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Artificial and human intelligence for early identification
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Artificial intelligence may have a role in the early detection of sepsis in neonates. Machine learning can identify patterns that
predict high or increasing risk for clinical deterioration from a sepsis-like illness. In developing this potential addition to NICU care,
careful consideration should be given to the data and methods used to develop, validate, and evaluate prediction models. When an
AI system alerts clinicians to a change in a patient’s condition that warrants a bedside evaluation, human intelligence and
experience come into play to determine an appropriate course of action: evaluate and treat or wait and watch closely. With
intelligently developed, validated, and implemented AI sepsis systems, both clinicians and patients stand to benefit.
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IMPACT:

● This narrative review highlights the application of AI in neonatal sepsis prediction. It describes issues in clinical prediction
model development specific to this population.

● This article reviews the methods, considerations, and literature on neonatal sepsis model development and validation.
● Challenges of AI technology and potential barriers to using sepsis AI systems in the NICU are discussed.

Sepsis continues to cause significant morbidity and mortality
among preterm very low birthweight (VLBW) infants in the
neonatal intensive care unit (NICU), and earlier detection and
treatment can reduce mortality and improve outcomes for
survivors. In this narrative review, we address a number of
questions related to artificial intelligence (AI) for sepsis prediction
and detection in NICU patients. First, we discuss aspects of
neonatal sepsis that make it a tractable problem for machine
learning (ML) predictive models. Next, we cover technical aspects
of ML model development and validation, including variable
selection using both static and dynamic data. We then review
some existing early warning and ML systems. Finally, we discuss
the benefits of and barriers to implementing sepsis prediction
systems in the NICU, with the goal of “right timing” antibiotics to
improve patient outcomes.

Q1: HOW SUITABLE IS THE PROBLEM OF NEONATAL SEPSIS
FOR AI SOLUTIONS?
Premature infants in the NICU are, in a number of ways, an ideal
population for AI-based sepsis monitoring. They are immune-
compromised and require invasive devices that create a high risk
for sepsis, yet they may have a period of relative stability before
developing sepsis. Late-onset sepsis (LOS) does not present when
the pathogen invades the blood stream, but instead as a sub-
acute physiologic response with inflammation and organ dysfunc-
tion. Therefore, when advanced analytics of patient-generated
data can detect the transition from “well” to “ill”, predictive models
can translate this information to the clinical team to provide

earlier warning of a sub-acute, potentially catastrophic deteriora-
tion. The advantage of early warning and treatment of sepsis
must be considered in balance with the potential disadvantage
of increasing antibiotic exposure, which has negative conse-
quences.1–5 Non-specific signs of sepsis such as apnea and
respiratory distress and the risk of rapid deterioration with delayed
treatment make this balance challenging for clinicians. Thus, it is
imperative to not only develop sepsis warning systems with
limited false alarms, but also to teach clinicians to use AI model
output in the context of all available clinical data in making
decisions about starting and stopping antibiotics. A final
consideration is the distinction between early- and late-onset
sepsis (EOS within 3 days from birth, LOS after 3 days). For EOS, a
simple static prediction model (the EOS calculator) has been
developed and its broad implementation has reduced antibiotic
use.6 In this review we focus primarily on the prediction of LOS
incorporating both static and dynamic data, including continu-
ously streaming vital sign data from NICU bedside monitors.7

Prediction models will perform best if the targeted outcome is
well-defined and validated. For sepsis, this requires careful
medical record review rather than simply relying on ICD codes
since many studies have shown that diagnostic codes for sepsis
are inaccurate.8,9 A challenge with regard to neonatal sepsis is the
lack of a consensus definition,10,11 making it difficult to compare
and interpret results across studies.12,13 Some prediction models
train only on culture-positive sepsis, while many include cases of
“clinical sepsis” in which an infant has significant signs of illness
and clinicians opt to prolong antibiotic treatment despite negative
cultures. Experts argue that in the setting of modern laboratory

Received: 18 April 2022 Revised: 29 July 2022 Accepted: 5 August 2022
Published online: 20 September 2022

1Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA. ✉email: bsa4m@virginia.edu

www.nature.com/pr

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-022-02274-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-022-02274-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-022-02274-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-022-02274-7&domain=pdf
https://doi.org/10.1038/s41390-022-02274-7
mailto:bsa4m@virginia.edu
www.nature.com/pr


equipment and sufficient inoculation volume, the likelihood of a
false negative blood culture is extremely low.14,15 Nonetheless, as
discussed later in this review, many prediction models have been
developed using both clinical and culture-positive sepsis cases,
and it is therefore important for clinicians to use judgment
to decide on the duration of therapy in the face of a high or
rising risk score, since misuse of antibiotics can lead to adverse
outcomes.16

Finally, for AI models to be widely useful for NICU patients they
must be generalizable and reproducible. FAIR data principles were
proposed as a way for AI research and development to achieve
this goal—data should be findable, accessible, interoperable, and
reusable.17,18 Large data sets and external validation are likely to
improve generalizability and translation to clinical care. However,
generating data that are FAIR and models that are externally
validated in large cohorts is no small task; it typically requires
long-standing multicenter, multi-specialty research collaborations.

Q2: WHAT ARE THE IMPORTANT AI AND MACHINE LEARNING
MODEL DEVELOPMENT CONCEPTS?
Figures 1 and 2 provide a conceptual overview of aspects of AI
relevant to healthcare applications, from algorithm development
through clinical implementation and integration. ML is a type of AI
that includes supervised methods such as classification and
regression, using algorithms to find structure in labeled data, and
unsupervised methods involving clustering and dimension reduc-
tion of unlabeled data. Generally, sepsis prediction models
use supervised ML with various modeling methods, including
regression, tree-based methods, neural networks, and others. In
some studies, a variety of modeling methods were shown to have
similar predictive performance,19,20 while in other studies, a
specific method is found to have better performance.21

A common way to assess ML model performance is using the
area under the receiver operating characteristics curve (AUC) to
summarize the model’s ability to discriminate cases from controls
over all possible thresholds.22 The AUC value alone is insufficient

to evaluate model performance since it does not consider prior
probability, does not provide information about the distribution of
errors, and weights omission and commission errors equally.23,24

Moreover, even a model with good discrimination may provide
risk estimates that are unreliable.25

Another way to evaluate model performance is by calculating
sensitivity, specificity, and negative and positive predictive
values (NPV and PPV).26 Although LOS occurs in approximately
15% of very preterm infants, the chance of an infant developing
sepsis on any particular day is quite low. Thus, the PPV of models
developed to continuously evaluate the risk of imminent sepsis
will be low in order to have acceptably high sensitivity. ML
model performance should also be evaluated using qualitative
methods, such as calibration plots and time-to-event plots
(Fig. 3). The calibration of a model’s risk predictions can be
visualized by plotting the observed risk as a function of the
predicted risk.27 Time-to-event plots show the average model
output in a cohort relative to the time of the event and illustrate
the horizon or lead time for sepsis prediction. This qualitative
model assessment provides valuable information about its
clinical utility since a score without a rise before clinicians
recognize illness is not likely to benefit patients.
Once a model is developed or trained, testing or validation is an

essential next step. A validation data set can be internal (a subset
of the original data set) or external, from a new cohort at a
different center. Validation in data sets with similar patient
characteristics and practice patterns compared to the training
data provides evidence for reproducibility of model performance,
while external validation using data from cohorts with different
characteristics (for example, different centers, patient demo-
graphics, level of illness, or clinical practices), provides evidence
of model transportability.28 In an example from our prior work, we
showed that differences in invasive versus non-invasive respira-
tory support across NICUs impacted the performance of a sepsis
prediction model that incorporated features to detect apnea.29 In
addition to external validation, ongoing evaluation of ML models
ensures adequate performance after implementation. Data shift or
drift may occur over time as practices, hospital systems, and
patient populations change.30 Examples that could impact NICU
sepsis model performance include a change in bedside monitors
with differences in HR or SpO2 averaging times, change in
practices for obtaining specific laboratory tests that serve as
model inputs, or changes in the use of medications or respiratory
support that may impact vital sign patterns.
The ultimate step in model evaluation is conducting

randomized clinical trials to determine whether displaying the
output of an AI algorithm leads to meaningfully improved
outcomes. Only through well-designed, large clinical trials will
sepsis AI systems be trusted, implemented, and routinely used
for patient care. Finally, since many research groups are
developing sepsis AI, it is important that results and algorithms
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Fig. 1 Concepts overview. Schema illustrating the overlapping
concepts of artificial intelligence, machine learning, and prediction
models with brief descriptions.
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Fig. 2 Artificial intelligence (AI) process diagram. A conceptual diagram illustrating the key steps of developing sepsis AI technology, from
idea to model development, testing, and translation to clinical implementation.
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be shared among researchers. In order to better interpret results
across studies, models should be reported using a standardized
format such as TRIPOD (Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis)31 or a
subsequent format specific for AI (TRIPOD-AI).32

Q3: WHICH DATA ARE USEFUL IN NEONATAL SEPSIS
PREDICTION MODELS?
When predicting imminent LOS, AI models may use physiologic
data derived from high-resolution data (e.g., the electrocardio-
gram waveform signal sampled at 250 Hz), low-resolution data
(e.g., demographics, clinical risks or signs, intermittently sampled
vital signs, or laboratory tests), or a combination of both. The
inflammatory response to sepsis manifests as changes in multiple
physiologic processes that we measure as vital signs, making
these data particularly useful for detecting and predicting LOS.33,34

Patterns in continuous cardiorespiratory data have been identified
as signatures of illness due to sepsis. Predictive modeling
translates these physiomarkers of sepsis into a predicted risk of
imminent deterioration, which has potential clinical utility as an
early warning system. For example, low variability of HR
accompanied by HR decelerations was recognized as a signature
of illness in neonates.35 The mechanism of abnormal heart rate
characteristics (HRC) during sepsis involves cytokine signaling and
autonomic nervous system activation with increased vagus nerve
firing.36–39 The HRC index, a continuous sepsis prediction model,
was developed to capture these abnormal patterns and is
discussed later in this review.7

In searching beyond HR patterns for physiomarkers of sepsis, a
logical place to look is in the respiratory data. An increase in
central apnea is one of the major signs of sepsis in preterm NICU
patients,38–42 due in part to the cytokine-triggered release of
endogenous prostaglandins.38–40 Apnea detection through chest
impedance waveform analysis is complicated, while detection of a
decline in HR and SpO2 that often accompany apnea is simpler.
One analytic that serves this purpose is the cross-correlation of HR
and SpO2, which measures the degree to which the two signals
co-trend within a set lag time. An increase in this metric captures
deceleration-desaturation events, which correlate with increased
central apnea or exaggerated pathologic periodic breathing in
preterm infants.29,41

Changes in physiologic data can be non-specific while still
useful for sepsis detection and prediction. Interpreting a rising
sepsis risk score may require consideration of the clinical context
and the patient’s baseline condition. Some preterm infants have
chronically abnormal HR and SpO2 patterns reflecting pathologies
unrelated to sepsis. One solution could be to incorporate a
patient’s baseline into the calculated risk to account for inter- and
intra- patient variability and allow for personalized AI predictions.

Demographic, laboratory, and clinical data for sepsis AI
algorithms
The EHR contains many pertinent clinical data that add to sepsis
risk prediction. Lower gestational age and birthweight correlate
strongly with rising risk of LOS, and can stand alone to risk stratify
premature infants at birth or add to models that use continuous
vital sign data.7,43–45 Postnatal and postmenstrual age also add to
risk prediction due to the peak in LOS incidence at 1–3 weeks of
age.46,47 Additional demographic and perinatal variables may
improve model performance, such as sex,48,49 race, ethnicity, or
delivery mode.50,51 While including these variables in ML model is
likely to improve the AUC, they provide only static information.
Laboratory tests that measure components of the host response

to infection, such as immature neutrophils or serial C-reactive
protein values are commonly used tests for sepsis screening and
may serve as decision support for either starting or withholding
antibiotics in conjunction with other clinical variables.52–56

However, such tests are typically ordered by the clinician with
concern for sepsis and therefore the information they provide is
likely to lag behind clinical suspicion rather than provide early
warning.
Clinical risk factors may be incorporated into sepsis ML models

including the presence of a central vascular catheter or mechan-
ical ventilation and medications that increase sepsis risk such as
postnatal steroids. Clinical signs of sepsis may also be incorpo-
rated into models, including increased apnea, respiratory distress,
feeding intolerance, poor perfusion, temperature instability,
hypotension, and lethargy.42,57,58 These signs may be captured
from EHR documentation, but once an ICU clinician documents
“lethargy” in the EHR they typically have already ordered the
blood culture and antibiotics. Several published sepsis detection
models instead use patient-generated data to detect clinical signs
of sepsis, including using HR and SpO2 data to detect an increase
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in apnea,41 core to peripheral temperature differential to detect
impaired thermoregulation,59 and cardiorespiratory waveform
data to detect decreased infant motion or lethargy.60 AI models
for LOS in the NICU that include continuous physiologic data
are likely to be more clinically useful than those that use only
EHR data.

Q4: WHAT ADVANCED WARNING SYSTEMS FOR SEPSIS EXIST,
AND WHAT LIES IN THE FUTURE?
Before discussing AI systems for sepsis, consideration should be
given to “Early Warning Scores” (EWS). EWS and ML models are
both designed to alert the medical team to concerning clinical
changes that might otherwise go unnoticed. Both can be
integrated into the EHR or displayed at the bedside, and both
can incorporate information from a mix of static and dynamic
clinical variables. EWS employ a “track and trigger” approach,
whereas AI models use math and the data to learn temporal
trends and correlation among parameters.61 For example, the
Pediatric Early Warning Score is calculated based on periodic
observations of multiple physiological parameters and designed
to predict clinical deterioration (including but not limited to
sepsis) in hospitalized children.62,63 AI models would be expected
to perform better than EWS because they can use the data as
continuous rather than categorical values determined by thresh-
olds. Additionally, modeling rather than empirically derived
cutoffs can detect more subtle and complex patterns in the data
associated with the target outcome.
Though this review is focused on neonatal LOS prediction, the

EOS calculator deserves mention since it is widely used and
exemplifies some important aspects of sepsis AI.6,64,65 The model
uses perinatal risk factors known at the time of birth in a logistic
regression model to derive prior probability and then incorporates
the clinicians’ assessment (asymptomatic, equivocal, or clinically
ill) using Bayes’ theorem. The risk per 1000 live births is displayed
for each of the three categories of illness.6,64 Decision support is
provided, allowing for clinical judgment to guide the application
of the AI technology, which is likely a factor in the widespread
adoption of this model. Studies of the impact of the EOS calculator
have shown it reduces the number of asymptomatic or equivocal
infants with sepsis risk factors undergoing laboratory evaluations
and exposure to antibiotics.64

Developing a calculator for LOS would be substantially more
complicated, since it is more common than EOS, occurs over a
wide time range, and has non-specific clinical signs that are
common in preterm infants with non-infectious conditions.
Nonetheless, a number of tools for predicting LOS in NICU
patients before they are obviously sick have been published.66

Table 1 summarizes models using continuous or intermittently
sampled data to predict LOS before clinical deterioration
prompting a blood culture and antibiotics.7,60,67–69 Several other
studies have used data at the time of blood culture to predict
whether sepsis will be ruled in or out (positive versus negative
culture) which may be useful for determining when to start and
stop antibiotics.70,71 And finally, several studies have used vital
sign data shortly after birth to predict the risk of developing sepsis
later in the NICU course, which might identify highest risk infants
in need of enhanced vigilance or preventive strategies not
suitable for the entire preterm population.72,73

To date, the only commercially available system for NICU
predictive monitoring using continuous bedside monitor data is
the HRC index, or HeRO Score. This is also the only ML model for
neonatal sepsis that has been tested in a randomized clinical trial
and shown to improve important clinical outcomes.74 The HRC
algorithm uses electrocardiogram data from standard NICU
bedside monitors to calculate the fold-increased risk of a clinical
deterioration due to sepsis (culture-proven) or a sepsis-like illness
(clinical sepsis) in the next 24 h. The algorithm uses mathematical Ta
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calculations that report on decreased HR variability and transient
HR decelerations, patterns shown in pre-clinical models to reflect
pathogen-induced inflammatory cytokine release and vagus nerve
firing.37,75 In a randomized clinical trial of 3003 VLBW infants at
nine NICUs,74 display of this risk score was associated with
significantly lower sepsis-associated mortality(12% versus 20%),
presumably due to earlier treatment.76 Importantly, the display of
the score resulted in a small increase in the number of blood
cultures and antibiotic days, but only among infants with
confirmed sepsis.76 This indicated that clinicians may have also
used the score for its NPV to decide not to start antibiotics or
to discontinue antibiotics in patients with non-specific, mild
clinical signs.

Q5: WHAT ARE SOME BENEFITS AND BARRIERS TO SEPSIS ML
MODEL IMPLEMENTATION AND CLINICAL INTEGRATION?
Much has been written about the potential benefits of AI
implementation in healthcare77 but “AI solutions” will not replace
the hard work of clinicians deciding which patients require testing
and therapies.78 Properly developed sepsis AI systems might
direct clinicians to the right bed at the right time, leading to earlier
antibiotic treatment and supportive care leading to improved
outcomes. The 20% reduction in sepsis-associated mortality with
continuous HRC index display in the HeRO RCT is an example. For
survivors of neonatal sepsis, earlier treatment might have other
benefits, such as reduced NICU length of stay.79 The caveat, of
course, is that attention must be given when implementing sepsis
AI to avoid misuse of antibiotics for non-infectious clinical
deterioration that is common in preterm infants in the NICU.
Beyond direct patient benefits, other potential benefits of using

AI risk models for sepsis include resource allocation and risk
stratification, which can be useful for cost-effectiveness analyses,
classification for research, and benchmarking across hospitals.
Also, care is required in AI model design to avoid introducing
biased data into algorithms. A first step in addressing bias in AI is
to develop and test algorithms for performance across the
spectrum of patient sex, race, ethnicity, and socioeconomic status.
With regard to sepsis, a potential advantage of physiology-based
algorithms is that heart rate patterns of neonates tend to be
similar across the spectrum of patient diversity. Adding pulse
oximetry data to HRC will need close scrutiny since racial
differences in accuracy of pulse oximetry data have recently been
described in adults,80 children,81 and neonates.82 Regardless of
what sources of data serve as model input, AI algorithms should
be developed and validated in large, diverse patient populations
with efforts made to minimize bias of all types.
Although there are many potential benefits of AI, there are also

many barriers. We developed the acronym “BARRIERS” to
summarize some major challenges in this field: Babies, Analytics,
Reactors, Reassurance, Integration, Equipment, Re-education, and
Space.83 Babies themselves can complicate the development and
deployment of early warning systems for sepsis since they cannot
announce that they feel sick, and their signs of sepsis are non-
specific and overlap with normal preterm physiology. This creates
the problem of false alarms in a unit already prone to alarm
fatigue.84,85 Another barrier, “Analytics,” refers to the difficulty in
creating models due to heterogeneity of event identification,
variable selection, and modeling techniques, as previously
discussed in this review. “Reactors” are the model users, NICU
clinicians with varied education, experience, and responsibilities.
The barrier, in this case, is the difficulty in displaying data and
clinical decision support in a way that is effective for a broad range
of clinicians. “Reassurance” can be a problem with AI models if a
low-risk score falsely reassures the clinical team faced with an
infant with significant signs of illness, leading to a delay in
treatment. “Integration” refers to the challenge of introducing an
AI model without creating too many distracting false alarms. One

way to mitigate alarm fatigue yet assure that critical information is
transmitted to the right person is to have a centralized clinical
team that reviews alerts and determines which ones should be
transmitted to the care team,86 an approach that may not
be broadly feasible. The “E” in BARRIERS is equipment that must
be integrated into the clinical workflow. Once the system is
integrated, education and “Re-education” for users are critically
important to assure proper implementation. And finally, “Space”
can be a barrier since the NICU bedside may already be crowded
with equipment and monitors. A new sepsis prediction system
needs to be positioned in such a way to be noticeable but not
overwhelming.
In the case of an AI system that is shown to improve patient

outcomes, implementation relies on hospital administrators and
clinicians “buying in.” A survey-based study of continuous
predictive monitoring reported that users had positive engage-
ment with the system if they trusted the data used in the model
and if they understood the science behind the model outputs.87

This is the basis for the term “explainable AI” which some view as
essential for clinicians to utilize the system, although others argue
that methods to make models explainable sacrifice their
performance.88 A final consideration is that AI systems may
introduce unintended consequences such as inappropriate testing
and therapies. Further research is needed to characterize (or
differentiate) how sepsis AI models perform in events of non-
specific clinical deterioration versus culture-proven sepsis.

CONCLUSION
Sepsis AI is a way to analyze and present data to clinicians for
earlier detection and treatment leading to improved patient
outcomes. If properly developed and implemented, AI systems
can alert clinicians to a change in a patient’s condition that
warrants a bedside evaluation. At that point, human intelligence
and experience can combine computer-generated risk informa-
tion with what they see and what they know to make the best
decisions for individual patients.
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