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BACKGROUND: Extremely preterm infants are frequently subjected to mechanical ventilation. Current prediction tools of
extubation success lacks accuracy.
METHODS: Multicenter study including infants with birth weight ≤1250 g undergoing their first extubation attempt. Clinical data
and cardiorespiratory signals were acquired before extubation. Primary outcome was prediction of extubation success. Automated
analysis of cardiorespiratory signals, development of clinical and cardiorespiratory features, and a 2-stage Clinical Decision-Balanced
Random Forest classifier were used. A leave-one-out cross-validation was done. Performance was analyzed by ROC curves and
determined by balanced accuracy. An exploratory analysis was performed for extubations before 7 days of age.
RESULTS: A total of 241 infants were included and 44 failed (18%) extubation. The classifier had a balanced accuracy of 73%
(sensitivity 70% [95% CI: 63%, 76%], specificity 75% [95% CI: 62%, 88%]). As an additional clinical-decision tool, the classifier would
have led to an increase in extubation success from 82% to 93% but misclassified 60 infants who would have been successfully
extubated. In infants extubated before 7 days of age, the classifier identified 16/18 failures (specificity 89%) and 73/105 infants with
success (sensitivity 70%).
CONCLUSIONS: Machine learning algorithms may improve a balanced prediction of extubation outcomes, but further refinement
and validation is required.
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IMPACT:

● A machine learning–derived predictive model combining clinical data with automated analyses of individual cardiorespiratory
signals may improve the prediction of successful extubation and identify infants at higher risk of failure with a good balanced
accuracy.

● Such multidisciplinary approach including medicine, biomedical engineering and computer science is a step forward as current
tools investigated to predict extubation outcomes lack sufficient balanced accuracy to justify their use in future trials or clinical
practice.

● Thus, this individualized assessment can optimize patient selection for future trials of extubation readiness by decreasing
exposure of low-risk infants to interventions and maximize the benefits of those at high risk.

INTRODUCTION
Despite significant technological advances, mechanical ventilation
(MV) remains associated with lung injury and important short-
and long-term morbidities in extremely preterm infants.1–4

Therefore, timely weaning and disconnection from MV is critical.
Unfortunately, due to the inability to accurately judge extubation
readiness in this fragile population, newborn infants face
the highest rates of extubation failure of all intensive care
settings.5–8

Currently, all tools investigated to predict extubation success
lack sufficient balanced accuracy to justify their use in clinical
practice.9 Given that these infants can develop significant
morbidities and rarely experience severe adverse events after
extubation,10 an enhanced decision-making process is highly
desirable. Recent collaborations between medicine, biomedical
engineering and computer science have proven to be paramount
in health care.11,12 Indeed, the use of automated analyses of
biological signals and artificial intelligence has allowed complex
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investigations of physiologic variables characterized by a highly
elaborate, apparently random output, arising from nonlinear
biological systems.13,14

These advanced signal analyses have also been used as
prediction tools of clinical outcomes, including ventilation
weaning and extubation readiness.15,16 Moreover, in preterm
infants analyses of some biological signals have also improved the
understanding of MV weaning and post-extubation care.17–20

Thus, the objective of this multicenter study was to develop and
evaluate a prediction model with balanced accuracy for extuba-
tion success in extremely preterm infants using machine learning
algorithms that combine clinical data with automated analyses of
cardiorespiratory signals.

METHODS
This prospective multicenter study was performed from September 2013 to
August 2018 and is presented using the TRIPOD statement. The study
protocol was registered in Clinicaltrials.gov (NCT01909947) and published.21

Ethics approval was attained from each Institutional Review Board and
written informed consent was obtained from parents prior to enrollment.

Participating centers
Neonatal Intensive Care Units of the Royal Victoria Hospital, Montreal
Children’s Hospital, Jewish General Hospital (Montreal, QC, Canada), Detroit
Medical Center (Detroit, MI, USA); and Women and Infant’s Hospital
(Providence, RI, USA).

Eligibility criteria and clinical management
Infants with birth weight (BW) ≤ 1250 g receiving MV and undergoing their
first extubation attempt were eligible. Exclusion criteria were unplanned
extubation, major congenital anomalies, major heart defects, cardiac
arrhythmia, use of vasopressor or sedative drugs at the time of extubation,
and patients extubated from high frequency ventilation (due to
interference by the oscillations on the cardiorespiratory signals) or directly
to oxyhood or low-flow nasal cannula. Guidelines to consider a patient
‘ready’ for extubation were proposed21 but all decisions concerning
extubation and reintubation were made by the medical team. Caffeine
administration was part of standard of care at all participating centers.

Outcome
The original, per-protocol outcome for the prediction model was
extubation success, defined by the absence of specific criteria including
oxygen needs, blood gases, and apneas in the 72 h post-extubation.21

However, during the conduct of the study it became evident that the data
were inconsistently recorded within and across centers. Therefore,
definition of extubation success was changed to the absence of
reintubation within 72 h post-extubation. In addition, data on the
occurrence, timing and reasons for reintubation were recorded. Blinding
of health care providers to this outcome was not possible.

Predictors
Candidate predictors for the development of the classifier included 109
clinical parameters pertaining to patient demographics and pre-extubation
characteristics.21 Cardiorespiratory signals included: (a) Ribcage (RCG)
movements, using uncalibrated Respiratory Inductance Plethysmography
(RIP; Viasys® Healthcare); (b) Abdominal (ABD) movements, using RIP; (c)
Electrocardiogram (ECG), using three electrodes (Vermed©); (d) Photo-
plethysmogram (PPG) and oxygen saturation (SAT), using a pulse oximeter
monitor (Masimo Radical®). Details on data acquisition set up have been
previously published.10,21 Briefly, all cardiorespiratory signals were
continuously acquired before extubation, for a period of 60min while
receiving MV at pre-extubation settings, followed by 5min during
endotracheal tube continuous positive airway pressure (ET-CPAP) to
capture the spontaneous breaths without interference from mechanical
inflations. Clinical instability during the recording period was not
considered, as this was not a spontaneous breathing trial. Thus, all
involved patients were extubated thereafter and remained eligible for
inclusion in the development of the prediction model. All signals were anti-
alias filtered at 500 Hz and sampled at 1000 Hz using the PowerLab 16/30
analog-digital data acquisition system (ADInstruments, Australia) with 16-

bit analog-to-digital resolution. All health care providers were blinded to
the cardiorespiratory signals during the study. Clinical and cardiorespira-
tory data were stored in a cloud-based repository and an automated
anonymization protocol was developed.22 Moreover, an algorithm for
quality control and validation was systematically applied.23

Statistical analysis methods
Stages 1 and 2 of the analyses were conducted using MATLAB (R2018a,
The MathWorks) and stage 3 with the Python Scikit-Learn v0.19© (scikit-
learn developers - BSD License). A simplified flow diagram for the
development of the classifier is outlined in Fig. 1.

Stage 1. Characterization of clinical data and
cardiorespiratory signals
For clinical data, continuous variables were presented as median
[interquartile range] and categorical variables as n (percentage). Compar-
isons between infants with successful and failed extubation were
performed using Wilcoxon rank sum test, Chi square test or Fisher exact
test, as appropriate. For cardiorespiratory data, the signals were first
processed to compute sample-by-sample metrics describing power,
respiratory and cardiac frequency, and thoraco-abdominal synchrony
between RCG and ABD.24 Next, the RCG and ABD metrics were analyzed
using AUREA, an Automated Unsupervised Respiratory Event Analysis
algorithm originally developed in older infants25 and revised for the
extremely preterm infant population (r-AUREA, Fig. E1). r-AUREA assigned
each sample to one of the following unique respiratory patterns: Pause
(PAU), Movement Artifact (MVT), Synchronous Breathing (SYB), Asynchro-
nous Breathing (ASB), and Unknown (UNK). Furthermore, the sequence of
pattern classification was revised and the probability of switching from one
pattern to another was quantified using a Semi-Markov model.26 Cardiac
frequency was computed from either the ECG or PPG and algorithms were
designed to detect bradycardia (heart rate < 100 bpm). PPG was computed
as a backup strategy in case of loss of the ECG signal. Desaturation events
(oxygen saturation < 80%) were computed from the PPG. Lastly, the ECG
was processed to derive inter-beat intervals and compute measures of
heart rate variability (HRV). A detailed description of this methodology is
provided (Methods E1).

Stage 2. Development of the clinical and cardiorespiratory
feature set
Summary statistics describing the properties of the metrics, patterns, and
inter-beat intervals during MV and ET-CPAP were computed to create a set
of features. The median [inter-quartile range] of each metric and its power
were calculated. For patterns, measures of their frequency of occurrence,
duration, and the transition probability from one pattern to another were
included. HRV features included time- domain, frequency-domain, and
non-linear analyses. This resulted in a total of 224 cardiorespiratory and
109 clinical features. To reduce the size of the set, a principal component
analysis (PCA) was used to transform the original features into a set of
linearly uncorrelated Principal Component (PC) features that concisely
explained the variance in the original set. In other words, PCA reduces the
size of the feature set by removing unessential or highly correlated
features while preserving as much information as possible. The contribu-
tion of each feature to the clinical (Fig. E2) and cardiorespiratory principal
component were evaluated by heat maps (Fig. E3) and the percentage of
total variance explained by every PC was assessed (Fig. E4).27 PC features
that explained <1% of the total variance were excluded resulting in a set of
95 PC features that explained 95% of the variance. A detailed description
of this methodology is provided (Methods E2).

Stage 3. Classification
The overall population was imbalanced since less than 20% of infants
failed extubation. Therefore, a two-stage Clinical Decision - Balanced
Random Forest (CD-BRF) classifier was used.28–31 In the CD stage, the best-
performing clinical parameters were the gestational age (GA) at birth and
weight at extubation and the optimal boundary was selected to include all
failure infants and the fewest number of infants with success (Fig. E5).
Infants outside of this boundary were automatically classified as success,
while those in the high-risk group were passed to the BRF stage, which
used clinical and cardiorespiratory PC features to complete the classifica-
tion. In simple terms, a random forest classifier averages the predictions
made by many decision trees (which individually may not be as accurate)
into a single more robust estimate. Each decision tree uses a random
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subset of features to make its prediction, and the overall random forest has
a fixed set of parameters, called hyperparameters, which determine the
properties of the model. These BRF parameters included the number of
trees in the forest, maximum depth of the trees, minimum number of
patients to split a node and maximum number of features at each node.
(Methods E3 and Fig. E6). Three BRFs classifiers were designed: Clinical (C)
classifier using clinical PC features alone, a Cardiorespiratory (CR) classifier
using cardiorespiratory PC features alone, and a Clinical and Cardior-
espiratory (CCR) classifier using both. Due to the relatively limited number
of failure patients, a leave-one-out cross-validation was used to evaluate
the performance of the classifiers. A detailed description of this
methodology is provided (Methods E3).
For the performance of the classifiers (C, CR and CCR), receiver operating

characteristics (ROC) curves were generated, and the following measures
computed: sensitivity (detection rate of successful extubation), specificity
(detection rate of failed extubation), positive predictive value (PPV),
negative predictive value (NPV), and area under the curve (AUC). The best
performance was determined by the balanced accuracy (sensitivity and
specificity/2). Lastly, the relative importance of each PC feature selected by
the best classifier was estimated to quantify the most discriminative role.

Missing features
Some clinical data were not collected, or cardiorespiratory signals were not
acquired (disconnection of leads or too short signal acquisition periods). If
a feature was missing ≤10 infants, the missing values were imputed from
the median value of the outcome group to which the infant belonged. If a
feature was missing in >10 infants, the feature was excluded, which
occurred with 29 clinical and 25 cardiorespiratory features.

Sample size
Sample size was estimated using the determination method published by
Obuchowski and McClish.32 This calculation requires estimation of the
prevalence of reintubation in the target population and variance of the
ROC curve based on a pilot study17, and a determined precision for the
Area Under the Curve (AUC).21 Using a conservative extubation failure rate
of 20%, we anticipated that a minimum of 170 infants would be necessary
to estimate the AUC of the ROC curve with a precision of 0.1. Accounting
for low quality signals and practice changes over time, the sample size
was increased to 250 patients. A prospective validation on a sample of
50 infants was initially planned but a posteriori decision was made to
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Fig. 1 Flow diagram for the development of the classifier of extubation readiness. The classifier was developed in 3 stages. Stage 1 -
Clinical parameters were collected, and cardiorespiratory signals acquired; Stage 2 - Cardiorespiratory signals were processed into metrics
describing power, frequency, and thoraco-abdominal synchrony. Using the metrics, a revised automated unsupervised respiratory event
analysis algorithm (r-AUREA) categorized signals into respiratory patterns (pause [PAU], synchronous [SYB] or asynchronous [ASB] breathing,
and movement artifact [MVT]) and patterns of desaturation [DST] and bradycardia [BDY]. Statistical representation of metrics, patterns and RR
intervals led to a feature set characterizing the cohort’s cardiorespiratory behavior. Next, a Principal Component Analysis (PCA) was applied to
transform the original features into PC features. Stage 3 – Machine-learning methods used the PC features to classify infants into extubation
success or failure. First, the high-risk population was selected by using an automatically derived threshold for gestational age at birth and
weight at extubation that minimized successful extubation while capturing all failures. Then, the most discriminatory combination of clinical
and cardiorespiratory features (selected with five-fold cross validation) was used to train and test a balanced random forest classifier using
leave-one-out procedure for validation. BW= birth weight, GA= gestational age, RC= ribcage, ABD= abdominal movements, SAT= oxygen
saturation, ECG= electrocardiogram, PPG= pulse plethysmography.
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proceed with leave-one-out cross-validation because a sample of 50
infants was likely to be insufficient given the relatively low rate of
extubation failure.

Risk groups
Considering this was a pragmatic study, included infants were extubated at
variable postnatal ages. However, it is plausible that predictors of
extubation success may vary between infants extubated early (<7d of
age) or late (≥ 7d of age) as prolonged MV has been associated with lung
injury2. Also, these infants are more prone to complications such IVH or PH
during the first week of life, where an extubation success or failure might
have a different impact. Consequently, a post-hoc analysis was carried out
to evaluate the accuracy of the predictor in these groups. Furthermore, the
classifier accuracy was also tested for re-intubations occurring ≤7 days
(168 h) following extubation as longer observation windows can capture
more cases of respiratory related extubation failures.33,34

RESULTS
Participants
A total of 266 infants were enrolled and 241 included for the
development of the classifier (Fig. 2). The median time between
the ET-CPAP recording and extubation was 31 min [IQR
20–55min] and all involved patients were extubated thereafter
and remained eligible for inclusion in the development of the
prediction model. Extubation success occurred in 197 infants
(82%). Table 1 summarizes pre- and post-extubation character-
istics of the population, including timing and reasons for
reintubation in the 44 infants who failed extubation.

Model development and specification
In the CD stage, a threshold of GA at birth >28.6 weeks and weight
at extubation >1160 g (Fig. E5) automatically classified 52 infants

(22%) as successful extubations (no failures). The remaining 189
infants (78%) passed to the BRF stage. In this group, 44 (23%)
failed extubation. For this stage, the optimal set of hyperpara-
meters selected for the C, CR, and CCR classifiers are presented on
Table E1.

Model performance
A total of 241 leave-one-out cross-validation tests were performed
using 42 PC features selected across all tests: 11 clinical and 31
cardiorespiratory (Fig. E7). Nine of the ten PC features with
greatest contribution to the classifier were cardiorespiratory. ROC
curves and diagnostic performances for the three classifiers are
shown in Fig. 3 and data presented on Table 2. The best
performance was obtained using the CCR classifier, with a total of
18 PC features (Fig. E8). The highest three features for each
cardiorespiratory PC used in the final CCR classifier are presented
on Table E3. These top features spanned a wide range of
categories, including measures of metrics (pertaining to respira-
tory and cardiac frequencies, power in the RCG and ABD signals,
phase angle, and oxygen saturation), respiratory patterns (parti-
cularly the UNK and bradycardia patterns), and heart rate
variability.
The diagnostic and clinical values of the best classifier are

presented on Fig. 4. From the diagnostic standpoint, 137/197
infants with successful and 33/44 infants with failed extubation
were correctly identified by the classifier (70% sensitivity and 75%
specificity, respectively) with a balanced accuracy of 73%.
Clinically, when used as an adjunct tool, the classifier agreed with
the decision to extubate in 148 infants (61%). Of those infants, 137
were correctly classified as extubation success (93%). However, the
classifier predicted that 93 infants (39%) would fail. Of those, 60
were successfully extubated.

1013 Potentially eligible infants

267 Participants excluded
248 Not intubated

11 Congeital malformations
8 First extubation at different hospital 

746 Eligible infants
389 Participants excluded

102 Parents declined
192 Not approached

85 Death
10 Unplanned extubation

357 Participants consented
83 Participants excluded

25 Team not available
3 Clinician declined entry

6 Extubated from high frequency
8 Death

32 Unplanned extubation

241 Included in the classifier

33 Participants excluded
6 Not extubated after recordings

1 Congenital anomaly post-extubation
25 Inadequate signal acquisition high

1 Missing clinical data

197 Extubation success 44 Extubation failure

274 Clinical data and
cardiorespiratory measurements

performed

Fig. 2 Patient Flowchart.
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Table 1. Population demographics.

Variables Total (n= 241) Extubation Success (n= 197) Extubation Failure (n=44)

At birth

Gestational age, weeks 26.1 [24.9–27.4] 26.3 [25.0–27.8] 25.4 [24.3–26.5]*

Birth weight, g 830 [708–1016] 870 [710–1050] 725 [610–830]*

Male 127 (53) 106 (54) 21 (47)

Antenatal steroids 217 (90) 179 (91) 38 (86)

Apgar at 5 min 7 [5–8] 7 [5–8], n=196 7 [5–8], n=43

Surfactant 229 (95) 185 (94) 44 (100)

Caffeine 235 (98) 192 (97) 43 (98)

At extubation

Corrected gestational age 28 [26.9–29.4] 28.4 [27–29.7] 27.4 [26.6–28.5]*

Weight 940 [810–1080] 960 [830–1100] 820 [715–950]*

Day of life 8 [3–25] 7 [3–25] 14 [4–26]

Ventilator mode

Patient-triggered† 130 (54) 103 (52) 27 (61)

Volume guarantee 94 (39) 71 (36) 23 (52)

Ventilator rate, inflations/min 22 [20–30] 22 [20–30], n=180 23 [20–31], n=41

Tidal volume, ml/kg 4.9 [4.2–5.3] 4.9 [4.4–5.3], n=71 4.7 [4.1–5.3], n=23

MAP, cm H2O 7.1 [6.3–8] 7 [6.3–7.9], n=196 8 [6.5–9.3], n=44*

PEEP, cm H2O 5 [5–6] 5 [5–6] 6 [5–7]‡

PIP, cm H2O 14 [12–15] 13 [12–15], n=110 15 [14–17], n=19‡

FiO2 0.22 [0.21–0.27] 0.21 [0.21–0.26] 0.26 [0.22–0.32]*

pH 7.34 [7.29–7.38] 7.34 [7.29–7.38], n=161 7.32 [7.28–7.37], n=38

pCO2, mm Hg 44 [38–51] 44 [37–47], n=161 47 [40–56], n=38

Post-extubation

Respiratory support post-extubation

CPAP 145 (60) 119 (60) 26 (59)

CPAP level, cm H2O 6 [5–7] 6 [5–6] 7 [6–8]*

FiO2 0.23 [0.21–0.3] 0.21 [0.21–0.27] 0.3 [0.25–0.4]*

NIPPV 85 (35) 67 (34) 18 (41)

PIP, cm H2O 15 [14–19] 15 [14–18] 17 [15–20]‡

PEEP, cm H2O 6 [5–7] 5 [5–7] 7 [6–8]

Rate, inflations/min 30 [29–40] 30 [26–40] 33 [30–40]

FiO2 0.28 [0.25–0.35] 0.27 [0.23–0.35] 0.35 [0.27–0.45]‡

HFNC 11 (5) 11 (6) 0

Reintubation

≤ 72 h 44 (18) 0 44 (100)

≤ 168 h (7 days) 66 (27) 22 (11) —

≤ 336 h (14 days) 83 (34) 39 (20) —

Any time during hospitalization 108 (45) 64 (32) 44 (100)*

Respiratory support pre-reintubation n=44

CPAP 6 (13) — —

CPAP level, cm H2O 8 [6–9] — —

FiO2 0.45 [0.31–1] — —

NIPPV 38 (86) — —

PIP, cm H2O 18 [15–22] — —

PEEP, cm H2O 7 [6–9] — —

Rate, inflations/min 40 [35–40] — —

FiO2 0.46 [0.32–0.6] — —

Reasons for reintubation within 72h n=44 — —

Increased work of breathing 13 (30) — —

Apneas and bradycardias 24 (55) — —
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Post-hoc analysis
The performance of the APEX CCR classifier was computed for the
subgroup of infants extubated at <7d (n= 123) or ≥ 7d of age
(n= 118), as shown in Table E2. In the group <7d, the classifier
correctly identified 16/18 failures (Specificity 89%, 95% CI: 74%,
100%) compared to 17/26 in the late extubation group (Specificity
65%, 95% CI: 47%, 84%). The diagnostic and clinical values of this
analysis are presented on Fig. E9. The performance of the classifier
decreased when reintubation ≤7d following extubation was used
as definition of failure (Fig. E10). Indeed, only 11 (50%) infants
reintubated between 72 h and 168 h were correctly classified as
failures.

DISCUSSION
The use of machine learning algorithms to combine automated
analyses of cardiorespiratory signals with clinical data improved
prediction of extubation success in a high-risk population. More
importantly, by using a two-stage CD-BRF approach the final
classifier excluded a group of infants successfully extubated and
was developed using extremely preterm infants with higher risk of
extubation failure (Fig. E5). This precision medicine approach can
help in the selection of a targeted population in future studies of
extubation failure. Indeed, only 2 infants classified as extubation
success failed. Unfortunately, the final classifier’s improved

identification of extubation failures at the expense of misclassify-
ing nearly one-third of infants who were successfully extubated
making it not suitable for clinical decisions at this point. Notably,
the classifier performed best amongst infants extubated before
7 days of age, identifying 70% of success and 89% of failures.
Although a post-hoc analysis, this is an important finding as early
and successful extubation may mitigate complications associated
with prolonged MV while limiting the adverse effects caused by
reintubation during a critical age.5,10

The decision to extubate extremely preterm infants is complex
and subjected to substantial variability.35,36 Furthermore, extuba-
tion failure inevitably prolongs MV duration and has been
associated with increased risks of respiratory morbidities and
mortality, even after adjusting for the cumulative MV duration and
other known confounders.7,8,10. Thus, accurate predictors of
extubation success are needed but only a few have been
evaluated in preterm infants.5,9,37,38 Most studies included limited
number of patients from a single center and incorporated a
particular clinical or physiological parameter. As a result, the
accuracy in detecting extubation failures was low when compared
to clinical judgment.13 In the current study, the combination of
clinical parameters with automated analysis of cardiorespiratory
signals generated the highest performance classifier, thereby
demonstrating the added value in acquiring those signals.17

The APEX CCR classifier performed with a balanced accuracy of
73% (sensitivity of 70% and specificity of 75%). Thus, if APEX were
used alone in clinical practice, it would correctly identify 3/4
infants that would go on to succeed extubation while misclassify
as failure about 2 infants that could have been otherwise
successfully extubated. Whether this trade-off is acceptable
remains unknown, as it would require direct comparisons of the
costs of postponing extubation vs. preventing reintubation.
Surprisingly, only one study has investigated the impact of
delaying extubation by 36 h in preterm infants.39 No differences in
rates of extubation failure or bronchopulmonary dysplasia were
noted, but amongst infants <1000 g delayed extubation was
associated with significantly shorter cumulative MV duration.
Therefore, it is unknown if a short delay can be harmful.
Furthermore, the experience of adverse and sometimes severe
events after extubation must be considered. Indeed, trade-offs in
which significant morbidity reductions are offset by a marginal
increase in mortality have often shaped recommendations in
Neonatology.40–42. In the APEX cohort, 3 infants died within hours
following an electively planned extubation. The causes of death
were massive pulmonary hemorrhage minutes after extubation,
withdrawal of life-sustaining therapy after a diagnosis of grade 4
intraventricular hemorrhage made 7 h post-extubation, and
fulminant necrotizing enterocolitis diagnosed ≤8 h post-
extubation. All these patients were correctly identified by the
classifier as extubation failures.
More importantly is the use of the classifier as an adjunct tool to

clinical judgment. In this study, when a patient ‘ready’ for
extubation was classified as success, the probability of successful
extubation increased from 82% to 93%. On the other hand, this
probability decreased from 82% to 65% if the patient was
classified as failure. In infants extubated <7 days of age, the
classifier identified 89% of failures (95% CI: 74%, 100%) and would

Table 1. continued

Variables Total (n= 241) Extubation Success (n= 197) Extubation Failure (n=44)

Increased oxygen requirements 6 (14)

Values are expressed as n (%), or median [interquartile range], n = number of patients. MAP=mean airway pressure; PEEP= positive end expiratory pressure;
PIP= peak inflation pressure; FiO2= fraction of inspired oxygen; CPAP= continuous positive airway pressure; NIPPV= nasal intermittent positive pressure
ventilation; HFNC= high flow nasal cannula.
*p value < 0.01, †mode of ventilation where the newborn respiratory effort is used to trigger the ventilator promoting patient-ventilator synchrony, ‡p value
< 0.05.
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Fig. 3 Performance of the APEX classifier. The APEX classifiers
included all infants extubated at any age during the study. The
Receiving Operating Characteristic (ROC) curves shows the trade-off
between sensitivity (Y axis) and 1-specificity (X axis) for the Clinical
(orange), Cardiorespiratory (blue) and Clinical and Cardiorespiratory
(green) classifiers at all thresholds. For each curve, the filled dot
marker indicates the performance with the highest balanced
accuracy. The black 45-degree diagonal dotted line represents the
baseline model/random classifier. The closer an ROC curve comes to
this diagonal line, the less powerful is the model. Note that the best
accuracy was obtained with the combination of clinical and
cardiorespiratory signals (green circled dot).
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have increased the probability of successful extubation from 85%
to 97% (95% CI: 94%, 100%; Fig. E10).
Interestingly, the performance of the APEX CCR classifier varied

considerably depending on the age at extubation and observation
window used to define extubation failure. With regards to age at
extubation, the classifier accurately identified 16 out of 18 (89%)
failed extubations in the first 7 days of life compared to only 17
out of 26 (65%) failed extubations beyond the first week. On one
hand, these findings suggest that the classifier may not be as
beneficial to the more immature and sicker infants, who tend to
be extubated beyond the first week of life. On the other hand, an
enhanced prediction of extubation readiness in the first week of
life may prevent the clinical instability that may occur with a failed
extubation during this critical period. As for the observation
window used to define extubation failure, the classifier only
correctly identified 50% of failures that occurred between 72 h
and 7 days post-extubation. Considering that reintubations
between 72 h and 7 days post-extubation are rarely caused by
new non-respiratory pathologies (ex: infection or necrotizing
enterocolitis), the classifier failed to capture a large number of
true, respiratory-related reintubations. However, given that
reintubations occurring within 48-72 h after extubation may be
associated with the highest risk of mortality/morbidity, the
classifier may be justifiable as a targeted tool for those infants
at highest risk of complications.
The study had some limitations. The predictor was applied

when the medical team has made the decision to extubate which

tends to increase sensitivity and decrease specificity.43 Also, it may
be possible that infants were ‘ready’ before which is difficult to
precisely determine in clinical practice. Furthermore, it is unknown
how the predictor would perform if it were conducted in infants
on higher ventilatory settings or prior to being recognized as
‘ready’ by the clinical team. Also, although most respiratory
features in the final classifier were recorded during ET-CPAP
(Table. E3), it is unknown if reliable and useful recordings of
respiratory data would be possible in infants under high frequency
ventilation. Due to the small number of patients, a separate
analysis of the performance of the predictive tool across centers
was not possible. The signal acquisition set-up involved instru-
mentation and the possibility of recordings of low-quality signals,
but the use of small multimodal wireless sensors may make data
acquisition more practical and reliable.44,45 The classifier was
developed using a pre-specified observation window of 72 h
which may not capture all respiratory-related reintubations.33

However, the performance of the classifier decreased in the post-
hoc analysis using a longer period of observation. Lastly, the
pragmatic design of the study introduced significant heterogene-
ity in patient characteristics and pretest probabilities of extubation
success which may have decreased the accuracy of the final
classifier. Indeed, restriction to infants extubated <7 days of age
showed an improvement on its performance. Although the
classifier demonstrated better prediction of extubation failure,
this was achieved at the expense of misclassifying a percentage of
successful extubations. Therefore, at this point this tool should not

A. Diagnostic value 241 Infants

44 Failure197 Success

137 Correctly classified
70% sensitivity

137 Correctly classified
93% sensitivity

60 Incorrectly classified

11 Incorrectly classified

B. Clinical value

148 ‘Pass’ (61%) 93 ‘Fail’ (39%)

APEX classifier

241 Infants

11 Incorrectly classified
33 Correctly classified

75% specificity

33 Correctly classified
35% NPV

60 Incorrectly classified

Fig. 4 Diagnostic and clinical values of the clinical and cardiorespiratory classifier in extremely preterm infants.

Table 2. Performance of the Clinical, Cardiorespiratory and combined Clinical and Cardiorespiratory classifiers.

Clinical classifier Cardiorespiratory classifier Clinical and Cardiorespiratory classifier

Sensitivity 48% (95% CI: 41%, 55%) 66% (95% CI: 59%, 73%) 70% (95% CI: 63%, 76%)

Specificity 82% (95% CI: 70%, 93%) 61% (95% CI: 47%, 76%) 75% (95% CI: 62%, 88%)

PPV 92% (95% CI: 87%, 97%) 88% (95% CI: 83%, 94%) 93% (95% CI: 88%, 97%)

NPV 26% (95% CI: 19%, 33%) 29% (95% CI: 20%, 38%) 35% (95% CI: 26%, 45%)

Balanced accuracy 65% 65% 73%

AUC 0.67 0.67 0.75

Sensitivity, detection rate of successful extubation; Specificity, detection rate of failed extubation, PPV, positive predictive value; NPV, negative predictive value;
Balanced accuracy, the average of sensitivity and specificity) and AUC, the area under the curve for each classifier; CI, coefficient interval.
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be used to avoid extubation as it would prolong mechanical
ventilation in some infants unnecessarily. However, by pointing
out a population with a higher probability of failure in some
infants considered ‘ready’ for elective extubation, the classifier can
identify the patients requiring a more intense and continuous
monitoring after disconnection from MV and that could maybe
benefit from different modes of non-invasive support. Moreover,
the classifier can be used to more precisely select a high-risk
group to be enrolled in studies testing interventions to decrease
extubation failure. Therefore, at the moment this tool should not
be used for clinical decisions as this novel approach requires
further fine-tuning adjustments and a more friendly instrumenta-
tion. The study has several important strengths. Novel cardior-
espiratory features and detailed clinical information during the
peri-extubation period were acquired from a multi-institutional
population. Results are generalizable given the pragmatic design,
large sample size, and heterogeneity of clinical practices to
determine extubation readiness. A principal component analysis
was used to provide only the features that explained the most
variability. Finally, the effects of class imbalance were mitigated by
pre-classifying the population during the CD stage and randomly
under-sampling success patients during training, thereby giving
an equal number of success and failure patients to the classifier.
Therefore, the advanced analytical methods and interdisciplinary
collaboration used in the APEX study are a unique and important
step forward towards development of tools able to objectively
and effectively expedite extubation46,47. Indeed, sustainable
collaborations between disciplines are changing the focus
towards multimodal data recording and analysis to enable the
right choice of treatment, for the right patient, and at the
right time.

CONCLUSION
The combined use of clinical data with automated analyses of
cardiorespiratory signals by using machine learning algorithms
may provide an adjunct tool to improve prediction of extubation
outcomes, but still requires further refinement before adoption
into clinical practice. This is critical for planning targeting trials in
this understudied high-risk population. As an automated and
objective method that requires no human intervention, APEX
requires further investigation in larger populations from varied
settings to understand its effect on patient outcomes, safety, and
generalizability.
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