosis of echo-detected rheumatic heart disease
(RHD) is feasible with a 3D CNN that has an accuracy of 72.77%.46

Further research can potentially reduce the workload of experts,
enabling the implementation of more widespread screening
programs for RHD worldwide.

Radiology. Artificial intelligence software (i.e., BoneXpertTM
v.3.0.3) is used in some radiology departments for the rapid,
automated assessment of bone age rather than the traditional and
time-consuming manual Greulich–Pyle or Tanner–Whitehouse
assessment.47 Work with pediatric radiology database shows that
models can detect whether a chest X-ray image is abnormal with
92.47% accuracy and identify one of the causes of the lower
respiratory tract.48 In time, this can also help review the chest
X-ray images interpreted by clinicians and help in preventing
negligence. This system can be of reasonable diagnostic
assistance under limited medical resources. The object detectionTa
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model, when trained, will help to identify rickets in children less
than 7 years.49 Other recent examples of human expert-level
performance of high sensitivity and specificity include identifying
hemorrhage, mass effect, and hydrocephalus on head computed
tomographic (CT) images; colitis on abdominopelvic CT images;
and tuberculosis on chest radiographs.50 Grading hydronephrosis
severity relies on subjective interpretation of renal ultrasound
images.51 It can be a DL-based clinical adjunct for hydronephrosis
to the pediatrician, who may benefit in decision making.

Pediatric cancer. Khammad et al.52 used decision tree algorithms
and neural network on clinical and histological data to design a
reliable and interactive computational platform for primary CNS
tumor diagnosis. Bone marrow images53 are used to train a CNN,
which was effective in classifying WBCs. The performance in
diagnosing acute lymphoid leukemia achieved an accuracy of 89%
(sensitivity 86%, specificity 95%). The system also performs well at
detecting the bone marrow metastasis of lymphoma and
neuroblastoma, achieving an average accuracy of 82.93%. Further
research is required before this model is implemented in clinical
practice.

For pharmacovigilance and pharmacoepidemiology
There are potential applications of big data in pediatric medica-
tion safety research in children. Different networks from countries
are coming together to combine data from claims, EHR, and
surveillance across states. They provide an opportunity to follow
children into adulthood and study the effect of medication used in
their childhood.
Traditional work with big data from vaccine safety surveillance

was used by Yih et al. to show that RotaTeq was associated with
excess cases of intussusception in recipients of the first dose. A
cohort study using Clinical Practice Research Datalink found that
children with epilepsy were at significantly greater risk from
medicinal poisoning than those without epilepsy.54,55

Gradient boosted decision tree trained on adverse drug
reactions from the EHR of children attending a hospital have
predicted risk factors associated with these ADR and may be
helpful soon in clinical practice.56 Work on pharmacogenomics
coupled with EHR for the delivery of precision medicine is ongoing
in many hospitals in the US. These results deliver electronic clinical
decision support to clinicians when high-risk medications are
prescribed for an affected child.57 A study by Mohering et al.58

identified antimicrobial exposure from EHRs.

For a better health system performance
Big data analysis has been applied to the demographic and health
survey data from developing countries to predict risk factors for
malnutrition in Bangladesh59 and under-five mortality60 in 34 low
and middle-income countries. These may help to implement
preventive health planning for the country. Similarly, the data
from the most recent nationally representable cross-sectional
Bangladesh Multiple Indicator Cluster Survey predict measures for
reducing childhood morbidity in Bangladesh.61 The retrospective
cross-sectional survey data from Ethiopia, a national-
representative data, has effectively predicted the under-five
undernutrition status in Ethiopian administrative zones62 and
provided useful information to decision makers trying to reduce
child undernutrition.
The ROP dataset study20 shows findings of higher median ROP

severity in NCUs without oxygen blenders and pulse oxygenation
monitors, which may be utilized for improved access to care for
secondary prevention of ROP and may facilitate the assessment of
disease epidemiology and NCU resources.
Cerebral palsy (CP) is a broad umbrella that encompasses motor

developmental problems due to varied etiology. These children
have multiple problems that need a multidisciplinary team. The
interaction with this team involves appointment schedules,

outpatient waiting, multiple visits, and travel which becomes a
laborious task for parents and caregivers culminating in compro-
mised care for the child. Kurowski et al.63 demonstrated how EHR
data helps children with CP interact with a tertiary healthcare
system with different specialties. The study may provide a
foundation for developing a better system of care that will
streamline, cluster services, and reduce frequent acute visits, thus
decreasing the burden of care on families and reducing
healthcare costs.

Data harnessing in progress for a tailor-made approach in
future
Pediatric neurology. A common data model is now available for
ML and helps in the binary classification of Interictal epileptiform
discharges. Automated seizure detection and forecasting are
ongoing before they can be prospectively trialed in children or
converted into models.64

Newborn. A Harvard necrotizing enterocolitis NEC Database65

was developed on patients admitted from 2008 to 2018 to four
Harvard-affiliated NICUs with a clinical diagnosis of NEC confirmed
by radiograph. Ultra-high accuracy natural language processing (a
process of extracting specific information from free-text data
entry, such as daily provider progress notes)-based labeling
algorithms is identifying radiology reports positive for critical
findings of pneumatosis, portal venous gas, and pneumoperito-
neum. They may help to predict those infants who will eventually
develop NEC using plain films of the abdomen and decrease the
high level of morbidity and mortality associated with the disease.

Ulcerative colitis (UC). Advances in next-generation sequencing
lead to a greater understanding of the molecular basis of pediatric
UC. Multiple modalities such as endoscopy, histology, and imaging
ascertain the diagnosis and monitor progress. Large multimodal
data analysis can translate established and newly discovered
predictive factors into the clinical setting. A clinical decision-
support tool, incorporated into the EHR, can be developed to help
patient stratification at disease onset and allocate personalized
therapies.66

Asthma. Asthma is a complex disease associated with multiple
risk factors that are difficult to diagnose in children less than 6
years of age. ML models using large complex datasets developed
predictive models for childhood asthma.67 Using topic modeling
of nasal airway expression data, transcriptionally distinct airway
endotypes of childhood asthma were identified, corresponding to
known clinical phenotypes.68 Distinct pathways of disease
elucidated by this approach hold promise for the future
development of patient-specific therapies.

Pediatric renal disease. Andrea et al.69 used the National Patient-
Centered Clinical Research Network (PCORnet) Data to develop an
algorithm for the identification of primary nephrotic syndromes in
children and adults using ICD-9-CM and ICD-10-CM codes. The
application of ML may be helpful in identifying risk factors of
mortality in dialysis populations once “routine” biomarkers that
are cheap and easily available are identified.70

Autoimmune diseases. One example where transcriptomics has
been highly informative has been in lymphocyte transcriptomics
in autoimmunity (SLE, ANCA-associated vasculitis) This has
revealed that a pattern of CD8 T-cell exhaustion is predictive
of reduced relapses in autoimmunity and is inversely correlated
with CD4 co-stimulation. A marker, KAT2B, could potentially
have utility as a surrogate marker of clinical outcomes in these
diseases. This will enable prognostication of clinical course and
identify potential therapeutic targets to reduce relapse in
autoimmune diseases.71
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Type 1 diabetes (T1D). The pathogenesis of T1D in children is still
unclear. The intestinal microbiota has shown close relationships
with T1D in recent years.72 Children at increased genetic risk of
type 1 diabetes were prospectively followed from birth in The
Environmental Determinants of the Diabetes in the Young
(TEDDY) study.73 They conclude that metabolic processes may
play a role in triggering islet autoimmunity. Compiling metabo-
lomics and microbiome may help to understand the disease for
targeted therapy.

Pitfalls and challenges of big data
EHR, social media, medical transcriptions, and similar unstructured
data sources can provide massive chunks of data, but the analytics
are complex, costly, time-consuming, requiring skill and effort.
Data quality is also an essential challenge in which we need
methods for improving data completeness, conformity, and
plausibility.74 However, access to clinical data is still very restricted
due to data sensitivity and ethical issues.
Data standardization or storage in compatible formats with all

applications and technologies is another challenge. Some
significant challenges that experts deal with during analysis
include fragmented heterogeneous data, incompatible formats,
unclear transparency during information acquisition and cleans-
ing, and language.75 Too much-unrelated data can shift the focus
from essential variables and reduce the model speed and
performance. Algorithms built based on poor-quality data can
lead to misguided decision making by healthcare professionals
and policymakers.76 External validity and generalizability outside
the study population may be an area of concern before
implementing a “big data”-based system. A major drawback of
some ML and DL models are lack of interpretability by humans
because they are “black box” models—only good at discovering
the patterns rather than explaining them.77 There must be
regulations for sharing, de-identifying, securely storing, transmit-
ting, and handling protected health information. This involves
privacy laws and legal agreements and requires establishing rules.
“Big data” makes the problem of patient privacy protection more
significant and more challenging to attain.78

Once we overcome these challenges, clear opportunities exist
for well-designed diagnosis and decision-support tools to
incorporate these data for extracting useful information and
providing better outcomes.

PERSPECTIVES AND CONCLUSION
There has been an appreciable amount of research in the
healthcare databases that will improve the performance of the
health system through proper utilization of resources and
judicious use of workforce. Research with data from PICU has
progressed at a faster pace helping in clinical decision making and
alerting medical personnel. The world of “big data” is growing at a
rapid rate. As more genomic data, epigenomic data, methylation
array data, transcriptomic data, and proteomic data become
available, we can map them to patient phenotype for more
personalized care and targeted therapy for children (Fig. 2).
Pediatric proteomics, an area of plasma proteomics, is an
extremely valuable biological sample to monitor health and
disease. In the field of cancer therapy, proteomics has a clear
application in the identification of biomarkers for good responders
to the treatment of Hodgkin lymphoma and detecting the
biochemical signs of high- or low-risk lymphoblastic leukemia
patients.79 Plasma proteomics has a clear significance in the
clinical setting. Advanced research in this field may unravel
biomarkers in autoimmunity, blood disease, cardiovascular
disease, developmental delay, infection, nutritional imbalance,
and even psychiatric conditions. The role of metabolomics in
perinatal asphyxia, neonatal nutrition and sepsis, and autism will
add to the ocean of omics data.80 As whole-genome sequencing
data is available, with the advances in technology, genomic
diagnosis with a panel-based gene testing will enable rapid and
affordable testing of congenital and rare diseases.81 With a deeper
understanding of system biology, there will be an intensive study
on the impact of genetic polymorphisms on clinical outcomes and
interaction of medications with the microbiome. A large number
of pediatric bacterial culture results with genome sequencing data
are generated. The application of big data analytics to integrate
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routine clinical and laboratory data with omics and sequencing-
based outputs may translate personalized medicine initiatives into
clinical practice. Predictive modeling can enable clinicians to
distinguish children who will benefit from a specific therapeutic
intervention from those who will not. Big data analysis and its
incorporation into the clinical decision-support system will help us
to choose more child-specific management and prevent adverse
effects, long-term morbidity, and mortality.
As these changes evolve, the pediatrician will play a different

role in ensuring that big data algorithms have a clinically relevant
effect on improving the health of their patients. They will be
involved in educating their trainees on algorithm development
and standardization of data collection through the EMRs. They
may even train in analytics to develop strategies for clinical use of
big data. Surely with time, most of them will apply the outcome of
big data and its analysis in patient care through clinical algorithms
or by embedded clinical support alerts from the EMR.

DATA AVAILABILITY
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