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BACKGROUND: Machine learning has been attracting increasing attention for use in healthcare applications, including neonatal
medicine. One application for this tool is in understanding and predicting neurodevelopmental outcomes in preterm infants. In this
study, we have carried out a systematic review to identify findings and challenges to date.
METHODS: This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and
Meta-Analysis guidelines. Four databases were searched in February 2022, with articles then screened in a non-blinded manner by
two authors.
RESULTS: The literature search returned 278 studies, with 11 meeting the eligibility criteria for inclusion. Convolutional neural
networks were the most common machine learning approach, with most studies seeking to predict neurodevelopmental outcomes
from images and connectomes describing brain structure and function. Studies to date also sought to identify features predictive of
outcomes; however, results varied greatly.
CONCLUSIONS: Initial studies in this field have achieved promising results; however, many machine learning techniques remain to
be explored, and the consensus is yet to be reached on which clinical and brain features are most predictive of
neurodevelopmental outcomes.
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IMPACT:

● This systematic review looks at the question of whether machine learning can be used to predict and understand
neurodevelopmental outcomes in preterm infants.

● Our review finds that promising initial works have been conducted in this field, but many challenges and opportunities remain.
● Quality assessment of relevant articles is conducted using the Newcastle–Ottawa Scale.
● This work identifies challenges that remain and suggests several key directions for future research.
● To the best of the authors’ knowledge, this is the first systematic review to explore this topic.

INTRODUCTION
Premature birth is a well-known cause of long-term neurodevelop-
mental difficulties and disabilities.1 Currently, 15 million infants are
born prematurely at less than 37 weeks gestational age annually,
and this rate continues to increase worldwide.2 Improvements in
neonatal healthcare are driving an increase in survival rates amongst
extremely premature infants;3–7 however, challenges remain in
improving the neurodevelopmental outcomes of preterm infants.8

Fortunately, early intervention programs for preterm infants
have a positive influence on neurodevelopmental outcomes
during infancy, with cognitive benefits persisting into preschool
age.9,10 Early intervention requires early identification of at-risk
infants, which remains a significant challenge for clinicians.
One tool that offers significant promise for identifying

infants at risk is machine learning (ML). To date, ML models have

been developed for the prediction of many outcomes in premature
infants, including mortality,11 sepsis,12 and retinopathy of
prematurity.13,14 However, relatively few have investigated neuro-
development. To the best of our knowledge, no systematic review
on using ML to predict neurodevelopmental outcomes in premature
infants has been conducted. This review aims to fill that gap in the
literature, while identifying strengths and weaknesses of existing
approaches and identifying several future research directions.

METHODS
This study presents a systematic review on the prediction of
neurodevelopmental outcomes in preterm infants using ML. The
review was completed in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis guidelines.15
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Data sources and searching
We conducted a systematic search of four electronic databases:
PubMed, OVID Medline, CINAHL, and SCOPUS. The search strategy
used for each database consisted of the following keywords:
((machine AND learning) OR (deep AND learning)) AND (neonatal
OR neonate OR preterm OR premature OR baby OR infant) AND
(language OR speech OR neurodevelopment). The searches
focused on articles that contained these keywords in the title,
abstract, or keywords. Gray literature was not considered by this
systematic review.

Inclusion and exclusion criteria
This review focuses on the question of whether ML techniques can
be used to predict neurodevelopmental outcomes in preterm
infants. Studies were deemed eligible if they were peer-reviewed
and published in English between January 2010 and February
2022 (including early-access and pre-print articles). Studies
predating January 2010 were excluded as ML is a rapidly evolving
field and thus only recent studies are relevant.
As this systematic review focuses on outcomes in premature

infants, only studies that included a cohort of preterm infants with
postmenstrual ages ≤37 weeks are included. Any studies that did
not include a cohort of preterm infants were excluded. Studies
that considered solely maternal or fetal health factors were also
excluded. Animal studies were not relevant to this study and thus
were excluded.
Only articles focusing on general neurodevelopmental out-

comes were included; thus articles that focused on predicting or
understanding physical growth or specific conditions (such as
cerebral palsy and Angelman syndrome) were excluded.

Data extraction and article selection
The final search was conducted in February 2022. All results were
imported to Mendeley, where duplicates were automatically
identified and then manually confirmed for removal. The titles
and abstracts of the identified articles were independently screened
in a non-blinded manner by the two authors. The full text was then
examined for each of the remaining studies to enable a final
decision on eligibility for inclusion. Disagreements were resolved
through discussion, with consensus reached for each study.

RESULTS
The literature search returned a collective 278 studies, with 195
remaining after duplicate removal. After screening titles and
abstracts, 172 articles were excluded. The full texts of the remaining
23 articles were examined for eligibility. Eleven articles were
excluded from the cohort, while one was excluded due to studying
physical development rather than neurodevelopment. Thus, the
literature search yielded 11 studies that were eligible for inclusion.
Quality of these studies was assessed with the Newcastle–Ottawa
Scale for cohort studies in Table 1. The included studies were
conducted in 6 different countries: the United States of America,
Canada, Japan, Scotland, England, and Australia. The process for
identifying eligible articles is illustrated by the flow diagram in Fig. 1.
The included studies focused on two key topics: predicting and

understanding neurodevelopmental outcomes. Eight papers
focused on predicting neurodevelopmental outcomes, whilst also
identifying the brain regions that contributed to the predictions
made, as shown in Supplementary Table 1. The remaining three
papers focused solely on understanding factors associated with
neurodevelopmental outcomes, as shown in Supplementary Table 2.
Seven studies16–22 quantified neurodevelopment using the

Bayley Scales of Infant Development Third Edition (Bailey-III).23

One study24 quantified neurodevelopment using the Neuro-
Sensory Motor Developmental Assessment (NSMDA)25 while two
used the Mullen Scales of Early Learning (MSEL).26

In terms of ML, the most popular technique was convolutional
neural networks (CNN),16,21,22,24 with other techniques including
fully connected neural networks (FCNN),17,27 random forest (RF),18,28

support vector machine (SVM),28 latent class growth analysis,29

logistic regression,19,20,29 and linear regression.20

In the following subsections, several key themes of the
identified papers are discussed in depth.

Classification of neurodevelopment as a binary outcome
Seven of the eight papers that sought to predict neurodevelop-
mental outcomes did so using a binary classification approach,16–
20,24,27 where infants were identified as low or high risk of atypical
neurodevelopment at an age between 18 and 24 months.
Each of these studies used Bayley-III, NSMDA, or MSEL scores to

quantify neurodevelopment. The binary classification approach
involved selecting a threshold score that split children into groups
representing typical and atypical neurodevelopment.
Strategies for selecting a threshold varied throughout the

literature. Of those studies that considered Bayley-III scores, most
dichotomized the scores around a threshold of 85, or 1 standard
deviation below the mean score.17–20 As Table 2 illustrates,
language score was considered by three of these studies. The
highest accuracy for language score was achieved by the RF
model presented by Valavani.18 The logistic regression model by
Schadl et al.20 presents accuracies of 100% and 88% for identifying
cognitive and motor developmental delays, respectively; however,
this was based on 8 participants. The study by He et al.17 also
considered cognitive scores, achieving 81.5% accuracy and 0.86
area under the receiver-operator curve (AUROC), indicating that
their CNN model has a good ability to distinguish between low
and high-risk infants.
He et al.16 also used Bayley-III scores to assess neurodevelop-

ment, dichotomizing outcomes around a threshold of 90. Their
CNN model performed well in predicting cognitive, language, and
motor deficits, achieving accuracies of 88.4%, 87.2%, and 86.7%,
respectively. AUROC was also strong at 0.87, 0.85, and 0.85,
respectively, indicating that the model is skilled at distinguishing
between low and high risk.

Table 1. Quality assessment of included studies in accordance with
the Newcastle–Ottawa scale for cohort studies.

Study Selectiona Comparabilityb Outcomec

He et al. (2021)16 ★★★★★ ★ ★★
Valavani et al.
(2021)18

★★ ★ ★★

He et al. (2020)17 ★★★★ ★★ ★★
Liu et al. (2020)22 ★★ ★ ★★
Saha et al. (2020)24 ★★★★ ★ ★★
Vassar et al.
(2020)19

★★★★ ★ ★★★

Girault et al.
(2019)27

★★★ ★★ ★★

Schadl et al.
(2018)20

★★★★ ★ ★★

Kawahara et al.
(2017)21

★★★ ★ ★★

Ball et al. (2016)28 ★★★ ★★ ★★
Nishimura et al.
(2016)29

★★★ ★ ★★

aMaximum 4 stars.
bMaximum 2 stars.
cMaximum 3 stars.
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Two studies classified risk groups based on alternative scales.
Saha et al.24 assessed motor development with the NMSDA
scale. Their model aimed to predict whether an infant
would exhibit normal motor development or abnormal motor
development at 2 years old, achieving an accuracy of 73%
and AUROC of 0.72. Meanwhile, Girault et al.27 used the
composite MSEL score to assess neurodevelopment, grouping
outcomes into above median (score < 110) and below median
(score > 110) groups. Their model then aimed to predict a
preterm infant’s neurodevelopment at age 2, achieving accuracy
of 83.8%.

Predicting neurodevelopment as a value on a continuous
scale
Three studies16,21,27 aimed to predict neurodevelopmental scores
on a scale. Kawahara et al.21 presented a CNN model that aimed to

predict Bayley-III scores at 18 months, with scores standardized
between 50 and 155. Their strongest model achieved mean
absolute error (MAE) values of 10.640 and 10.493 for motor and
cognitive outcomes, respectively; however, correlation between
true and predicted values was very low.
He et al.16 sought to predict Bayley-III scores at age 2 years with

their CNN model. They standardized Bayley-III scores between 40
and 160. Their model achieved MAEs of 11.7, 10.5, and 11.6 in
predicting cognitive, language, and motor scores, respectively.
Correlation between true and predicted values ranged from 0.62
to 0.63.
Lastly, the deep FCNN model presented by Girault et al.27 aimed

to predict MSEL cognitive scores scaled between 49 and 155. This
study achieved an MAE of 4.47 and a strong correlation of r=
0.956 when predicting neurodevelopmental outcomes at the age
of 2 years.

Table 2. Comparison of studies that aimed to classify infants as high or low risk based on a threshold of 85 using the Bayley-III scales.

Study Balanced accuracy AUROC

Valavani et al. (2021)18 91% (language) Not provided

He et al. (2020)17 81.5% (cognitive), 68.9% (language), 73.9% (motor) 0.86 (cognitive), 0.66 (language), 0.84 (motor)

Vassar et al. (2020)19 58% (language composite), 66% (expressive language),
48.5% (receptive language)

0.502 (language composite), 0.617 (expressive language),
0.322 (receptive language)

Schadl et al. (2018)20 100% (cognitive), 88% (motor) 1 (cognitive), 0.912 (motor)
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Fig. 1 PRISMA flow diagram.
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Identification of features associated with neurodevelopmental
outcomes
All studies sought to identify brain regions, connections, and other
features predictive of neurodevelopmental outcomes. Several
studies also considered clinical and demographic variables.
Schadl et al.20 used linear regression models to identify WM

microstructures features obtained via diffusion tensor imaging
(DTI) that correlated strongly with neurodevelopmental outcomes.
Their findings showed that cognitive impairment was highly
correlated with mean diffusivity (MD) of the right middle-temporal
gyrus, right cingulate-cingulum, and left caudate in infants
scanned at near-term corrected age. Meanwhile, motor impair-
ment was linked with fractional anisotropy (FA) of the left
precuneus and right hippocampus, and MD of the right superior
occipital gyrus.
A linear regression approach was also used by Vassar et al.,19

whose study found that the severity of WM abnormality derived
from magnetic resonance imagery (MRI) images was predictive of
negative language outcomes. In addition, features obtained via
DTI including MD of the right sagittal stratum and right inferior
occipital gyrus along with the axial diffusivity (AD) of the right
lingual gyrus were identified as strongly correlated with overall
language outcomes.
Linear regression was used by Liu et al.22 to correlate relative

brain age (RBA) of various regions of interest with neurodevelop-
mental outcomes. Their findings suggested that the RBAs of the
left hemisphere precentral, superior frontal, inferior orbitofrontal,
insular, middle cingulate, and posterior cingulate cortices were
correlated with cognitive development at age 3 years. RBAs for the
left hemisphere anterior cingulate and superior temporal pole
cortices were shown to correlate with language outcomes, while
no region was found to strongly correlate with motor outcomes.
Logistic regression was utilized by Nishimura et al.29 to identify

clinical variables that contributed to delayed development. Their
findings indicate that significant delay is linked with male sex and
small-for-gestational-age birth.
Class activation mapping was used by Saha et al.24 to identify

regions of FA maps that were most predictive of atypical motor
development. Their findings indicated that the motor cortex and
somatosensory regions were strongly correlated with neurodeve-
lopment, while the cerebellum, and occipital and frontal lobes
were also correlated.
Girault et al.27 used a backtracking approach to find features

that contributed strongly to the output of cognitive development.
They identified that WM connections between the frontal lobe
and other regions are correlated with outcomes.
Backtracking was also used by Valavani et al.18 Their findings

suggest that language delay was correlated with features
including peak width of skeletonized FA, radial diffusivity, and
AD. Correlation was also found with male sex, being a twin, and
incomplete or no antenatal corticosteroid treatment.
Backtracking was used by Ball et al.28 to identify functional brain

connections that differed between full-term infants and preterm
infants at a full-term equivalent age. Their findings identified
substantial functional connectivity differences in the basal ganglia
and frontal regions of the brain, with connections appearing
stronger in full-term infants.
Kawahara et al.21 used a partial derivative method to determine

WM connections linked with outcomes. Their findings suggest
that many brain connections of the right middle frontal gyrus are
correlated with motor and cognitive scores. The left precuneus,
fusiform gyrus, superior frontal gyrus, and right lingual gyrus are
also identified as key connection regions.
A partial derivative approach is also used by He et al.17 to

identify regions associated with neurodevelopmental outcomes,
finding that the thalamus, middle-temporal gyrus, and inferior
frontal gyrus were the strongest predictors of neurodevelopment.
Their study also considered clinical variables, identifying birth

weight, gestational age, bronchopulmonary dysplasia, and retino-
pathy of prematurity as predictors of neurodevelopmental
outcomes.
In a later study, He et al.16 again utilized a partial derivative

approach to assess a broader range of brain features and clinical
variables. Their findings suggested that several functional
connections were highly correlated with neurodevelopmental
outcomes, primarily interhemispheric connections involving fron-
tal, limbic, occipital, temporal, and parietal lobes. Structural
connections were also correlated with neurodevelopment, with
the most important connections found in the right hemisphere. In
a comparison between diffuse WM abnormality (DWMA), func-
tional connectivity, structural connectivity, and clinical variables, it
was found that DWMA was the most correlated with outcomes.
However, the strongest predictive performance was achieved by
the model that used all four feature types as inputs, suggesting
that all offer information regarding neurodevelopmental
trajectory.

Neural networks for predicting and understanding
neurodevelopmental outcomes
Six of the studies identified by this paper utilized neural networks
(NNs) for predicting neurodevelopmental outcomes, with four
utilizing CNNs16,21,24 and two using FCNNs.17,27

He et al.16 used a deep CNN architecture to interpret functional
and structural connectomes alongside clinical variables and WM
abnormalities to predict Bayley-III scores. Kawahara et al.21 used a
shallower CNN architecture to process structural connectomes
and generate Bayley-III score predictions. Across both studies, low
MAE values were achieved—ranging between 10.5 and 11.7 for
different Bayley-III scores.
CNN architectures were also used by Saha et al.24 to interpret FA

images of WM structures and classify infants into binary risk
groups for motor developmental delay based on NSMDA scoring.
CNN again performed strongly at this task, achieving an accuracy
of 73%.
One study22 sought to use a graph-based CNN to predict the

apparent age of the brain irrespective of the actual infant’s age. In
this case, cortical surfaces of the brain were represented as a two-
dimensional graph and used as an input to the CNN. The CNN
then predicted RBA, which was thereafter shown to strongly
correlate with neurodevelopment at age 3 years. Two studies
focused on FCNN, traditional NNs where every neuron in one layer
is connected to every neuron of the next layer. FCNNs are
computationally expensive and risk overfitting to the training
data, thus preventing accurate prediction on testing data.
However, FCNNs have the advantage of viewing all information,
rather than reducing feature dimensionality as with CNN. Both
studies that utilized FCNNs sought to interpret connectomes.17,27

He et al.17 utilized FCNN to process functional and structural
connectomes alongside clinical variables to classify infants into
binary risk groups, achieving accuracies of 68.9% and 81.5% for
language and cognitive development risk, respectively. This is
markedly lower than their later study16 that utilized CNN.
Girault et al.27 implemented a deep FCNN structure to predict

MSEL scores and binary risk classes based on the WM
connectome. The MAE achieved in this study was very low at
4.47, with a strong correlation between true and predicted values
of r= 0.956.
The study by Kawahara et al.21 compared their CNN model with

several other models, including FCNNs. Their findings suggest that
CNN outperforms FCNN in predicting Bayley-III scores from
structural connectomes.

Other machine learning techniques for predicting and
understanding neurodevelopmental outcomes
Aside from NNs, techniques used in the literature included RF and
logistic and linear regression. RF is an algorithm comprised of
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many decision trees that work together to predict outcomes. They
are typically used on discrete features rather than image-based
data. This is shown by Valavani et al.,18 who use RF to classify
binary risk groups based on clinical, demographic, and brain
structure variables. They achieve an accuracy of 91% in predicting
language outcomes.
An RF-based strategy is also used to identify important features

by Ball et al.,28 who then used these features to train a SVM. SVMs
seek a plane of best fit between the input data and target
outcome—in this case, the model aimed to classify functional
connectome features as belonging to infants born either full-term
or preterm.
Linear and logistic regression techniques are classical ML

techniques. Linear regression focuses on predicting continuous
outcomes like neurodevelopmental scale scores, while logistic
regression is used for classification tasks. In the neonatal neurode-
velopment literature, three studies used logistic regression19,20,29

and one used linear regression.20

Vassar et al.19 performed binary classification of risk groups,
achieving a relatively low accuracy of 58% in predicting overall
language development risk, while Schadl et al.20 achieved an
accuracy of 100% in predicting motor development risk (albeit on
a very small cohort of eight infants). Schadl et al.18 further
investigated linear regression to identify features that showed the
highest correlation with neurodevelopmental scores.
Lastly, Nishimura et al.29 used logistic regression to identify risk

factors that were most predictive of neurodevelopmental delays.
They further used latent class growth analysis to cluster retro-
spectively cluster children into groups of varying delay.

DISCUSSION
Limitations in comparability
As illustrated in the section “Classification of neurodevelopment as a
binary outcome”, there are inconsistencies in how atypical and
typical neurodevelopment groups are identified. The most frequent
approach in the literature is to use the Bayley-III scale with a
threshold of 85. However, one study used an alternative threshold16

while others used different scales.24,27 As such, it becomes
challenging to conduct a fair performance comparison between
the methods used to classify the risk of atypical neurodevelopment.
Comparability remains an issue when contrasting the studies that

aimed to predict a score on a neurodevelopment scale. The two
studies that aimed to predict Bayley-III scores16,21 performed slightly
different scaling of scores, meaning that the magnitude of MAE
cannot be directly compared. The study that looked at predicting a
neurodevelopment score27 looked at the MSEL score, preventing
direct comparison to the other studies considered in this paper.
As the section “Identification of features associated with

neurodevelopmental outcomes” demonstrated, the identification
of features that were predictive of outcomes was approached in a
wide variety of different manners. This is largely unavoidable
given that different studies used highly dissimilar inputs and
models; however, more consistency in approaches taken would
help to improve comparability between studies in the future.
Another substantial issue that limits comparison between

studies is the lack of an established database. One significant
area for future research would be the development of a database
that includes common medical images (MRI, fMRI, DTI, etc.) and
clinical variables captured at or close to full-term equivalent age,
along with neurodevelopmental outcomes at age 18–24 months.
Such a database would be an invaluable resource, as it would
support research that is comparable and reproducible.

Binary risk classification compared to predicting
neurodevelopmental scores
Two main approaches to prediction of neurodevelopment were
identified in the “Results” section—binary risk classification and

the prediction of a neurodevelopment score on a continuous
scale. Of these two approaches, binary classification has the
advantage of being the simplest to understand. Binary classifica-
tion is also comparatively easy to implement and achieve strong
performance, compared to predictions of a continuous scale.
However, it provides little actionable information as no informa-
tion is given about the likely severity of the neurodevelopmental
outcomes in a child classified as at risk. It, therefore, remains a
challenge for clinicians to determine the intervention required for
the best long-term outcomes.
As such, we suggest that the models that aimed to predict

neurodevelopmental scores on a continuous scale16,20,21,27 offer
the most clinical value. A neurodevelopment score provides more
information about the severity of the risk. This allows for
appropriate intervention at an early age, enabling improved
outcomes for each child. Initial studies show promising results,
and thus this research direction is worth pursuing further.
An avenue not explored in the literature is multi-class

classification. In this approach, infants could be classified into
descriptive risk groups—for example, minimal/mild/moderate/
significant/extreme risk. This would provide a metric that is
descriptive and easier to understand than a raw number from a
neurodevelopmental scale. Thus, this approach would better
support treatment decisions than binary classification and would
be more explainable to parents and non-experts than a
neurodevelopmental score. This would be a worthwhile direction
for future research.
Overall, the studies to date have shown that both binary risk

classification and prediction of a score based on various
neurodevelopmental scales are both feasible. Multi-class risk
classification and neurodevelopmental score prediction are both
recommended as directions for future research, as these better
support clinical decision making.

Brain features that are predictive of outcomes
In the section “Identification of features associated with neurode-
velopmental outcomes”, it was shown that several studies
identified WM structures as predictive of neurodevelopmental
outcomes.16–21,27 In particular, WM abnormality was identified as
highly predictive by two studies.16,19 The relationship between
WM structures and neurodevelopmental outcomes has been
previously established in the literature,30 and this is further
confirmed by the studies identified in this review. Therefore, it is
highly recommended that features quantifying WM structure and
abnormalities continue to be included in future research.
Several studies also identified areas of interest that are not

broadly acknowledged by prior literature. Structural connections,
particularly those involving the frontal lobe, were identified as
highly predictive of cognitive outcomes in two studies.16,27

However, one study identified predominantly interhemispheric
connections27 while the other identified primarily connections
within the right hemispheric, so disagreement remains about
which connections are important. The frontal lobe was also
identified as a region of interest in four studies;17,21,22,24 however,
there was little consensus on other regions of importance.
Overall, results varied greatly in identifying features predictive

of neurodevelopmental outcomes. It would be beneficial for
future research to use comparable features to the studies to date,
to move toward consensus on which brain regions and connec-
tions are correlated with neurodevelopment. Future research
should consider structural connectivity, functional connectivity,
WM abnormality, and clinical parameters when developing
models, as all have been shown to carry information about
neurodevelopmental trajectories.16

Comparison of machine learning techniques
As observed in the section “Neural networks for predicting and
understanding neurodevelopmental outcomes”, CNN and FCNN
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architectures have each been used in various studies looking to
use structural and functional connectomes to predict neurodeve-
lopmental outcomes,16,17,21,27 while CNN has also been used to
assess outcomes from other image formats.22,24 Each of these
studies demonstrated that NNs performed strongly at their
respective tasks.
The key disadvantage of NNs is complexity. A typical NN

contains hundreds of neurons. Contrasted with linear and logistic
regressors, which could be represented as a single neuron, it is
clear that NNs are less interpretable and more computationally
expensive than their simpler predecessors.
Despite this, NNs have a key advantage in that they can make

more complex connections between features and identify non-
linear relationships; they can do no worse than a simple regressor.
High computational cost is a decreasing problem as computers
continue to become more powerful. To improve explainability of
NNs, methods such as Shapley additive explanation scores31 and
class activation mapping32 have been developed to illustrate how
a network made its decisions.
The benefits of NNs outweigh the disadvantages when it comes

to complex problems such as interpreting brain maps. As such, it is
recommended that regressors are best suited to use as a
benchmark. Other ML models, including NNs, can then be trained
and tested with the goal of exceeding that benchmark.
It is also worth noting that several candidate ML approaches

have not been explored extensively in the literature. Only one
study has sought to predict neurodevelopmental outcomes with
RF,18 with promising results. Further research into RF is needed to
validate whether this technique is appropriate.
In terms of NNs, there are many architectures that remain

unexplored. Future research could seek to develop novel models
or investigate the use of pre-trained networks such as AlexNet33

and GoogleNet34 with fine-tuning to suit the neurodevelopmental
prediction problem. This approach has been used in other medical
imagery research domains, such as identifying glaucoma from
optometry images35 and COVID-19 from x-rays.36

Interestingly, no study to date has examined residual NNs
(ResNets),37 which are a variation on CNN networks that typically
generalize to the data better than their predecessor. ResNet37 was
first proposed in 2016 and has been widely used in image
processing tasks such as diagnosing pneumonia from x-ray38 and
Alzheimer’s disease from MRI.39

Overall, this field is young and there are many future research
directions in terms of ML algorithms. There is a wide range of new
and existing architectures that could be explored, and many pre-
trained models that could be fine-tuned for neurodevelopment
prediction and interpretation tasks.

CONCLUSION
Early identification and intervention for children who are at risk of
developmental disorders is critical to their well-being. The use of
ML for predicting neurodevelopmental outcomes in preterm
infants is a promising strategy for improving long-term outcomes.
However, this remains a relatively new field with many future
research opportunities.
The first key research question in this field is identifying how to

classify outcomes. The majority of studies to date have aimed to
predict whether preterm infants will develop typically or
atypically, with some studies instead predicting an exact score
on a neurodevelopmental scale. The latter option is preferable as
it provides more actionable information for clinicians, allowing for
tailored intervention and thus improving outcomes.
The next research questions lie in identifying suitable input

features and suitable ML models. Studies aiming to interpret
image-based information, such as structural and functional
connectomes, tended toward CNNs and FCNNs. Meanwhile,
studies that considered clinical variables or discrete brain

features tended toward RF and regression approaches. As this
review has identified that functional and structural character-
istics of the brain are critical to strong predictive performance, it
is suggested that NN strategies aimed at image processing are
highly suitable for this task. It is further recommended that
future studies consider novel CNN-based architectures, such as
ResNet,37 in their research.
The most significant limitation for this field of research is the

absence of a comprehensive and accessible database. The
development of a database containing a wide range of imagery
such as MRI, fMRI, DTI, and connectomes alongside clinical and
demographic variables would be a significant and highly valuable
contribution to the literature and to this field.
Overall, initial studies aiming to predict and understand

neurodevelopmental trajectories in preterm infants with ML have
shown promising results and interesting findings. However, much
work remains to be done in order to find a consensus on ML
strategies and conclusively identify features that are key to
predicting neurodevelopmental delay. This field is likely to
develop rapidly in years to come and offers many opportunities
for future researchers.
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