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BACKGROUND: Epilepsy is a neurological disease that requires long-term antiepileptic drugs (AEDs). The old generation of AEDs
may affect serum homocysteine and asymmetric dimethylarginine (ADMA) and disturb lipid levels. The aim of the study was to
evaluate serum ADMA, homocysteine, lipid profile, and carotid intima-media thickness (CIMT) in epileptic children.
METHODS: This study was implemented on 159 epileptic children who were subdivided into 3 subgroups, with 53 receiving
sodium valproate, 53 receiving levetiracetam, and 53 receiving polytherapy, for over 6 months and 53 healthy children.
RESULTS: Low-density lipoprotein, triglycerides, and cholesterol levels were increased in epileptic children (p < 0.001), which were
higher in those receiving multidrug followed by a valproate receiver. While high-density lipoprotein was lower in those receiving
multidrug more than those receiving valproate. ADMA and homocysteine levels increased in epileptic patients than in controls (p <
0.001). Higher ADMA was also observed in the multidrug receiver (5.78 ± 0.62), followed by the levetiracetam group (5.56 ± 0.61).
Homocysteine levels were significantly higher in multidrug and valproate-treated children than those treated with levetiracetam.
CIMT was significantly higher in multidrug and valproate-treated patients (p < 0.001).
CONCLUSIONS: Long-term use of AEDs, especially old-generation polytherapy, can elevate lipid profiles, homocysteine, ADMA
levels, and carotid intima-media thickness compared to the minimal effect of new AEDs.

Pediatric Research (2022) 92:1606–1612; https://doi.org/10.1038/s41390-022-02132-6

IMPACT:

● The long-term use of antiepileptic drugs, especially old-generation polytherapy, can increase lipid profiles, homocysteine levels,
ADMA, and carotid intima thickness compared to the minimal effect of new antiepileptic generation.

● A routine follow-up of these markers and a lifestyle modification are recommended to avoid cerebrovascular events as much as
possible.

INTRODUCTION
Epilepsy is considered one of the most common neurological
diseases in children that require long-term therapy. Antiepileptic
medication-receiving patients demonstrate several vascular risk
factors, including an altered lipid profile, increased oxidative
stress, and increased serum homocysteine. The ideal drug
selection for each patient was based on the spectrum of activity,
dose-related serious side effects, drug interactions, and costs.1 The
atherosclerotic process can be accelerated by one phenomenal
precursor, which is endothelial dysfunction. Antiepileptic drugs
(AEDs) relate to high levels of homocysteine, a highly independent
risk factor for asymmetric dimethylarginine (ADMA), atherosclero-
sis, lipoprotein (A), and impaired lipid profiles.2

Hyperhomocysteinemia is associated with increased ADMA
concentration, which is an endogenous inhibitor of nitric oxide
synthase and synthesized by arginine methylation. It is thought

that both ADMA and homocysteine have adverse vascular effects
because they interfere with endothelial, nitric oxide-dependent
functions.3 ADMA levels also exacerbate oxidative stress and
monocyte adhesion that correlates with the carotid media intima
thickness (MIT) complex.4

Over 15% of children receiving AEDs are at risk of hyperhomocys-
teinemia. This risk may increase by using polytherapy (a combination
of 2 AEDs such as carbamazepine (CBZ), valproic acid (VP), phenytoin
(PHT), vigabatrin, oxcarbazepine (OXC), topiramate (TPM), lamotrigine
(LTG), and clobazam).5 The available data on the potential effects of
new-generation AEDs on hyperhomocysteinemia metabolism, includ-
ing LTG, OXC, TPM, and levetiracetam (LEV), is relatively small. These
drugs may be safer than their counterparts of older generations in
children with epilepsy who are predisposed to developing athero-
sclerosis early in life, such as those with hereditary diseases of
hyperhomocysteinemia metabolism or familial hyperlipidemia.6
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Aim
The aim of this study was an evaluation of serum ADMA,
homocysteine, lipid profiles, and their correlation to CIMT in
epileptic children receiving valproic acid, LEV, and polytherapy
treatment.

SUBJECTS AND METHODS
Design
This case–control study nested in cross-sectional study was carried out on
159 epileptic children who were subdivided into 3 subgroups: (1) 53
receiving sodium valproate, (2) 53 receiving LEV, and (3) 53 receiving
polytherapy (two or more of valproate, CBZ, topiramate, PHT, phenobarbi-
tal, and lamotrigine) for over 6 months. There were 100 boys and 59 girls
with an age range of 11 months to 8 years and 50 healthy children. The
age, sex, and socioeconomic status of this group matched the control
group. The study period was from the first of March 2021 to the first of
October 2021. They were recruited from the pediatric neurology outpatient
clinic, Menoufia University Hospital. After obtaining informed written
consent, the Ethics Committee of Menoufia University’s Faculty of
Medicine approved this study (ID-8/3/2021.PEDI). This study details the

medical histories, physical examinations, and the following investigations
performed on each patient: ADMA (μmol/l), homocysteine (μmol/l), lipid
profiles (mg/dl) by enzyme-linked immunosorbent assay (ELISA), and
carotid intima-media thickness (CIMT).

Diagnostic inclusion and exclusion criteria
Inclusion criteria. Inclusion criteria include idiopathic epileptic children
receiving sodium valproate, LEV, and polytherapy treatment for at least
6 months. Healthy control has no neurological, vascular, or metabolic diseases.

Exclusion criteria. The exclusion criteria include the following: secondary
epilepsy and a short duration of AED <6 months, obesity and hepatic
diseases, any vascular disease that may affect the elasticity or thickness of
the vessels (e.g., diabetes mellitus, hypertension, and sickle cell disease),
and any metabolic disease that may affect lipid profiles.

Sample collection and assay
Sampling. A 4 ml venous blood sample was drawn from each participant
under complete aseptic conditions, allowed to clot, and then centrifuged
for 15min at 3000 rpm to separate the serum for assessing the biochemical
tests (homocysteine, lipid profile, and serum human ADMA.

Table 1. Demographic characteristics and CBC among the studied groups.

Characteristics of groups Mean ± SD Median (range) Test of significance and P value Post hoc P value

Age (year) P1= 0.07

Valproate-treated patients 3.4 ± 2.6 2 (0.92–8) Kruskal–Wallis test= 5.45 P2= 0.33

Levatiracetam-treated patients 4.2 ± 2.1 5 (1–8) P value= 0.14 P3= 0.15

Multidrug-treated patients 3.4 ± 1.6 4 (1–6) P4= 0.05

Controls 3.9 ± 2.3 3 (1–8) P5= 0.83

P6= 0.63

Sex Male Female P1= 0.16

Valproate-treated patients 36 (67.9%) 17 (32.1%) χ2 test= 2.35 P2= 0.84

Levatiracetam-treated patients 29 (54.7%) 24 (45.3%) P value= 0.50 P3= 0.68

Multidrug-treated patients 35 (66.0%) 18 (34.0%) P4= 0.23

Controls 34 (64.2%) 19 (35.8%) P5= 0.32

P6= 0.84

Hemoglobin (g/dl) P1= 0.95

Valproate-treated patients 11.9 ± 0.78 12 (10–12.8) ANOVA test= 1.15 P2= 0.11

Levatiracetam-treated patients 11.9 ± 1.3 11.8 (10.2–16) P value= 0.33 P3= 0.45

Multidrug-treated patients 11.6 ± 0.65 11.5 (10.8–12.6) P4= 0.12

Controls 11.8 ± 0.47 11.8 (11–13) P5= 0.49

P6= 0.39

White blood cells (×103/mm3) P1 < 0.001**

Valproate-treated patients 6.5 ± 1.2 6.9 (5–8.1) ANOVA test= 11.41 P2= 0.02*

Levatiracetam-treated patients 8.2 ± 1.9 7.8 (5.7–11.5) P value < 0.001** P3 < 0.001**

Multidrug-treated patients 7.3 ± 1.8 6.5 (5–10.5) P4= 0.006*

Controls 8.1 ± 1.9 8.5 (5–11.5) P5= 0.87

P6= 0.01*

Platelet (×103/mm3) P1= 0.30

Valproate-treated patients 263.4 ± 41.0 250 (213–355) ANOVA test= 1.20 P2= 0.69

Levatiracetam-treated patients 273.9 ± 60.9 269 (198–452) P value= 0.31 P3= 0.24

Multidrug-treated patients 259.3 ± 42.3 260 (187–319) P4= 0.15

Controls 275.2 ± 59.9 267 (194–452) P5= 0.89

P6= 0.12

P1: valproate-treated patients versus levatiracetam-treated patients; P2: valproate-treated patients versus multidrug-treated patients; P3: valproate-treated
patients versus controls. P4: levatiracetam-treated patients versus multidrug-treated patients; P5: levatiracetam-treated patients versus controls; P6: multidrug-
treated patients versus controls.
*Significant difference. **Highly significant difference.
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Methods. The serum homocysteine was measured using (The ARCHITECT
i1000SR immunoassay analyzer). The lipid profiles [total cholesterol,
triglycerides, high-density lipoprotein cholesterol (HDL-C), and low-
density lipoprotein cholesterol (LDL-C)] were measured by the Beckman
Coulter (Synchron CX 9 ALX) clinical Auto analyzer (Beckman Instruments,
Fullerton, CA). ELISA was used to determine human ADMA by using kits
provided by the Shanghai Sun Bright Biological Technology Co., Ltd.
Catalog No. 201-12-1888. Human ADMA was added to monoclonal
antibodies enzyme wells that were pre-coated with human ADMA
monoclonal antibodies, followed by incubation. Human ADMA antibodies
were then labeled with biotin and combined with streptavidin–horseradish
peroxidase to form an immune complex. Finally, incubation and washing
were repeated to remove the uncombined enzyme. A and B chromogen
solutions were then added. Due to the acid’s impact, the liquid becomes
blue and eventually yellow. The sample’s chroma was favorably associated
with the concentration of the human substance human ADMA. The intra-
assay and inter-assay coefficients variations were 10 and 12%, correspond-
ing to the manufacturer’s quoted values.

Technique description of CIMT (mm)
The model used was Duplex ultrasound on carotid artery by ESAOTE model
prestige with transducer 7.5 MHz, Italy.
CIMT measures were obtained when the patient was laying supine with

the neck rotated to the other side of the examination. Using three different
views of each vessel, common carotid artery images were obtained to
determine IMT.7 There were at least three IMT points measured at each
vessel’s far and near walls in the thickest part of the vessel. Two
longitudinal views of the sternocleidomastoid muscle were used to scan
the vessel: posterolateral and anterolateral.8

Sample size calculation
The sample size relied on a 95% confidence interval with 80% power, using
a one-way analysis of variance (ANOVA) (with equal-size groups) and
assuming an (two-sided) α of 0.05. Based on a previous study (ref. 9), the

smallest mean of ADMA (µM/L) was 1.27 while the largest mean was 2.10
and SD was 1.38. The number of participants was 53 for each group of
epileptic cases.

Statistical analysis
IBM SPSS version 20 was used to analyze the data (SPSS Inc., Chicago, IL).
To examine the relation between qualitative variables, a chi-square test
was applied. For the quantitative data, a comparison between three
groups was made using either ANOVA or Kruskal–Wallis test (non-
parametric test) as appropriate. For correlation between numerical
variables, Pearson’s correlation coefficient was used. A P value <0.05 was
considered significant.

RESULTS
There were no significant differences for age, sex, hemoglobin,
white blood cells, and platelets between patients and control
groups as shown in Table 1.
As for lipid profiles, LDL, triglycerides, and cholesterol levels

were significantly higher in epileptic children than the control
groups (P < 0.001), higher in those receiving multidrug followed
by valproate receiver while the LEV group was less affected. In
contrast, HDL was lower in those receiving multidrug more than
those receiving valproate with a significant difference compared
with controls, as shown in Table 2.
The analysis of ADMA and homocysteine levels show a

significant increase in both markers in patients compared to
controls (P < 0.001). But within the higher ADMA mean in the
multidrug receiver (5.78 ± 0.62) followed by the LEV group (5.56 ±
0.61), the homocysteine levels were significantly higher in
multidrug- and valproate-treated children compared to LEV ones.
CIMT was also significantly higher in multidrug- and valproate-

Table 2. Comparison of lipid profile among the studied groups.

Lipid profile Mean ± SD ANOVA test and P value Post hoc P value

LDL (mg/dl) P1 < 0.001**

Valproate-treated patients 139.7 ± 14.6 Test= 294.19 P2 < 0.001**

Levatiracetam-treated patients 123.1 ± 8.5 P value < 0.001** P3 < 0.001**

Multidrug-treated patients 151.3 ± 14.1 P4 < 0.001**

Controls 83.0 ± 12.5 P5 < 0.001**

P6 < 0.001**

HDL (mg/dl) P1 < 0.001**

Valproate-treated patients 30.1 ± 1.7 Test= 154.85 P2= 0.30

Levatiracetam-treated patients 35.3 ± 1.8 P value < 0.001** P3 < 0.001**

Multidrug-treated patients 30.5 ± 1.8 P4 < 0.001**

Controls 36.7 ± 2.4 P5 < 0.001**

P6 < 0.001**

Cholesterol (mg/dl) P1 < 0.001**

Valproate-treated patients 179.9 ± 16.5 Test= 212.95 P2 < 0.001**

Levatiracetam-treated patients 149.4 ± 23.6 P value < 0.001** P3 < 0.001**

Multidrug-treated patients 193.5 ± 16.9 P4 < 0.001**

Controls 109.6 ± 16.1 P5 < 0.001**

P6 < 0.001**

Triglyceride (mg/dl) P1 < 0.001**

Valproate-treated patients 170.2 ± 10.8 Test= 354.40 P2 < 0.001**

Levatiracetam-treated patients 148.7 ± 9.6 P value < 0.001** P3 < 0.001**

Multidrug-treated patients 244.6 ± 38.4 P4 < 0.001**

Controls 110.3 ± 14.9 P5 < 0.001**

P6 < 0.001**

P1: valproate-treated patients versus levatiracetam-treated patients; P2: valproate-treated patients versus multidrug-treated patients; P3: valproate-treated
patients versus controls. P4: levatiracetam-treated patients versus multidrug-treated patients; P5: levatiracetam-treated patients versus controls; P6: multidrug-
treated patients versus controls.
**Highly significant difference.
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treated patients compared to the control group (P < 0.001) with no
difference in the LEV group (Table 3).
There was a significant positive correlation between serum

ADMA and triglycerides in the valproate group and with
homocysteine in the multidrug receiver, while there was a highly
significant positive correlation between ADMA and HDL in both
groups. On the other hand, there was no significant correlation
between ADMA and the parameters in the LEV group. There was a
significant positive correlation between ADMA and homocysteine
(Table 4, and Fig. 1).

DISCUSSION
To our knowledge, this is one of the most important studies to
evaluate the risk of atherosclerosis in children who received old
and new AEDs associated with hyperhomocysteinemia and
elevated ADMA levels in our center.
As for the lipid profile (triglyceride, LDL, cholesterol, HDL) study,

there was a significant elevation of lipid profiles in patients
compared with the controls groups, regardless of the type of AEDs
received. Comparing patients who received the old drug (group A)
with group B showed a significant elevation of these markers in
group A, while those receiving polytherapy had higher levels
compared to both groups A and B, except for HDL that was not
significantly affected in the LEV group. Some serum lipids, such as
total cholesterol (TC) and LDL-C, promote atherosclerosis, while
others act as a strong defense against it (e.g., HDL-C). The ratio
between the cholesterol fractions (TC/HDL and LDL/HDL) is a
better indicator for developing atherosclerosis in patients receiv-
ing long-term anticonvulsants.10

The antiepileptic medication effects on the lipid profiles were
controversial in previous studies. Some of these studies illustrated
an elevation of triglycerides and HDL levels.11–13 Also, there was
an elevation of LDL values.14,15 But Eiris et al.11 reported a
decrease in LDL levels in patients treated with AEDs.

Table 4. Correlation between asymmetric dimethylarginine (ADMA)
and other parameters among each group.

Group Parameters ADMA (μmol/l)

r P value

Valproate-treated
patients

LDL (mg/dl) 0.441 0.001**

HDL (mg/dl) −0.076 0.59

Cholesterol (mg/dl) −0.091 0.52

Triglyceride (mg/dl) 0.401 0.003*

CIMT (mm) −0.157 0.26

Homocysteine
(μmol/l)

−0.152 0.28

Levatiracetam-
treated patients

LDL (mg/dl) −0.234 0.09

HDL (mg/dl) 0.217 0.12

Cholesterol (mg/dl) −0.242 0.08

Triglyceride (mg/dl) −0.126 0.37

CIMT (mm) 0.039 0.78

Homocysteine
(μmol/l)

0.007 0.96

Multidrug-treated
patients

LDL (mg/dl) 0.483 <0.001**

HDL (mg/dl) −0.059 0.67

Cholesterol (mg/dl) −0.218 0.12

Triglyceride (mg/dl) 0.098 0.48

CIMT (mm) 0.204 0.14

Homocysteine
(μmol/l)

0.412 0.002*

*Significant difference. **Highly significant difference.

Table 3. Asymmetric dimethylarginine (ADMA), homocysteine and carotid intima media thickness (CIMT) among the studied groups.

Biomarkers Mean ± SD ANOVA test and P value Post hoc P value

ADMA (μmol/l) P1 < 0.001**

Valproate-treated patients 4.40 ± 0.75 Test= 630.41 P2 < 0.001**

Levatiracetam-treated patients 5.56 ± 0.61 P value < 0.001** P3 < 0.001**

Multidrug-treated patients 5.78 ± 0.62 P4= 0.06

Controls 1.27 ± 0.35 P5 < 0.001**

P6 < 0.001**

Homocysteine (μmol/l) P1= 0.28

Valproate-treated patients 9.2 ± 1.7 Test= 32.01 P2= 0.002*

Levatiracetam-treated patients 8.7 ± 2.1 P value < 0.001** P3 < 0.001**

Multidrug-treated patients 10.5 ± 3.3 P4 < 0.001**

Controls 6.4 ± 1.2 P5 < 0.001**

P6 < 0.001**

CIMT (mm) P1 < 0.001**

Valproate-treated patients 0.33 ± 0.02 Test= 42.88 P2 < 0.001**

Levatiracetam-treated patients 0.32 ± 0.01 P value < 0.001** P3 < 0.001**

Multidrug-treated patients 0.35 ± 0.02 P4 < 0.001**

Controls 0.31 ± 0.02 P5= 0.09

P6 < 0.001**

P1: valproate-treated patients versus levatiracetam-treated patients; P2: valproate-treated patients versus multidrug-treated patients; P3: valproate-treated
patients versus controls; P4: levatiracetam-treated patients versus multidrug-treated patients; P5: levatiracetam-treated patients versus controls; P6: multidrug-
treated patients versus controls.
**Highly significant difference.
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The possible explanation for decreased serum lipids with
valproate is valproate’s enzyme inhibitory effect. Glucuronidation
is the major route of valproate biotransformation. Valproate or its
metabolites may inhibit the glucuronidase enzyme, resulting in
reduced triglyceride, LDL, and HDL production.11 Horie and Suga16

also observed that valproate treatment increased hepatic
peroxisomal oxidation, reducing LDL-C and apolipoprotein B.
Valproate-induced weight gain may result in insulin resistance,
resulting in dyslipidemia and hyperinsulinemia.17

Akosy et al.18 observed that the serum lipid profile and thyroid
function tests did not affect long-term LEV administration. As a
result, it appears that LEV outperforms valproate benefits.
However, Kim et al.19 showed a significant increase in LDL-C
levels in LEV-treated patients. But no effect of LEV was seen on
vitamin B12, triglyceride, total cholesterol, or HDL-C levels. There
was a highly significant increase in homocysteine levels in patients
compared to those in the control group. These higher levels
were reported in the multidrug group followed by the valproic
acid group.20

The mechanism of valproate that induces hyperhomocysteine-
mia is not fully understood. Moreover, the results of the possible
effects of new-generation AEDs, such as OXC, lamotrigine,
topiramate, and LEV, on the metabolism of homocysteine are
limited.6 Belcastro et al.21 demonstrated that newer AEDs such as
TPM and OXC may lead to hyperhomocysteinemia, while AEDs as
LEV and LTG had no effect on homocysteine level.

The relationship between the use of new AEDs and homo-
cysteine levels was studied in Korean patients with newly
diagnosed epilepsy and treated with OXC, LEV, or TPM as
monotherapy. Kim et al.19 observed a statistically significant
elevation in homocysteine concentration throughout each
drug’s therapy, but these changes are within the physiological
concentration range.
Gorgone et al.22 reported that 30% of patients with brain

atrophy were associated with the use of different AEDs and an
elevated homocysteine concentration. So there was a correlation
between homocysteine-induced neuronal injury, oxidative stress,
and excitotoxicity.
In another research by Ono et al.23, they found an increased risk

of hyperhomocysteinemia in patients taking prolonged, multiple
AED therapies over 7 years (>7 years). Also, Vilaseca et al.24 found
elevated total homocysteine levels in children with epilepsy
using AEDs for an extended period. These prospective studies
were conducted to assess the time needed until reaching
the hyperhomocysteinemia cutoff value for using certain
AEDs that induce hyperhomocysteinemia. So, long-term
morbidity associated with AEDs can be prevented by switching
these drugs before reaching the critical cutoff value for
hyperhomocysteinemia.
Perhaps AED–gene interactions have a role in the development

of hyperhomocysteinemia; patients getting CBZ or PHT have
higher homocysteine levels if they were homozygous TT
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genotype, while those who taking valproic acid had lower levels.25

In contrast, Vurucu et al.26 did not confirm the correlation between
the genotypes of 677T variants of hyperhomocysteinemia and the
methylenetetrahydrofolate reductase (MTFR) gene polymorphism
in patients with epilepsy and treated with valproate monotherapy
and CBZ.
ADMA levels in the patient groups were significantly higher

than the control group but remained within normal levels
(<15 μmol/l), with higher levels in the multidrug group than the
other groups and a significant positive correlation with homo-
cysteine. Khanna et al.9 found an elevation of both ADMA and
homocysteine levels in children receiving valproate and OXC after
6 months of therapy. Similarly, Oz et al.27 illustrated the effect of
valproate and OXC therapy on the ADMA levels in the Indian
population. Hyperhomocysteinemia leads to increased ADMA
production, which lowers the nitric oxide levels increasing the risk
of atherosclerosis.28,29 A significant elevation of ADMA, homo-
cysteine and triglyceride levels was reported in children receiving
valproate without elevation in LDL levels.2 Sniezawska et al.30

observed a significant link between ADMA levels and hyperho-
mocysteine in children with epilepsy. Yet another study reported a
significant increase in ADMA and homocysteine levels in children
on OXC therapy with no significant correlation between ADMA
and homocysteine.31

A recent study reported no significant difference as regard lipid
profile and homocysteine levels between epileptic children and
controls with a significant positive correlation between homo-
cysteine levels and TG levels in boys without epilepsy.32

CIMT was significantly higher in patients receiving multidrug
and valproate compared to the control group, with no difference
in the LEV group. Ksoo et al.33 illustrated a significant increase in
CIMT values in children receiving PHT and CBZ after 3 months of
therapy. Recent studies showed that patients with epilepsy who
received AEDs might exhibit an increased risk of myocardial
infarction, stroke, and cardiovascular death that may be triggered
by affecting ADMA and homocysteine concentration and serum
lipid levels.34–36

Limitations of the study
Because patients were not screened genetically for the CBS genes
and MTHFR, both known to have a role in homocysteine
metabolism, we recommend the genetic workup of homocysteine
and ADMA for early detection of the risk factors of vascular disease
in children receiving AEDs for a long duration.

CONCLUSION
Long-term use of AEDs, especially old-generation polytherapy,
have risks of elevated lipid profiles, homocysteine levels, ADMA,
and increased carotid intima thickness compared to the minimal
effect of new antiepileptic generation. Routine follow-up of these
markers is recommended with lifestyle modification to avoid
cerebrovascular events as much as possible.

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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