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BACKGROUND: Hospitalized children with central venous lines (CVLs) are at higher risk of hospital-acquired infections. Information
in electronic health records (EHRs) can be employed in training deep learning models to predict the onset of these infections. We
incorporated clinical notes in addition to structured EHR data to predict serious bloodstream infections, defined as positive blood
culture followed by at least 4 days of new antimicrobial agent administration, among hospitalized children with CVLs.
METHODS: Structured EHR information and clinical notes were extracted for a retrospective cohort including all hospitalized
patients with CVLs at a single tertiary care pediatric health system from 2013 to 2018. Deep learning models were trained to
determine the added benefit of incorporating the information embedded in clinical notes in predicting serious bloodstream
infection.
RESULTS: A total of 24,351 patient encounters met inclusion criteria. The best-performing model restricted to structured EHR data
had a specificity of 0.951 and positive predictive value (PPV) of 0.056 when the sensitivity was set to 0.85. The addition of
contextualized word embeddings improved the specificity to 0.981 and PPV to 0.113.
CONCLUSIONS: Integrating clinical notes with structured EHR data improved the prediction of serious bloodstream infections
among pediatric patients with CVLs.

Pediatric Research (2023) 93:969–975; https://doi.org/10.1038/s41390-022-02116-6

IMPACT:

● Developed an advanced infection prediction model in pediatrics that integrates the structured and unstructured EHRs.
● Extracted information from clinical notes to do timely prediction in a clinical setting.
● Developed a deep learning model framework that can be employed in predicting rare events in a complex and dynamic

environment.

INTRODUCTION
Children with central venous lines (CVLs) are at higher risk of the
adverse outcomes associated with hospital-acquired infections
such as central line-associated bloodstream infection (CLABSI) and
sepsis. The U.S. Centers for Disease Control and Prevention
estimates that approximately 80,000 new CLABSIs occur in the
United States every year, and hospitalized patients who develop
CLABSI have a 12–25% increased risk of mortality.1,2

The increasing use of electronic health records (EHRs) in the
healthcare domain along with advanced computational techni-
ques lead to the opportunities to create reliable and generalizable
population-level monitoring systems that incorporate routinely
captured clinical data without the need to conduct resource-
intensive chart reviews.3–6 In recent years, a number of studies
have been conducted on the application of advanced analytics of
structured EHR data to improve detection and prediction of the
adverse outcomes in the hospital.7–9 In our own work, we used
structured EHR data to predict presumed serious infections (PSIs)
and serious bloodstream infections in hospitalized children.4,10

Clinical notes written by health providers are rich sources of a
patient’s health status through hospitalization time. While this
information has previously been inaccessible to predictive models,
more recent natural language processing (NLP) techniques show
promise in harnessing the information embedded in unstructured
EHRs for aiding clinical decisions.11–13 Incorporating structured
and unstructured EHR data can boost predictive performance and
lead to more accurate results. For example, in adult sepsis
prediction, Amrollahi et al. integrated structured and unstructured
EHR data to predict the onset of sepsis among intensive care unit
(ICU) patients.14 The results showed an improvement in the
predictive model’s performance compared to only using the
structured EHR data. Similarly, Liang et al. incorporated clinical
notes to train a disease classifier to predict a clinical diagnosis for
pediatric patients.15 However, these approaches have not been
applied to serious bloodstream infections in hospitalized children.
In this study, we investigated the added benefit of integrating

structured EHR data with unstructured data gleaned from
clinical notes in predicting serious bloodstream infection among
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hospitalized children with CVLs. We propose a data fusion
approach and predictive model that can be employed prospec-
tively in the pediatric ward to predict the risk of a serious
bloodstream infection developing during the next 48 h of the
hospitalization.

MATERIALS AND METHODS
Study population
Electronic health records, including structured and unstructured data, were
extracted for a retrospective cohort of all hospitalized patients with a CVL
at a single tertiary care pediatric health system. The inclusion criteria were
admission to one of the three freestanding children’s hospitals between
January 1, 2013 and December 31, 2018, having a documented CVL at
some point during the hospitalization, having length of stay >24 h, and
having recorded clinical notes. A complete list of structured information
extracted from EHRs is included in Appendix A. This study was approved
by the Emory University Institutional Review Board (protocol number
19-012).

Identifying the onset of serious bloodstream infection
PSI was initially proposed as a part of pediatrics sepsis surveillance
definition by Hsu et al.16 and has previously been validated.17 Among
pediatric patients, PSI was defined as a blood culture drawn and new
antibiotic course of at least 4 days (fewer if patients die or are transferred
to hospice or another acute care hospital). The minimum of 4 days of
antibiotic administration was selected to minimize the false positives from
patients for whom the suspected infection was not confirmed and had the
empirical treatment stopped. Our primary outcome of serious bloodstream
infection was defined as a PSI along with a laboratory confirmed
bloodstream infection defined as a positive blood culture.16,18 We
reviewed this definition through informal interviews with 2 pediatric
infectious disease specialists, 1 pediatric critical care physician, 1
neonatologist, and 1 pediatric hematology/oncology specialist to validate
its appropriateness and clinical utility. From this point, we referred to PSI
with positive blood culture as serious bloodstream infection (SBI).

Data preprocessing
We used a window-wise study design, as presented in Fig. 1, to predict the
onset of SBI in a real-time setting. The start point of the study was the
admission time or line insertion time, whichever was earlier. We aimed to
predict whether the patient would develop SBI in the next 48-h window;
the 48-h prediction window provides enough time for health providers to
intervene and potentially prevent a SBI event. In the proposed study design,
the SBI prediction was done every 24 h using the most recent information.
The 24-h sliding window was selected to ensure that the recorded clinical
notes of a patient were updated as the 90th percentile of the time between
recording notes for a patient was 23 h. If a 48-h sliding window included an
onset of SBI, that window was considered as a positive one. Overall, the
prevalence of the positive windows was 0.35% which indicated an
extremely imbalanced data problem. Stratified sampling was used to split
patient encounters to training (80%) and testing (20%) sets. Moreover, 10%
of the training patient encounters were employed as the validation set to
optimize the hyperparameters of the models.

Structured EHR data. Initially, the structured data included 252 features.
The numerical features were transformed, imputed and standardized. The
categorical features were one-hot-encoded. We removed multicollinearity
with a threshold of 0.8. Finally, there were 129 features from the structured
data to include in the analysis. Appendix A includes more details on the
preprocessing steps along with a list of the selected features.

Unstructured EHR data. All the provider notes recorded for a patient
during the same time-window were concatenated. To reduce the effect of
the redundant parts of the clinical notes, we selected the sections with
more discriminative information such as history of present illness,
impression and plan, patient active problem list, medical decision making,
etc. After that, common text preprocessing steps were applied in which all
text was transformed to lower case and extra white spaces, punctuations
and numbers were removed. Finally, the clinical notes were matched with
the corresponding structured data through the text recording timestamps.

Feature extraction from clinical notes
There are two main approaches to incorporate a pre-trained language
model in the predictive models; first, fine-tuning a pre-trained language
model for down-stream tasks, second, calculating the contextualized word
embeddings and feeding them as features to a classification or regression
model. We followed the latter approach as it empowered the integration of
structured data and clinical notes.
The BERT model has yielded remarkable performance in the clinical

domain compared to ELMo and non-contextual embeddings.19 Recent
studies have demonstrated that using a domain-specific model achieves
better performance compared to nonspecific embeddings; therefore, we
employed the Clinical BERT model, which was pre-trained on approxi-
mately two million clinical notes in MIMIC-III dataset,20 to acquire the
contextualized word embeddings for the clinical notes in our cohort.12 To
assess the performance of the contextual word embeddings from the
Clinical BERT model, we also extracted text features through the term
frequency-inverse document frequency (TF-IDF) method.
Figure 2 demonstrates our approach to integrate the clinical notes with

the rest of the structured clinical features to train the predictive models.

Predictive models
Model structure. We employed Bidirectional Long Short-Term Memory
(BiLSTM) model as BiLSTMs can look at the information prior and successor
of a given word in the note, which is closer to human reading abilities and
yields strong performance in the NLP domain.14

Loss function. There are two types of observations in a classification task:
hard and easy. The hard observations are defined as the ones that confuse
the predictive model. These are the examples that the model should focus
on to improve its overall performance. The extreme class-imbalanced
problem in this study (prevalence of 0.35%) required a strategy to assign
more weight to the minority class observations while taking the easy/hard
examples into consideration to ultimately improve the true positive and
true negative predictions. We employed Focal loss as a solution to this
obstacle.21 Focal loss is a loss function to lessen the weight of easy
examples while intensifying the penalization in the case of an incorrect
classification of hard examples.

Tadmission

or
Tfirst line insertion TSBI

48 h

Without infection
With infection

24 h

Fig. 1 Window-wise study design. If a patient had a documented CVL at the time of admission, the start point of the analysis would be the
admission time. Otherwise, the start point would be the first line insertion time. The prediction window was 48 h with a 24 h sliding window
until the end of the patient’s hospitalization or removal of the last CVL. When the onset of SBI occurred within a 48 h prediction window, that
window was considered positive (red), while the rest (blue) were labeled as negative. The prediction was performed at the start of each arrow.
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Attention mechanism. Attention mechanism in deep learning was
motivated by how humans pay attention to different regions of an image
or correlate words in a sentence.22 When it comes to a class-imbalanced
classification task, it is crucial to attend to the more prominent parts of the
input sequence to achieve better results. Since we had long sequences of
structured and unstructured data, the attention mechanism was
incorporated to train the model to further attend to the more relevant
parts of the input and explain the relationship between words in the
context.

Training process. We trained five models with the following input features
to evaluate the benefit of integrating structured EHRs with clinical notes;
(1) structured data, (2) extracted features from unstructured data with TF-
IDF, (3) extracted contextualized word embeddings from unstructured data
using Clinical BERT, (4) structured data along with the TF-IDF features, (5)

structured data and the contextualized word embeddings. We trained all
the models with a batch size of 128, Adam optimizer, and dropout
regularization. The hyperparameters of the models (e.g., learning rate,
dropout rate, number of neurons for each layer, etc.) were tuned by
Bayesian optimization method. Appendix B includes the details on model
training, structure, and optimization.

Statistical analysis
To check the statistically significant difference of features’ values between
the SBI and non-SBI groups, Wilcoxon rank-sum test for numerical features
and Chi-squared test for categorical features were applied. Moreover, the
estimated 95% confidence interval (CI) of the models’ performance metrics
was calculated through bootstrapping method.
This manuscript was prepared using the guidelines provided by Leisman

et al.23 for reporting of prediction models.

Clinical
note at T1

Clinical
note at T2

Clinical
note at TN

Infection?

Selecting the most informative parts of note

Clinical BERT to get the last
layer word embeddings

Word embeddings at T1

Feature set at T1

Feature set at T2

Feature set at TN

Feature set at Ti

Structured clinical features at Ti

Word embeddings at Ti

Word embeddings at T2

Word embeddings at TN

Concatenate with structured clinical
features at every prediction time

Bidirectional LSTM

Fig. 2 Data fusion diagram. The most informative sections of the clinical notes recorded for a patient at the time of prediction were selected
and provided to the Clinical BERT model to calculate the contextualized word embeddings using the last hidden layer of the model. Then the
768-dimensional contextualized word embeddings were concatenated with the 129-dimensional features from the structured EHR at every
prediction point. The Bidirectional LSTM model with the attention mechanism and Focal loss incorporated the 897-dimensional input to
predict if a SBI will occur during the next 48 h of this patient’s hospitalization.

Initial screen (n = 97,424)

n  = 24,351

Neonates
n = 2733

Infants
n  = 5383

Toddlers and
preschoolers
n  = 4286

Children
n  = 5625

Adolescents
n  = 6324

Excluded (n = 73,073)
Length of stay (LOS)
insufficient for prediction or
No recorded clinical notes

Patients admitted to one of the three freestanding children’s
hospitals between January 1, 2013 and December 31, 2018
and had a central line documented in the system before or at
the time of admission or received at least one CVL during the
hospitalization

Fig. 3 Patient encounter inclusion flowchart. The final number of patient visits that were employed in training and testing the machine
learning models was 24,351.
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RESULTS
For this study, 97,424 patient encounters associated with 15,704
patients were extracted from the EHRs. Among these patient
encounters, there were outpatient appointments and hospital
outpatient department visits for patients with existing CVLs;
therefore, 73,073 patients encounters were excluded from the
cohort due to length of stay <24 h or not having recorded clinical
notes. After applying these exclusion criteria, a total number of
2733 neonates (age <28 days), 5383 infants (age between 28 days
and 1 year), 4286 toddlers and preschoolers (age between 1 and 5
years), 5625 children (age between 5 and 12 years), and 6324
adolescents (age >12 years) were included in the analysis. Figure 3
demonstrates the associated CONSORT diagram.
The demographic and clinical characteristics of the patients in

our study are listed in Table 1. According to the results, SBI
patients were younger (median= 3.1 vs. 5.8 years, p < 0.001), with
lower weights (13.6 vs. 19.3 Kg, p < 0.001), shorter heights (90.3 vs.
110.2 cm, p < 0.001), more African Americans (44.3 vs. 36.3%, p <
0.001), and less Caucasian (47.1 vs. 54.1%, p= 0.002). Overall, SBI
patients had higher hospital length of stay (36.7 vs. 6.1 days, p <
0.001), had higher ICU admissions (65.4 vs. 48.2%, p < 0.001), and
had a higher rate of having Medicaid health insurance (62.5 vs.
57.1%, p= 0.02) while having a lower rate in Commercial health
insurance (34.2 vs. 38.9%, p= 0.03). The mortality rate was higher
among SBI patients but there were no statistically significant
differences for this feature among the two groups (0.2 vs. 0.06%,
p= 0.22). Other features were comparable between SBI and non-
SBI groups (p > 0.05).

Table 1. Cohort characteristics.

SBI Non-SBI p value

Age (years) 3.1a 5.8 <0.001

(Median [25th, 75th]) [0.2, 12.1] [0.8, 13.3]

Weight (Kg) 13.6a 19.3 <0.001

(Median [25th, 75th]) [3.6, 38.6] [7.7, 44.6]

Height (cm) 90.3a 110.2 <0.001

(Median [25th, 75th]) [51, 149] [66, 152]

Length of Stay (LOS)
in Days

36.7a 6.1 <0.001

(Median [25th, 75th]) [23.2, 71.3] [3.3, 14]

Gender

Male (%) 45.3 45.8 0.82

Race

Asian (%) 3.5 3.9 0.64

Caucasian (%) 47.1a 54.1 0.002

African American (%) 44.3a 36.3 <0.001

American Indian or
Alaska Native (%)

0.4 0.2 0.27

Native Hawaiian or
Pacific Islander (%)

0.2 0.2 0.97

Other (%) 4.5 5.3 0.44

Insurance status

Commercial (%) 34.2a 38.9 0.03

Public—Medicaid (%) 62.5a 57.1 0.02

Public—non-
Medicaid (%)

3.1 3.1 0.93

Self-pay (%) 0.2 0.8 0.12

ICU Admission (%) 65.4a 48.2 <0.001

Mortality (%) 0.2 0.06 0.22
aStatistically significant difference between the SBI and non-SBI groups.
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Statistical tests were performed to assess statistical significance
between the components of PEdiatric Logistic Organ Dysfunction
(PELOD-2) score and Pediatric RISk of Mortality (PRISM-III) Score
between SBI and non-SBI groups across time windows.24,25

PELOD-2 was primarily designed to describe the severity of organ
dysfunction and PRISM-III was developed to predict the risk of
mortality among the pediatric population. The results are
presented in Appendix D and E.
To assess the benefit of incorporating the clinical notes in SBI

prediction, five predictive models with different inputs were
trained. The performance metrics are presented in Table 2.
According to these results, the model which coupled the
structured clinical features with word embeddings from Clinical
BERT model outperformed the rest of the models with highest
specificity of 0.981 with 95% CI= [0.980, 0.982], positive predictive
value (PPV) of 0.113 [0.09, 0.137], negative predictive value (NPV)
of 0.999 [0.999, 0.999], accuracy of 0.980 [0.978, 0.981], F-1 score of
0.195 [0.159, 0.231], and area under the precision–recall curve
(AUPRC) of 0.282 [0.188, 0.366]. Figures 4 and 5 demonstrate the
associated receiver operative characteristics and precision–recall
curves for all the five models applied on the testing dataset,
respectively.
Using the word representation from the last four hidden layers

of the Clinical BERT model (instead of only using the last hidden
layer) did not improve the models’ performance while it added to
the computational costs (Appendix C).

DISCUSSION
In this study, we evaluated the effect of coupling clinical notes
with the structured clinical features (e.g., demographic, physiolo-
gical, laboratory test results, etc.) in predicting the onset of SBI,
defined as a culture drawn associated with a positive test result
followed by at least 4 days of new antimicrobial agent
administration, among pediatric patients with CVLs. The proposed
deep learning model predicts if a hospitalized patient with CVL
will develop SBI during the next 48 h of hospitalization. Our model
had a PPV of 0.113, which is 32 times greater the baseline
prevalence of SBI across the 48-h time windows, and a very high
NPV 0.999, which presents the strength of the model in ruling out
the patients with lower risk of the infection. Incorporating the
clinical notes improved the specificity (0.951 vs. 0.981, p value
<0.001), PPV (0.056 vs. 0.113, p value <0.001), accuracy (0.950 vs.

0.980, p value <0.001), F-1 score (0.105 vs. 0.195, p value <0.001),
and AUPRC (0.202 vs. 0.282, p value <0.001) compared to the
model that employed only the information from structured EHRs.
The predictive performance of our proposed model and study

design outperformed the performance of the prior models trained
to predict CLABSI. Most of these models were based on a
retrospective case control study and did not incorporate the
temporal information in EHRs. Training a Random Forest
predictive model based on non-temporal data, Beeler et al.
obtained AUROC of 0.87 in predicting CLABSI among adult,
pediatric, and neonatal patients.26 Sung et al. trained a CLABSI
prediction model using Gradient Boosting Trees which attained
AUROC of 0.77 among pediatric cohorts receiving cancer
medications.27 Our model and study design had characteristics
that may have contributed to achieving better predictive
performance; first, we only included the pediatric patients with a
documented CVL at the time of admission or at some point during
hospitalization. Second, we extracted and incorporated an
extensive set of features recorded in EHR. Third, we used the
information embedded in the clinical notes through a state-of-the-
art NLP framework. Finally, we trained a deep learning model
capable of including the temporal information while dealing with
low prevalence classification problem by using a loss function
specifically designed for extreme class-imbalanced classification
and attention mechanism to focus on the most predictive parts of
the input sequence at every prediction point.
Previous studies have been done to investigate the added

benefit of integrating clinical notes to the structured EHR data in
predicting patient clinical outcomes. Amrollahi et al. utilized
structured and unstructured EHR information to model capable of
timely prediction of sepsis which outperformed the model trained
only on the structured data.14 In a similar study, Goh et al.
developed an artificial intelligence algorithm incorporating the
two data modalities and concluded that the model performance
improved after integrating the clinical notes to the input
features.28 In another study, Horng et al. conducted a research
to demonstrate the incremental benefit of using free text data in
addition to vital sign and demographic data to identify patients
with suspected infection in the emergency department.29

Limitations
Our study has several limitations. First, while we intentionally
extracted EHR features that are routinely recorded across systems,
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Fig. 4 Receiver operating characteristics curves (ROC curves) for all the models tested in this study. Incorporating the structured
information in EHRs achieved the highest area under the curve.
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the external application of the proposed model, which was trained
within a single pediatric health system, on other health systems
may be biased. Second, we utilized two structured EHR variables,
the timestamp associated with antibiotics administration and
positive blood culture specimen taken time, to identify the onset
of SBI among this cohort; therefore, our outcome definition led to
refining the cohort by structured data. Third, the deep learning
field is very dynamic and new models are introduced every day;
therefore, the model structure that we applied to tackle low
prevalence classification problems and extract contextualized
word embeddings may not reflect all the capacity of deep
learning application in predicting this adverse outcome. Fourth, in
some cases, the clinical notes are updated with delay. This delay in
recording clinical notes may affect the performance of the model.
Finally, the Clinical BERT model used for extracting contextualized
word embeddings has a limitation in the number of words it can
take in each of the recorded clinical notes at every prediction
point. This limitation requires extensive text preprocessing to only
include the parts describing the patient’s health condition at the
moment and exclude history and administrative sections.

CONCLUSION
In this study, we demonstrated the potential of information
embedded in clinical notes in predicting SBI among pediatric
patients with CVLs through a deep learning approach. The results
indicated the superior performance of the model that integrated
the structured and unstructured EHRs and the possible benefit in
predicting patient outcome in a clinical setting.
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