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Postnatal serum IGF-1 levels associate with brain volumes at
term in extremely preterm infants
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BACKGROUND: Growth factors important for normal brain development are low in preterm infants. This study investigated the link
between growth factors and preterm brain volumes at term.
MATERIAL/METHODS: Infants born <28 weeks gestational age (GA) were included. Endogenous levels of insulin-like growth factor
(IGF)−1, brain-derived growth factor, vascular endothelial growth factor, and platelet-derived growth factor (expressed as area
under the curve [AUC] for serum samples from postnatal days 1, 7, 14, and 28) were utilized in a multivariable linear regression
model. Brain volumes were determined by magnetic resonance imaging (MRI) at term equivalent age.
RESULTS: In total, 49 infants (median [range] GA 25.4 [22.9–27.9] weeks) were included following MRI segmentation quality
assessment and AUC calculation. IGF-1 levels were independently positively associated with the total brain (p < 0.001, β= 0.90),
white matter (p= 0.007, β= 0.33), cortical gray matter (p= 0.002, β= 0.43), deep gray matter (p= 0.008, β= 0.05), and cerebellar
(p= 0.006, β= 0.08) volume adjusted for GA at birth and postmenstrual age at MRI. No associations were seen for other growth
factors.
CONCLUSIONS: Endogenous exposure to IGF-1 during the first 4 weeks of life was associated with total and regional brain volumes
at term. Optimizing levels of IGF-1 might improve brain growth in extremely preterm infants.
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IMPACT:

● High serum levels of insulin-like growth factor (IGF)-1 during the first month of life were independently associated with
increased total brain volume, white matter, gray matter, and cerebellar volume at term equivalent age in extremely preterm
infants.

● IGF-1 is a critical regulator of neurodevelopment and postnatal levels are low in preterm infants. The effects of IGF-1 levels on
brain development in extremely preterm infants are not fully understood.

● Optimizing levels of IGF-1 may benefit early brain growth in extremely preterm infants. The effects of systemically administered
IGF-1/IGFBP3 in extremely preterm infants are now being investigated in a randomized controlled trial (Clinicaltrials.gov:
NCT03253263).

BACKGROUND
Infants born preterm are at risk of impaired brain growth and
maturation even in the absence of macrostructural brain
damage.1–3 The third trimester is the peak period for brain
maturation and development with incipient myelination, a four-
fold increase in cortical folding, and increased dendritic arboriza-
tion alongside a drastic increase in total brain weight, from less

than 90 g in gestational week 22–23 to 400 g at term equivalent
age (TEA).4

Technical advancements in high–resolution magnetic reso-
nance imaging (MRI) now enable precise determination of brain
growth by implementing volumetric segmentation tools. In
preterm infants, brain volumes are typically reduced at TEA and
later in life compared to healthy term infants. Volume reduction is
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linked to life-long impairments, including neurosensory, cognitive,
and behavioral deficits.5–9

The growth factor most commonly linked to brain growth and
maturation is insulin-like growth factor (IGF)-1. IGF-1 is involved in cell
growth, survival, proliferation, and migration with brain-specific
effects on synapse formation, myelination, and plasticity.10 Low
systemic concentrations of IGF-1 characterize the postnatal period
following preterm birth compared to corresponding intrauterine
levels.10 Low IGF-1 levels are linked to a poor neurodevelopmental
outcome at 2 years of age11 and altered brain volumes in moderately

preterm infants born before 31 weeks gestational age (GA).12 In
addition, experimental studies show that IGF-1 treatment in neonatal
brain injury models in rodents and sheep boosted proliferation,
differentiation, and survival of the oligodendrocyte lineage and
subsequent myelin production.13–16 However, the link between IGF-1
and brain volumes has not been explored in the most immature
preterm infants.
Numerous studies link other growth factors, including brain-

derived neurotrophic factor (BDNF), vascular endothelial growth
factor (VEGF), and platelet-derived growth factor (PDGF), to
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Fig. 1 Consort study flowchart. In total, 49 infants were eligible for analysis with complete MRI volume segmentation and growth factor AUC.
*In two infants, IGF-1 AUC was available, but not BDNF, VEGF, and PDGF. RCT randomized controlled trial, n number, TEA term equivalent age,
IGF Insulin-like growth factor, BDNF brain-derived neurotrophic factor, AUC area under the curve, MRI magnetic resonance imaging.

W. Hellström et al.

667

Pediatric Research (2023) 93:666 – 674



processes crucial in early brain growth and maturation.17–20

Despite this, there are limited data on how postnatal endogenous
exposure to growth factors affect brain development in preterm
infants.
This study investigates associations between postnatal endo-

genous exposure to growth factors and brain volumes at TEA in
extremely preterm infants. We also relate our findings to GA at
birth to study how immaturity affects the relation between growth
factors and brain volumes.

METHODS
Study population
The study included infants born <28 weeks GA, at Sahlgrenska University
Hospital, Gothenburg, Sweden from 2013 to 2015 as part of a randomized
clinical study investigating the effects of parenteral lipid emulsions on
infant morbidities (Clinical trial NCT 02760472). The complete study
protocol is available online.21,22 The inclusion flowchart is presented in
Fig. 1. Pregnancies were dated by ultrasound at gestational week 17–18.
The study was approved by the Regional Ethical Board, Gothenburg (Dnr
303–11; Clinical trial NCT 02760472), and infants were enrolled following
written informed parental consent.

Data collection and laboratory analysis
Serum aliquots were stored in a freezer at −80 °C until assayed. Blood was
drawn from an umbilical or peripheral arterial catheter or venous puncture.
For IGF-1 analysis, samples were diluted 1:50, and the IGF-1 concentrations
were analyzed using a radioimmunoassay (Mediagnost GmbH, Tubingen,
Germany), as described previously.23 For IGF-1, the intraassay coefficients
of variation at concentrations of 9, 33, and 179 ng/l were 18, 9, and 7%,
respectively, and the interassay coefficients of variation at concentrations
of 9, 34, and 194 ng/l were 29, 11, and 8%, respectively, also described
previously.24 BDNF, VEGF, and PDGF were analyzed using the ELLA multi-
analyte platform (Bio-Techne, Minneapolis, MN), according to the
manufacturer-provided protocol, and has been described in detail
previously.25 In short, samples were diluted 1:4, and the interassay
coefficients of variation for BDNF were at concentrations of 220, 7402, and
10,271 pg/ml, 7, 7, and 5%, respectively; for VEGF at concentrations of 35,
475, and 1667 pg/ml, 7, 7, and 8%, respectively, and for PDGF at
concentrations of 7.5, 332, and 945 pg/ml, 5, 4, and 5%, respectively.
Intraassay coefficients of variations for BDNF at 7731 pg/ml 6%, for VEGF at
502 pg/ml were 5%, and for PDGF at 983 pg/ml, 5%.

MRI acquisition and evaluation
MRI scanning was performed at TEA on a 3 Tesla system (750W, GE Medical
Systems, Waukesha, WI) using a 19- or 32-channel head coil. The scanning
protocol matched the clinical routine and included 3D T1–weighted, T1
FLAIR, axial 2D T2–weighted (T2w), 3D T2w fast spin–echo, 3D
susceptibility–weighted, and diffusion-weighted imaging. Only T2w
images were used for volumetry. Acquisition parameters for 2D T2w were
slice thickness 3mm, repetition time 9278ms, and echo time 74.5 ms. The
3D T2w were acquired with echo time 81–125ms, slice thickness 0.8 mm,
and repetition time 2740–3000ms.
Segmentation analysis utilized T2w images. Using the automatic

anatomical image segmentation described by Makropoulos et al.,26 volumes
were determined for a set of brain regions. An atlas database consisting of
expertly segmented reference images27 was applied with the DrawEM
(Developing brain Region Annotation With Expectation–Maximization)
module of the Medical Image Registration Toolkit.26,28

For segmentation analysis, a 3D image volume was built from each
acquisition (2D and direct 3D), referred to as the image stack in the
following. An experienced imaging scientist (R.A.H.) reviewed the
segmentations and assigned a quality score, following a custom protocol.
Image stacks showing quality deficiencies, making volume calculations
unreliable, were excluded. If two or more image stacks of sufficient quality
were available for the same infant, the best segmentation was selected for
further analysis. Merged volumes of brain regions (total brain [i.e., total
intracranial volume without cerebrospinal fluid], white matter, cortical gray
matter, deep gray matter, and cerebellum) were generated by summation
of selected individual regions.
Oral chloral hydrate (35mg/kg) was used for sedation. A combination of

purpose-made in-ear and over-ear sound absorption devices was used for
hearing protection. All infants were closely monitored by a trained nurse or

physician, including respiratory rate, oxygen saturation, and heart rate
throughout the whole procedure.

Statistical analysis and variable definition
Data were analyzed using IBM SPSS 26 (IBM, Armonk, NY). AUC values were
retrieved using a trapezoidal method based on serum levels of growth factors
from postnatal days (PND) 1, 7, 14, and 28. Both PND 1 and PND 28 values
were needed for inclusion in data analysis in the AUC calculations. A p value
<0.2 was required in the univariate analysis for inclusion in the final
multivariable analysis. Independent variables included in the initial univariate
analysis were postmenstrual age at the time of MR scanning (weeks), GA at
birth (weeks), development in birth weight standard deviation score from
birth until the time of MR scanning, total parenteral and enteral energy intake
PND 1–28 (kcal), antenatal steroid treatment, small for gestational age (SGA),
sepsis, significant brain injury, and sex. The model utilized was run on total
brain volume, following model validation in subregions for eligibility. Included
variables in the regression models were checked for multicollinearity (variance
inflation factor >1, <2, and eigenvalue, accompanied by visual analysis),
normal distribution of residuals, independent observations, and homosce-
dasticity. The variable significant brain injury was not included in the final
model due to violation of multicollinearity diagnostics, in spite of an
acceptable VIF score. This was accounted for by both a rerun of the analyzes
and the variable significant brain injury and exclusion of infants with severe
brain injury. Randomization to treatment was accounted for in multiple linear
regression and did not have an association with brain volumes.
The threshold for the effect of GA on estimated probabilities of total

brain volumes and IGF-1 used in the explorative subanalysis was identified
using visual analysis of nominal data (weeks). IGF-1high and IGF-1low were
defined as AUC values above and below the median, respectively.
Development of weight SDS was defined as the difference between
weight SDS at the time of MRI and weight SDS at birth.
The Spearman rank test was used for correlations between non-

parametric data. For comparisons of non-parametric variables between

Table 1. Clinical characteristics, n= 49.

Gestational age, median (range) weeks 25.4 (22.9–27.9)

Birth weight, median (range) g 760 (455–1255)

Birth weight SDSa, median (range) –0.7 (–4.1–1.3)

Total energy intake, median (range) kcal/kg/
day

108.5 (94.0–145.4)

Gender male, number (%) 26 (53.1)

Sepsisb, number (%) 19 (38.8)

NECc, number (%) 3 (6.1)

Any IVHd or PVHI, number (%) 17 (35.4)

IVH Grade I–II, number (%) 14 (28.5)

IVH Grade III, number (%) 1 (2.0)

PVHI, number (%) 2 (4.1)

BPDe, number (%) 27 (55.1)

Any ROPf, number (%) 40 (81.6)

Postmenstrual age at MR scanning, median
(range) weeks

42.8 (39.7–49.9)

n number, SDS standard deviation score, NEC necrotizing enterocolitis, IVH
intraventricular hemorrhage, PVHI periventricular hemorrhagic infarction,
BPD bronchopulmonary dysplasia, ROP retinopathy of prematurity, MR
magnetic resonance.
aBirth weight SDS were computed according to ref. 66
bSepsis was diagnosed by positive blood culture, except for Staphylococcus
epidermidis where a concomitant CRP >20mg/L was needed for diagnosis.
cNEC was diagnosed by clinical signs and radiological findings (Bell’s
stages 2–3).
dIVH was diagnosed by repeated ultrasound examination and graded
according to the Papile classification.30
eBPD was defined as the need for oxygen supplementation at 36 weeks
postmenstrual age.
fROP was classified according to the International Classification of
Retinopathy of Prematurity.67
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groups and for categorical variables, the Mann–Whitney U test, χ2 test of
independence, or Fisher’s exact test were used as appropriate. In analyzes,
p values <0.05 were considered significant. To adjust for multiple
hypothesis testing, the Holm–Bonferroni method was used.29 P values
≥0.01 are presented with two decimals, p values in the range 0.001–<0.01
are denoted with three decimals.
Clinical data were collected prospectively, and clinical diagnoses are

listed in Table 1. MR-based macrostructural regions used were total brain
volume (not including ventricles) and regional volumes (white matter,
cortical gray matter, deep gray matter, and cerebellum). Significant brain
injury was defined as intraventricular hemorrhage (IVH) grade III (according
to Papile et al.30) and periventricular hemorrhagic infarction, white matter
lesions (focal signal abnormality score ≥2 according to Kidokoro et al.31),
cerebellar hemorrhage (signal abnormality score ≥2 according to Kidokoro
et al.31), and/or cystic lesions (cystic lesion score ≥3 according to Kidokoro
et al.31). TEA MR scanning was performed between postmenstrual age 39.7
and 49.9 weeks.

RESULTS
In total, 49 infants fulfilled growth factor AUC availability and MRI
segmentation image quality criteria, Fig. 1. The clinical character-
istics of the included infants are given in Table 1. Infants included
in the final data analysis had similar characteristics as infants that

did not meet MRI segmentation and AUC availability criteria,
Supplementary Table 1.
Larger IGF-1 AUC correlated with increased total brain volume,

white matter volume, cortical gray matter volume, deep gray
matter volume, and cerebellar volume in univariate correlation
analysis, adjusted for multiple testing, Fig. 2a–e. Variables included
in the initial univariate data analysis rendering the final statistical
model are shown in Supplementary Table 2.
In the full statistical model adjusting for PMA at time of MRI

(weeks) and GA at birth (weeks), higher serum levels of IGF-1
expressed as AUC were independently associated with total brain
volume (p < 0.001, β= 0.90, 95% CI 0.41–1.39, R2= 0.64), white
matter volume (p= 0.007, β= 0.33, 95% CI 0.09–0.56, R2= 0.30),
cortical gray matter volume (p= 0.002, β= 0.43, 95% CI 0.17–0.70,
R2= 0.72), deep gray matter volume (p= 0.008, β= 0.05, 95% CI
0.01–0.08, R2= 0.41), and cerebellar volume (p= 0.006, β= 0.08,
95% CI 0.02–0.13, R2= 0.63), all remaining significant after
adjusting for multiple testing. The presence of major cerebral
injuries could not explain the associations as results were not
affected by the inclusion of significant brain injury as a covariate in
the full model or by excluding infants with significant brain injury
(n= 18) (data not shown).
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Brain volumes in relation to IGF-1high and IGF-1low, defined as
above and below IGF-1 AUC median, are demonstrated in Table 2.
The relationship between IGF-1 AUC and 84 anatomical sub-
regions is shown in Supplementary Table 3. IGF-1 AUC positively
correlated with volume (unadjusted) in 54 subregions of the brain,
and ten subregions remained significant following adjustment for
multiple testing.
BDNF AUC correlated positively with total brain volume (r=

0.34, p= 0.02), white matter (r= 0.40, p= 0.006), deep gray matter
(r= 0.31, p= 0.03), and cerebellar volumes (r= 0.40, p= 0.005).
No associations remained after adjusting for multiple testing or
when adjusting for GA at birth and PMA at the time of MRI in the
regression model. No associations were found for PDGF or VEGF
and brain volumes at TEA.
No correlations were found between IGF-1 serum levels and

relative brain region volumes (percentage of total brain volume,
adjusted for intracranial volume), Supplementary Fig. 1 a–d. When
comparing the relative brain region volumes between the IGF-
1high and the IGF-1low group, the volume fraction of the
cerebellum was proportionally higher in the IGF-1high group than
in the IGF-1low group (p= 0.02), but the difference did not remain
after adjusting for multiple testing, Supplementary Table 4.
We exploratively analyzed the role of GA on the link between

IGF-1 and brain volumes. This was done by investigating the
impact of IGF-1 AUC in the full statistical model adjusting for GA at
birth and postmenstrual age at the time of MR scanning on the
estimated unstandardized probabilities of total brain volume,
illustrated per gestational week in Fig. 3a. Infants born at
<25 weeks GA (n= 16) differed in their relationship between
IGF-1 AUC and brain volumes when compared to infants born at
≥25 weeks GA (n= 33). Therefore, a threshold of GA of 25 weeks
was used in the subanalysis. Infants born at <25 weeks GA had
persistently low endogenous IGF-1 serum levels and did not show

the increase in serum levels of IGF-1 over time seen in infants born
at ≥25 weeks GA, Fig. 3a, b. In a subanalysis of infants born at
<25 weeks GA, there was no association between IGF-1 serum
levels and brain volumes. In contrast, higher IGF-1 levels
corresponded to the larger total brain and larger white matter,
cortical gray matter, deep gray matter, and cerebellar volumes in
infants born ≥25 weeks GA. Similar results were seen when
dichotomizing at median GA (25.4 weeks), Table 3. The
postmenstrual age at the time of MR scanning was not
significantly different in the infants born at <25 and ≥25 weeks
GA, median (minimum–maximum) 43 (40–46.6) and 42.9
(39.7–49.9) weeks, respectively.

DISCUSSION
In this study of extremely preterm infants, we show that increasing
IGF-1 serum levels are independently associated with increased
total brain volume, as well as increased regional white matter,
cortical gray matter, deep gray matter, and cerebellar volumes at
TEA. At the same time, no associations were found for PDGF,
BDNF, or VEGF.
Expression of IGF-1 in the brain is found in the cortex,

cerebellum, hypothalamus, hippocampus, and spinal cord,32 with
a peak in the perinatal period and a decrease when neuronal
proliferation ceases.33 IGF-1 plays a crucial regulatory role for early
neuronal maturational and differentiation processes, mainly via
the PI3-K–Akt pathway.34,35 It affects vital neurodevelopmental
processes such as the development of astrocytes and oligoden-
drocytes, synapse formation, myelination, and production of
neurotransmitters.36 The main proportion of circulating IGF-1 is
synthesized in the liver, but IGF-1 is secreted by almost all fetal
tissues at some developmental stage and exerts its actions in
endocrine, paracrine, and autocrine manners by binding to the

Table 2. Absolute brain volumes (cm3) in relation to high (above median) and low (below median) IGF-1 AUC during the first 4 postnatal weeks
of life.

Total brain volume White matter volume Cortical gray
matter volume

Deep gray
matter volume

Cerebellar volume

Median Min–max Median Min–max Median Min–max Median Min–max Median Min–max

Total, n= 49 366.4 297.5–489.1 149.0 118.6–199.6 164.2 102.9–236.3 22.9 18.0–31.3 29.1 19.0–42.6

IGF-1low, n= 25 356.6 297.5–462.8 139.3 118.6–199.6 159.5 102.9–210.8 22.0 18.0–26.5 26.5 19.0–32.0

IGF-1high, n= 24 411.4 306.3–489.1 155.2 128.4–192.9 186.4 122.7–236.3 23.7 19.7–26.5 31.0 19.1–42.6

IGF insulin-like growth factor, AUC area under the curve, n number.
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IGF-1 receptor.37 In addition to endogenous brain expression, IGF-
1 is also actively transported via the choroid plexus from the
circulation into the nervous system and acts together with brain-
derived IGF-1.38,39 Systemic levels of circulating IGF-1 may thus
reflect IGF-1-mediated actions within the nervous system, as
suggested by the findings in our study.32

The effect of IGF-1 on oligodendrocytes has been demonstrated
in several studies. Our findings harmonize with a study of more
mature infants, <31 weeks GA at birth, and with less pronounced
depression of serum IGF-1. Pupp et al.12 observed an association
between IGF-1 levels and total brain, unmyelinated white matter,
and cerebellar volumes using a lower anatomical resolution MRI
method. The association was restricted to cerebellar volume when
adjusting for SGA.12 Carson et al.40 observed that overexpression of
IGF-1 in a mouse model was associated with a 55% increase in
brain size and an increase in myelin content by 130%, suggesting a
specific effect of IGF-1 on white matter development.40 Following
these findings, an increased percentage of myelinated axons and
increased thickness of the myelin sheath have been found
following increased expression of IGF-1 in transgenic mice.41

Similarly, in a preterm rabbit pup model, low IGF-1 levels were
linked to decreased cerebellar external granular layer proliferation
and decreased Purkinje cell maturation.42 IGF-1 thus seems to be of
specific importance from a preterm clinical perspective, as early
white matter abnormalities, as well as cerebellar hypoplasia, have
been linked to later neurodevelopmental impairments.43,44 More
specifically, white matter abnormalities at TEA have been
associated with neurosensory impairments, cognitive delay, motor
delay, and cerebral palsy at 2 years of age and motor impairment,
cognitive impairments, special assistance requirements at school,
and cerebral palsy later in childhood.43,45,46 Early quantitative
measurements of the cerebellum have been associated with motor
behavior during the first 2 years of life, as well as cognitive
development; however, further studies are required to elucidate
the exact role of a reduced size of the cerebellum.47–50

To explore the association between IGF-1 and brain regions of
specific functional importance in the preterm infant, we investi-
gated the association between IGF-1 and the relative volume
(percentage adjusted for intracranial volume) of particular brain
regions. No clear associations were found, and the tendency
towards a larger relative volume of the cerebellum in infants with
high levels of systemic IGF-1 did not remain significant after
correction for multiple comparisons. This suggests that systemic
IGF-1 levels are related to global brain growth rather than the
growth and maturation of specific regions. However, this does not
exclude that the reduced volume may be of particular importance
in areas such as white matter or cerebellum that are commonly
linked to adverse outcomes in the preterm infant.
The third trimester is a critical period in brain development,

encompassing myelination, synaptogenesis, and neuronal organi-
zation, alongside the development of functional capacity. Preterm
birth results in morphological brain alterations, including reduced
brain growth, that persist until adulthood even in the absence of

macrostructural brain injury. These changes may in turn be
associated with life-long cognitive and behavioral conse-
quences.3–10,51 Several other perinatal risk factors, including sex,
focal brain injury, and SGA at birth, affect brain volumes in these
vulnerable infants, with GA possibly the most prominent factor
affecting both brain volumes and later outcome.52 In our study,
the association between brain volumes and IGF-1 persisted when
corrected for GA at birth and when infants with significant focal
brain injury were removed or corrected for. In addition, and
somewhat surprisingly, neither total energy intake nor SGA or
extrauterine growth development, as measured by development
in weight SDS from birth to time of MRI significantly contributed
to brain volume at term. The influence of nutrition on the IGF-1-
axis in extremely preterm infants has been suggested to mainly
occur at 30–33 weeks PMA, thus after reaching a certain degree of
maturity.53 Taken together, these results suggest that IGF-1 has an
independent role in early postnatal brain development that could
not be explained by general body growth or focal brain injuries.
An interesting finding in our study was that the most immature

infants had the lowest serum levels of IGF-1, with a less pronounced
increase with advancing postnatal age, and lacked the association
with brain volumes. A possible explanation is that IGF-1 levels above
a threshold value may be needed to promote brain development. A
prolonged period with serum IGF-1 levels below 30 ng/ml has been
related to retinal neurovascular morbidity in the preterm infant.54 A
link between the angiogenic function of VEGF and IGF-1 has been
shown, where IGF-1 acts as a permissive factor for VEGF in the
neonate.55–57 In our study, median IGF-1 levels were below this
value at all time points in the most immature group. In addition,
adverse clinical events occur more frequently in the most immature
infants and may, together with immaturity itself, have a more
prominent role in brain growth and maturation than low IGF-1. It is
also possible that the small number of infants in the subanalysis
prevented any differences from reaching statistical significance.
Despite previous studies associating BDNF as well as VEGF and

PDGF to brain development and disease experimentally and in
adults,17–20 we did not find any significant association between
these growth factors and preterm brain volumes. BDNF serum
levels correlated with brain volumes, but the association did not
remain after adjustment for immaturity and PMA at MRI. The lack of
association could be due to the more dynamic circadian pattern of
BDNF compared to IGF-158 or the strong association of BDNF with
GA.59 Another possible explanation for the associations with IGF-1,
but not with BDNF, PDGF, and VEGF, might be due to the well-
known, pronounced mitogenic role of circulating IGF-1 during the
perinatal period extremely preterm infant. It is important to keep in
mind that the brain-specific effect of these factors on a cellular level
might be orchestrated and conducted via other influencing factors
and mechanisms. The AUC in this study, calculated from circulating
serum levels of BDNF, VEGF, and PDGF at PNDs 1, 7, 14, and 28, may
thus not reflect the exact brain-specific action in extremely preterm
infants during this particular phase of development. Furthermore, as
recently described by Hellgren et al.,25 the endogenic longitudinal

Table 3. Correlation of absolute brain volumes (cm3) and correlation to IGF-1 AUC stratified by gestational age at birth.

Total brain volume White matter volume Cortical gray
matter volume

Deep gray
matter volume

Cerebellar volume

rSpearman p value rSpearman p value rSpearman p value rSpearman p value rSpearman p value

GA <25 w, n= 16 0.03 0.93 0.23 0.39 0.03 0.91 –0.22 0.41 –0.06 0.82

GA ≥25 w, n= 33 0.58** <0.001 0.57** <0.001 0.55** <0.001 0.57** <0.001 0.59** <0.001

GA <mediana, n= 23 0.15 0.51 0.22 0.30 0.12 0.59 –0.09 0.70 0.01 0.96

GA ≥mediana, n= 26 0.55** 0.003 0.45* 0.02 0.54** 0.004 0.56** 0.003 0.55** 0.004

IGF insulin-like growth factor, AUC area under the curve, GA gestational age, n number, w week.
aMedian at 25.4 weeks.
*p < 0.05; **p < 0.01.
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postnatal serum patterns of BDNF, VEGF, and PDGF do not follow
the same postnatal pattern as IGF-1. IGF-1 is an agent in the
somatotropic axis, and it is, as previously described, mainly
produced in the liver and released into the bloodstream, whereas
levels of BDNF, VEGF, and PDGF are likely more tightly linked to
other circulating factors. For example, there are tight associations
between circulating levels of BDNF, VEGF, and PDGF and platelet
function25, which is linked to several clinical conditions such as
sepsis and oxygen exposure. BDNF, which binds to different
receptors, including TrK-B, has been of high interest during the last
decades due to its essential roles in neuronal and synaptic
properties, especially during the fetal developmental stages. BDNF
activates several pathways, including the PI3-K/Akt, the PLC- γ,
MAPK, and GTPases.60 Studies have found links between low levels
of BDNF in newborns and autism spectrum disorder, and preterm
infants with lower levels of BDNF had a higher probability of failing
neurodevelopmental outcome tests.61,62 The roles of circulating
VEGF, and PDGF in the preterm infant are not fully elucidated;
however, they are both mediators of angiogenesis during develop-
ment. In the preterm infant, potential links between VEGF and PDGF
signaling, and dysregulation, inflammation, and altered vascular
development have been suggested.63,64 VEGF is also a well-known
mediator of neovascularization in the neurovascular disease ROP,
which is associated with several outcomes such as brain volumes
and poor neurodevelopmental outcome.65 It is important to further
elucidate the complex interplay, function, and downstream
mechanisms of circulating factors during different developmental
phases in the extremely preterm.

Limitations
MRI series not meeting the MRI quality volume acquisition criteria
(Fig. 1), and a limited number of infants, especially in subanalysis,
may have prevented us from detecting less pronounced associa-
tions. In addition, preterm infants constitute a heterogeneous
group with numerous confounding factors associated with
neonatal morbidity, and clinical interventions may have influ-
enced brain development independent of IGF-1 levels.

CONCLUSION
In conclusion, this study shows that higher circulating IGF-1 levels
during the first four weeks of life are associated with increased
total and regional brain volumes at TEA in extremely preterm
infants. This effect was more pronounced in more mature infants
with higher levels of IGF-1. Our findings suggest that IGF-1
promotes brain growth, which may protect the developing brain.
The effects of systemically administered IGF-1/IGF-1BP3 on brain
morphology and cognitive outcomes in extremely preterm infants
are now being investigated in a randomized controlled trial
(Clinicaltrials.gov: NCT03253263).
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