
CLINICAL RESEARCH ARTICLE

Polygenic risk scores and the need for pharmacotherapy in
neonatal abstinence syndrome
Shawana Bibi1,7, Nathan Gaddis2,7, Eric O. Johnson2, Barry M. Lester3, Walter Kraft4, Rachana Singh1, Norma Terrin5,
Susan Adeniyi-Jones6 and Jonathan M. Davis1,5✉

© The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc 2022

BACKGROUND: The aim of this study was to identify genetic variants associated with NAS through a genome-wide association
study (GWAS) and estimate a Polygenic Risk Score (PRS) model for NAS.
METHODS: A prospective case–control study included 476 in utero opioid-exposed term neonates. A GWAS of 1000 genomes-
imputed genotypes was performed to identify variants associated with need for pharmacotherapy for NAS. PRS models for
estimating genetic predisposition were generated via a nested cross-validation approach using 382 neonates of European ancestry.
PRS predictive ability, discrimination, and calibration were assessed.
RESULTS: Cross-ancestry GWAS identified one intergenic locus on chromosome 7 downstream of SNX13 exhibiting genome-wide
association with need for pharmacotherapy. PRS models derived from the GWAS for a subset of the European ancestry neonates
reliably discriminated between need for pharmacotherapy using cis variant effect sizes within validation sets of European and
African American ancestry neonates. PRS were less effective when applying variant effect sizes across datasets and in calibration
analyses.
CONCLUSIONS: GWAS has the potential to identify genetic loci associated with need for pharmacotherapy for NAS and enable
development of clinically predictive PRS models. Larger GWAS with additional ancestries are needed to confirm the observed SNX13
association and the accuracy of PRS in NAS risk prediction models.
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IMPACT:

● Genetic associations appear to be important in neonatal abstinence syndrome.
● This is the first genome-wide association in neonates with neonatal abstinence syndrome.
● Polygenic risk scores can be developed examining single-nucleotide polymorphisms across the entire genome.
● Polygenic risk scores were higher in neonates receiving pharmacotherapy for treatment of their neonatal abstinence syndrome.
● Future studies with larger cohorts are needed to better delineate these genetic associations.

INTRODUCTION
Neonatal abstinence syndrome (NAS) is a constellation of signs of
withdrawal in the neonate from in utero exposure to maternal
opioids.1,2 The incidence of NAS has exponentially increased over
the past decade, concurrent with the global opioid epidemic.3

NAS has a highly variable expression, making accurate prediction
of the need for pharmacotherapy a significant challenge.4 Opioid
exposed neonates are monitored in the hospital several days for
signs indicating the need for pharmacotherapy.5–7

Despite decades of research, accurate prediction of NAS
expression remains elusive. Recent studies have utilized maternal
and neonatal factors associated with NAS expression and
developed predictive models.8,9 Genetic factors explain some
variation and have been associated with opioid use disorder

(OUD) in adults. Genetic variation in opioid receptor genes and
genes involved in opioid metabolism are associated with variable
response to pharmacotherapy.10–14

The objective of this study was to identify genetic variants
associated with the need for pharmacotherapy of NAS through a
genome-wide association study (GWAS) and establish polygenic
risk score (PRS) models to enhance prediction of need for
treatment.

METHODS
Patient population and phenotype
Subjects were recruited from four prospective studies—two clinical trials
and two observational cohort studies.15,16 The 8-site clinical trial compared
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methadone with morphine for the treatment of NAS. An observational arm
of this trial included: (1) neonates whose parents consented for the trial
but who did not require treatment; (2) parents who did not consent for
randomization in the trial but agreed to data collection and genetic
analyses.15 Additional neonates were recruited from a single-center trial of
sublingual buprenorphine for NAS and an observational study led by
Thomas Jefferson University.16

Inclusion criteria for these studies included neonates born > 36 weeks
gestational age to mothers with known OUD in medication assisted
treatment programs. All neonates were monitored in hospital for a
minimum 3–5 days prior to discharge home. Pharmacotherapy for NAS
was based on Finnegan Scoring criteria per clinical trial and observational
study protocols.15–17 Control neonates met all inclusion criteria, but did not
require pharmacotherapy. Neonates were excluded if they did not meet
inclusion criteria, were one of a multiple birth, had major congenital
abnormalities, died or left the hospital before day 5. Institutional Review
Boards at each center approved the studies and informed consent was
obtained.

DNA isolation, genotyping, and quality control
Genomic DNA was extracted from buccal swabs using previously
published methodologies.18 All subjects were genotyped with the Infinium
Omni2.5–8v1.3 array which contains probes for ~2.4 million SNPs. Subjects
were assigned to ancestral groups (African American (AA), European
American (EA)) based on comparison to the HapMap CEU, YRI, and CHB
populations using STRUCTURE and ancestral outliers were removed.19,20

SNP- and subject-level quality control (QC) were conducted using PLINK.21

SNPs with missing call rate >10% or Hardy–Weinberg p value <0.0001 were
removed and heterozygous haploid SNPs were set to missing. Subject-level
QC removed subjects with missing call rate >10%, duplicates, first degree
relatives (identity-by-descent pi-hat >0.4), cryptically related subjects
(identity-by-state distance >0.9), and subjects with excessive homozygos-
ity. Following genotype QC, 94 AAs (2,328,444 SNPs) and 394 EAs
(2,325,421 SNPs) remained.
To expand genomic coverage, genotype imputation was performed with

the Michigan Imputation Server using 1000 Genomes (1000G) Phase 3
(Version 5) reference panel.22 After removing variants with minor allele
frequency (MAF) < 0.01 in the reference (1000G AFR for AAs, 1000G EUR for
EAs) or study populations or with imputation Rsq <0.8, ~13.4 million, and
~8.5 million SNPs and indels remained in AAs and EAs, respectively.

Genome-wide association analyses
Genome-wide variant associations with the need for pharmacotherapy
were calculated separately for AA (N= 94) and EA (N= 382) neonates with
non-missing phenotypes and covariates using RVtests software, adjusting
for sex and genetic principal components as covariates.23 Results for
association testing of AA and EA neonates were combined via inverse
variance-weighted meta-analysis using METAL software with genomic
control.24 Results were filtered to eliminate variants with MAF < 0.01 and
imputation quality <0.8. Gene associations with need for pharmacotherapy
were generated from the GWAS summary statistics using the MAGMA
software.25

Nested cross-validation for PRS development
Due to small sample size, a nested cross-validation approach was used to
develop PRS models for predicting need for pharmacologic treatment
(Supplemental Fig. 1). Given the small number of AA neonates and the
differing genetic architecture of AAs and EAs, only EA neonates were used
for PRS model development. Subjects were divided into training and
validation sets, with neonates from Thomas Jefferson University (N= 92,
~25% of overall cohort) assigned to the validation set, establishing
independent training and validation sets.
For cross-validation, the training set (N= 290) was divided into 5 equal

sets with similar case:control ratios. Each was used as the target population
in 5 separate runs of PRSice-2 utilizing the classic PRS calculation approach
of clumping and thresholding (Supplemental Fig. 1).26 The remaining 80%
of the training set was used as the base population for PRSice-2. In
preparation for running PRSice-2, genome-wide association testing was
run in the base population with RVtests, adjusting for sex and genetic
principal components as covariates. For the PRSice-2 analyses, the 1000
Genomes EUR group was used to improve LD estimation for clumping
(MAF cutoff 0.01). Each PRSice2 analysis generated an optimal PRS model
consisting of different sets of variants.

Validation of PRS models from cross-validation
Results from cross-validation were combined for testing in the reserved
Jefferson validation set and in AA neonates using different intersections of
the variant sets from the optimal PRS models. Specifically, PRS models
consisting of variants present in 1, 2, 3, 4, or all 5 optimal models were
tested for their discriminative and predictive abilities in the validation set.
Two distinct approaches were used to assess PRS model performance,
differing in the source of variant effect sizes used to calculate PRS: (1) the
cis approach, which calculates PRS as the average sum of validation set
effect sizes weighted by validation set allele dosages for PRS model
variants, and (2) the trans approach, which calculates PRS as the average
sum of training set effect sizes weighted by validation set dosages for PRS
model variants. For both approaches, the dosages of variants with negative
effect sizes were first inverted and the sign of the effect sizes were
changed to positive. The predictive and discriminatory ability of different
variant sets was assessed using analysis of variance (ANOVA) and area
under the receiver operating characteristic curve (AUROC) statistics. The
five PRS models were tested for their discriminative and predictive abilities
in AA neonates using similar methodology.

Calibration of PRS models
Calibration of PRS models was performed as described previously.27

Optimal PRS thresholds for discriminating need for pharmacotherapy for
NAS were calculated by maximizing the Youden-Index based on kernel
smoothed densities using the oc_youden_kernel function of the cutpointr
package. Mean calibration of PRS models was tested by comparing the
average predicted need for treatment based on the PRS threshold to the
actual overall rate. PRS and thresholds were calculated using the effect
sizes from the training set for the Jefferson EA validation set or the full EA
set (training+ validation) for AAs. Weak calibration of PRS models (not
overestimating/underestimating predicted outcome) was assessed by
calculating the calibration intercept and slope and examining their
deviation from 0 and 1.

RESULTS
GWAS meta-analysis of need for pharmacotherapy
Cross-ancestry GWAS meta-analysis in AA (cases= 59, controls=
35) and EA (cases= 231, controls= 151) neonates identified one
intergenic locus on chromosome 7 between the LINC02889 and
SNX13 genes exhibiting genome-wide significant association with
need for pharmacotherapy (p= 4.22 ×10−8 for top variant
rs73313786; Fig. 1—Manhattan plot; Supplemental Fig. 2—QQ
plot; Supplemental Fig. 3—LocusZoom plots; Supplemental
Table 1—variants with p < 0.001). A second intergenic locus on
chromosome 6 between the LOC107986667 and MEAT6 genes
achieved near-genome-wide significance (p= 5.48 × 10−8 for top
variant rs1566002; Supplemental Fig. 4—LocusZoom plots).
Ancestry-specific GWAS revealed no genome-wide significant loci
for AA (Supplemental Fig. 5 and Supplemental Table 2). However,
the same genome-wide significant chromosome 7 intergenic
locus observed in the cross-ancestry meta was observed for EA
ancestry alone (p= 2.17 × 10−8 for top variant rs10277501;
Supplemental Fig. 6 and Supplemental Table 3).
Prior studies identified 7 variants in the OPRM1, COMT, OPRD1,

OPRK1, and PNOC genes associated with NAS (need for
pharmacologic treatment, treatment with ≥2 medications, length
of hospital stay).28,29 None of the previously identified variants
extended to need for NAS treatment in our GWAS based on a
Bonferroni-corrected p value of 0.007 (0.05/7 SNPs) (Table 1).
However, rs2614095 (intronic variant within PNOC) was nominally
significant in the present study (p= 0.042) and showed the same
direction of affect across studies (minor allele A being protective).
Although no variants in the OPRM1 gene approached genome-
wide significance, the top variant rs641457 had a beta= 0.7117
and p= 0.0037). This occurred despite different primary outcomes
in the various studies (e.g., need for NAS treatment in the present
study).
Analysis of gene-based association with the need for pharma-

cotherapy from the GWAS failed to identify any significant cross-
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ancestry or ancestry-specific associations (based on Bonferroni-
corrected p value threshold of 2.74 × 10−6 for 18,229 genes;
Supplemental Tables 4–6).

PRS development for predicting the need for
pharmacotherapy for NAS
The overall sample was split into a training set (non-Jefferson
samples; N= 290) and a validation set (Jefferson samples; N= 92).
Due to small sample size, AA neonates were reserved for
validation of PRS models in a different ancestry. New sets of
variants for PRS calculation were established based on the number
of times a variant occurred in the 5 optimal PRS models from a
nested cross-validation approach. This approach resulted in
variant sets ranging in size from 1126 (present in all 5 optimal
PRS models) to 383,754 (present in 1 of the optimal PRS models)
(Supplemental Table 7a–e).

Analysis of discriminatory and predictive performance of PRS
models in EA neonates
ANOVA and AUROC on five sets of variants confirmed that all PRS
models demonstrated excellent discriminatory and predictive
performance for the need for pharmacotherapy in the training set
(Supplemental Table 8 and boxplots in Supplemental Fig. 7).
All variant sets could effectively discriminate between neonates

requiring pharmacotherapy and those not needing it in the EA
validation set when using cis effect sizes derived from the validation
set to calculate PRS, but not when using trans effect sizes from the
training set (Table 2 and Supplemental Figs. 8 and 9). In the cis
analysis, PRS models performed well, improving with increasing size
of variant set (ANOVA from 1.62 × 10−08 for the smallest set to
4.34 × 10−48 for the largest; AUROCs ranging from 0.813 to 1.000). In
the trans context (often used in clinical settings), performance of the
PRS models was worse. No model detected significant differences
between treated/untreated neonates (maximum AUROC 0.61).

Analysis of discriminatory and predictive performance of PRS
models in AA neonates
PRS suffer from lack of portability across ancestries due to
different linkage disequilibrium patterns and allele frequencies.30

Two approaches to assess performance in AAs were used: one
where cis effect sizes from testing among AAs were used for PRS
calculation and the other where trans effect sizes were derived
from the full EA dataset (training+ validation). All 5 PRS variant
sets performed well distinguishing between treated and untreated
AA neonates when AA effect sizes were used (Table 2; Supple-
mental Fig. 10). PRS performance improved with increasing variant
set size, with p values ranging from 2.98 × 10−06 for the smallest
set to 1.05 × 10−38 for the largest and AUROCs ranging from 0.768
to 0.998. Performance of the PRS models in the second approach
where EA effect sizes were used for calculation of PRS (Table 2;
Supplemental Fig. 11) was comparable to the EA validation set
(Table 2). Two variant sets resulted in significant differences
between treated and untreated AA neonates with corresponding
AUROCs of 0.62. Unlike the first approach, PRS performance did
not improve with increasing variant size.

Calibration of PRS models for prediction of need for
pharmacotherapy in EA and AA neonates
For the EA validation set, the smallest set of variants most closely
recapitulated the actual treatment rate, with others not perform-
ing as well (Table 3). For AA neonates, all variant sets resulted in a
predicted treatment rate of zero based on the EA-based cut point,
which likely reflects differing allele frequencies between EAs and
AAs (Table 3). To assess “weak calibration,” the calibration
intercept (target value= 0) and slope (target value= 1) were
calculated for each PRS model. For EA, all PRS models had
negative intercepts, indicative of overestimation of treatment risk
(Table 3). The PRS models for the 2 smallest variant sets had
calibration slopes >1, suggesting that estimates of treatment risk
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Fig. 1 Manhattan plot of cross-ancestry GWAS of need for pharmacotherapy for NAS. Genome-wide variant associations with need for
pharmacotherapy for NAS were calculated separately for AA (N= 94) and EA (N= 382), adjusting for sex and genetic principal components as
covariates. Association testing results for AA and EA neonates were combined via inverse variance-weighted meta-analysis with genomic
control. Results were filtered to eliminate variants with MAF < 0.01 and imputation quality <0.8. One locus on chromosome 7 downstream of
SNX13 achieved genome-wide significance.
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were too moderate. Conversely, the PRS models based on the 3
largest variant sets had calibration slopes <1, suggesting that
estimates of treatment risk were too extreme (Table 3). For the AA
neonates, the calibration intercepts for all models were close to
the target value of 0, but the calibration slopes were all
>1 suggestive of estimates that were too moderate (Table 3).

DISCUSSION
Being able to predict NAS expression would provide crucial
information to guide treatment decisions and optimize NAS
outcomes. Advances in the fields of genetics/genomics and
computational biology have generated immense interest in
including genomic information in predictive models. In this first-
of-its-kind GWAS of neonates with in utero opioid exposure, a
genomic locus was identified upstream of the SNX13 gene that
was associated with need for pharmacotherapy. PRS models that
segregate neonates by their need for therapy were then
developed. These findings may lead to a better understanding
of NAS and provide a new tool to assist in predicting the need for
pharmacotherapy of NAS. Further development of PRS in larger
samples in concert with clinical data may permit a precision
medicine approach.
Our multi-ancestry GWAS identified a single intergenic locus

~124 kb downstream of SNX13 with genome-wide significance
with need for pharmacotherapy. SNX13 is a sorting nexin and G
protein regulator involved in intracellular trafficking that has been
implicated in heart failure and associated with neutrophil counts,
high-density lipoprotein cholesterol level, apolipoprotein A1 level,
and mean platelet volume.31–35 SNX13 is expressed in numerous
tissues, including the brain, which is particularly relevant to
addiction, where expression is highest in the cerebellum.36

Although there is no previous evidence of SNX13 being implicated
in addiction, a related sorting nexin, SNX27, has been implicated in
attenuating response to cocaine in mice, possibly through
regulation of neuron excitability.28,37 Further studies using larger
datasets are needed to establish whether the association with the
locus near SNX13 is reproducible and whether SNX13 expression is
regulated by the locus.
Our findings did not find a definitive association of OPRM1 with

NAS pharmacotherapy by GWAS. Prior adult studies identified
variants in the OPRM1 gene associated with opioid addiction.12,29

Wachman et al. described variants in OPRM1 associated with
decreased length of stay (LOS) and need for pharmacotherapy.13

Genes involved in the dopamine pathway (e.g., Catechol-O-
Methyltransferase (COMT)) and PNOC (Prepronociceptin) were also
found to be associated with LOS and need for pharmacotherapy.38

In a larger replication cohort of 199 mother–infant dyads, some
variant associations did not meet significance threshold after
correction for multiple comparison testing.39 In the current study
(N= 476), none of the seven previously associated candidate
variants were associated with need for NAS treatment after a
Bonferroni correction for multiple testing. However, rs2614095, an
intronic variant within PNOC, was nominally significant (p= 0.042).
The minor allele A was protective in previous studies and the
current study.
Recent studies have consistently noted the importance of

maternal ancestry in NAS, with non-Hispanic whites displaying
higher risk compared to other ancestries.40,41 Our study included
non-Hispanic whites and a smaller number of AAs, which allowed
us to capture some of the ancestral diversity for NAS. Although
there was a mixture of ancestry-specific and cross-ancestry
associations, the small sample size makes it impossible to draw
any definitive conclusions about the interaction of ancestry and
genetic loci relative to NAS. Future studies should focus on larger
cohorts with greater representation of other ancestries.
PRS holds great promise for assessing an individual’s risk of a

disease or trait, how well an individual will respond to specificTa
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therapies, and other factors influenced by genetic predisposition.
PRS models for predicting pharmacotherapy of NAS were
developed in EAs using nested cross-validation and tested in EA
and AA validation sets. Although PRS performance was consistent
between EAs and AAs, it was highly dependent on the source of
effect sizes for PRS calculation. PRS calculated using cis effect sizes
from validation sets demonstrated excellent discrimination
between neonates needing/not needing pharmacotherapy. How-
ever, PRS using trans effect sizes did not perform as well. The
differences in performance likely resulted from variability in effect
sizes due to small sample size or perhaps some model overfitting.
The weak discrimination when using trans effect sizes has
implications for utility in clinical settings. Similarly, calibration
analyses suggest that current PRS models have not been
sufficiently powered to justify clinical use. However, the excellent
performance of PRS models for discriminating the need for
pharmacotherapy in independent cohorts using cis effect sizes
suggests that these models do hold promise and could be
effective with increased sample sizes and higher ancestral
diversity.

While our data provide evidence supporting the potential
benefit of using PRS in the management of NAS, there are some
limitations. The sample size in this study was small for a GWAS,
limiting the power to discover loci with small effect sizes.
However, our nested cross-validation approach and establishment
of largely independent validation sets allowed us to make optimal
use of the samples that were available. Also, the need-for-
treatment phenotype relied on Finnegan Scoring criteria which
can be subjective, limit phenotypic variability, and further reduce
power. Unfortunately, collecting samples sufficiently powered for
GWAS of NAS is extremely difficult, as evidenced by the 5 years
required to assemble the cohort used in this study. Another
limitation is the relatively small representation of non-EA
ancestries, which is particularly problematic due to the potential
for substantially different causal genetic architectures among
different ancestries resulting from variation in allele effect sizes
and linkage disequilibrium patterns.42 In fact, recent studies have
demonstrated poor trans-ancestry portability of both GWAS
findings and PRS.43,44 Given that the majority of genetic studies
have been conducted with participants of European ancestry, the

Table 3. PRS model calibration in EA and AA validation sets.

Target set Effect size/cut point
source set

Variant set Optimal
cut point

Actual
prevalence

PRS
prevalence

Intercept Slope

EA validation EA training 1/5 CVs 0.836 0.587 0.880 −0.489 −0.990

2/5 CVs 1.077 0.587 1.000 −0.746 −15.426

3/5 CVs 1.222 0.587 0.989 −0.902 −1.652

4/5 CVs 1.229 0.587 0.783 −0.899 6.589

5/5 CVs 1.352 0.587 0.630 −1.031 3.958

AA validation EA full 1/5 CVs 0.725 0.628 0.000 0.029 109.181

2/5 CVs 0.988 0.628 0.000 −0.130 75.514

3/5 CVs 1.071 0.628 0.000 −0.215 38.727

4/5 CVs 1.159 0.628 0.000 −0.267 9.136

5/5 CVs 1.451 0.628 0.000 −0.436 6.014

Table 2. ANOVA and AUROC analyses of PRS model performance in EA and AA validation sets.

Target set Effect size source Variant set N variants N samples ANOVA p AUROC (95% CI)

EA validation set EA validation set 1/5 CVs 382,872 92 4.34E−48 1 (NA, NA)

2/5 CVs 90,954 92 4.93E−45 1 (NA, NA)

3/5 CVs 28,013 92 7.14E−40 1 (NA, NA)

4/5 CVs 7043 92 6.64E−26 0.985 (0.965, 1)

5/5 CVs 1126 92 1.62E−08 0.814 (0.726, 0.902)

EA validation set EA training set 1/5 CVs 382,872 92 0.987 0.479 (0.354, 0.605)

2/5 CVs 90,954 92 0.565 0.543 (0.418, 0.668)

3/5 CVs 28,013 92 0.905 0.512 (0.391, 0.633)

4/5 CVs 7043 92 0.364 0.552 (0.432, 0.673)

5/5 CVs 1126 92 0.123 0.606 (0.485, 0.727)

AA validation set AA validation set 1/5 CVs 356,467 94 1.05E−38 0.998 (0.994, 1)

2/5 CVs 85,217 94 1.58E−38 0.999 (0.997, 1)

3/5 CVs 26,334 94 2.46E−30 0.994 (0.985, 1)

4/5 CVs 6721 94 2.84E−19 0.958 (0.923, 0.993)

5/5 CVs 1097 92 2.98E−06 0.768 (0.669, 0.868)

AA validation set EA full set 1/5 CVs 356,467 93 0.2 0.596 (0.471, 0)

2/5 CVs 85,217 94 0.034 0.624 (0.506, 0)

3/5 CVs 26,334 94 0.074 0.599 (0.48, 0)

4/5 CVs 6721 93 0.281 0.569 (0.447, 0)

5/5 CVs 1097 93 0.024 0.622 (0.502, 0)
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clinical applicability of these findings to individuals of non-
European ancestry is limited, which exacerbates healthcare
disparities.30 Strengthening regulatory protections against genetic
discrimination, open sharing of GWAS summary statistics, and
equitable investment in global populations and ancestries are
critical next steps for studies of NAS and other diseases and traits.
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