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BACKGROUND: Anemia is a nearly universal diagnosis in preterm infants, caused by phlebotomy, and exacerbated by the
underlying erythropoietic immaturity. Newborn infants are exposed to the unique stressor of fetal-to-neonatal transition, which
requires significant adaptation ex utero. Accordingly, the preterm infant’s response to anemia may alter the ability to confront
underlying illness. This study utilized our preclinical mouse model of phlebotomy-induced anemia (PIA) to comprehensively
investigate associated hematological changes.
METHODS: C57BL/6 mice were subjected to timed phlebotomy between postnatal days 2–-10 to induce severe anemia. Complete
blood counts were determined by the Sysmex XT-2000iV analyzer.
RESULTS: Anemic pups showed a gradual reduction of RBC and hemoglobin (Hb) and increased reticulocyte (RET) counts and red
cell distribution width (RDW), however, with reduced RET-Hb from postnatal day (P) of 4 onwards. Elevated levels of high
fluorescent RET and immature reticulocyte fraction (IRF) were noted in anemic mouse pups, but low and medium fluorescent RET
were reduced. Also, the reduction of mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular
hemoglobin concentration (MCHC) were noted in anemic pups. No changes were seen in lymphocytes, but monocytes and
neutrophils were significantly elevated from P4-P6.
CONCLUSIONS: PIA in mouse pups is associated with hematological changes that may be exacerbating factors in neonatal
diseases.
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IMPACT:

● Anemia is common and often severe in premature infants.
● Investigation of hematological parameters in settings of preclinical anemia may be an index of therapeutic strategies.
● Preclinical model evaluating the effects of neonatal anemia on the remainder of complete blood count.
● Detailed time kinetic phlebotomy-induced anemic mice enable us to study the impact on developmental delays in

erythropoiesis and possible strategic intervention.
● Hematological effects of severe anemia in mice might provide insight on how best to investigate anemia in preterm infants.

INTRODUCTION
Anemia is a nearly universal diagnosis in preterm infants and is
associated with increased morbidity and mortality worldwide.1–8

The severity of anemia often correlates with the acuity of illness,
as it is caused primarily by phlebotomy essential for intensive
care. Each instance of phlebotomy leads to acute blood loss,
requiring adaptations that preterm infants are not mature
enough to achieve.1 Low erythropoietin levels,9–11 low iron
stores,12,13 and inadequacy of the developing bone marrow1,14

are some examples. Additionally, infants of all gestational ages
experience suppression of hematopoiesis soon after birth, owing
to high postnatal oxygen tension in the ambient air relative to the
in utero environment.15 The overall result is that preterm infants
can experience severe iatrogenic anemia without the intrinsic
ability to recover.16–18 Red blood cell (RBC) transfusion is,

therefore, a common occurrence, though it is laden with risks
of its own.
Blood is a dynamic fluid predominantly composed of RBCs and

plasma, with smaller proportions of white blood cells (WBCs) and
platelets. Typically developing infants at term gestation are born
with hematocrits nearing 60% or more, which in older children
and adults would be considered polycythemia. Preterm infants
often have hematocrits in the 40–50% range at birth, either due to
birth prior to further RBC genesis or in some cases, due to the
circumstances that led to preterm delivery.19–21 The primary
function of RBCs is the transport of oxygen and carbon dioxide;
however, carbon dioxide diffusion occurs 20× faster than oxygen
and does not require as robust of a hematocrit to be expelled
from the bloodstream into the lungs.22 Therefore, traditionally, the
primary physiologic focus in anemic babies is hypoxemia and
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organ hypoxia. This study hopes to investigate further, particularly
the effects of anemia on leukocytes. Leukocytes are the effector
cells necessary to combat neonatal sepsis and other inflammatory
diseases commonly found in preterm infants,23 and may
experience alterations by phlebotomy.
In this investigation, we define the hematological changes in

mouse pups due to phlebotomy-induced anemia (PIA) and the
findings may help in understanding their importance in anemia-
associated co-morbidities during the neonatal period.

METHODS
Animals
Animal studies were approved by the Institutional Animal Care and Use
Committee and complied with the National Institute of Health guide for
the care and use of laboratory animals. As previously described,3,24,25 PIA
was generated using C57BL/6 mice of both sexes (n= 25) by subjected to
facial vein phlebotomy to remove 20 µL blood per gram body weight on
days P2, 4, 6, 8, and 10, and an equivalent amount of normal saline was
administered subcutaneously. In all, 20 µL of blood samples were collected
using ethylenediaminetetraacetic acid-rinsed pipette tip and diluted
immediately in 80 µL of CellPak (Sysmex America, Lincolnshire, IL, USA).
A total of 100 µL diluted blood samples were analyzed using the XT-2000iV
veterinary hematology analyzer (Sysmex, Kobe, Japan) to record a full
standard hematology profile. Control animal data were collected from 25
mice from multiple litters, as each mouse could only be sampled once. In
all, 20 µL was collected as previously described, at one time point between
P2 and P10.

Statistical methods
Statistical analysis was performed using the GraphPad Prism software,
version 9.0.0 (GraphPad Software, La Jolla, CA). In detail, the values for RBC,
hemoglobin, reticulocyte, Ret-Hb, mean corpuscular volume (MCV), mean
corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentra-
tion (MCHC), red cell distribution width (RDW), WBC, monocyte, neutrophil,
and lymphocytes were statistically analyzed using a two-way analysis of
variance with Šídák’s multiple-comparisons test. The values of immature
reticulocyte fraction (IRF), Ret-LFR, Ret-MFR, and Ret-HFR were analyzed
using Student’s t test with Mann–Whitney test. Differences were
considered significant at *p < 0.05, *p < 0.01, ***p < 0.001, and ns= not
significant. For comparative analysis, age-wise PIA group experiments were
compared to their same-age control groups.

RESULTS
PIA is associated with loss of RBCs and their hemoglobin
Serial timed phlebotomy (20% vol/body weight in grams) in
neonatal mice resulted in a significant reduction in RBC count
(×106/μL) as well as their hemoglobin (g/dL). In control mice (n=
25), the number of RBCs increased over the neonatal period from
P2 (3.624 ± 0.12 SD) to P10 (4.728 ± 0.08 SD) and PIA mouse pups
(n= 25) showed reduction of RBCs from P6 onwards (2.838 ± 0.05
SD), with an approximately 50% reduction at P10 (2.387 ± 0.07 SD;
p < 0.001) (Fig. 1a). Corroborating this loss of RBCs, the hemoglobin

content declined from P6 (6.260 ± 0.10 SD) onwards, reaching 50%
reduction at P10 (3.540 ± 0.08 SD; p < 0.001) (Fig. 1b).

Neonatal anemia in mice alters reticulocyte properties
PIA pups showed significant elevation of reticulocyte percentage
from P6 (3.441 ± 0.10 SD vs. control; p < 0.001) to P10 (3.599 ± 0.10
SD vs. control; p < 0.001; n= 25 per each group) (Fig. 2a). But the
hemoglobin in reticulocytes (pg) gradually dropped over the
period of mouse pup development (P2; 27.67 ± 0.30 to P10; 15.94
± 0.09; n= 25 per each group), and phlebotomy exacerbated the
loss of hemoglobin in reticulocytes (pg) from P4 (20.98 ± 0.20 SD)
to P10 (13.32 ± 0.15 SD) (Fig. 2b). The increased reticulocyte count
in P10 anemic mice suggested a likely higher IRF (%), which was
confirmed (69.03 ± 0.52 SD vs. control 65.05 ± 0.77 SD; p < 0.05;
n= 10 per each group) (Fig. 2c). These findings were corroborated
by reticulocyte fluorescence, a marker inversely correlated with
maturity, demonstrating that P10 anemic mouse pups (n= 10 per
each group) showed increased percentage (%) of high-
fluorescence immature or young reticulocytes (51.80 ± 0.70 SD
vs. control 46.0 ± 0.72 SD; p < 0.001) compared to low (older)
(30.70 ± 0.44 SD vs. control 34.95 ± 0.77 SD; p < 0.001) and
medium-fluorescence reticulocytes (maturing) (18.30 ± 0.24 SD
vs. control 19.05 ± 0.23; p < 0.05) (Fig. 2d).

RBC morphology in phlebotomy-induced anemia
We further investigate the RBC morphology in PIA pups by
analyzing RBC indices. PIA exacerbated the normal reduction of
anemic red cell indices, including MCV, MCH, and MCHC. PIA pups
showed a significantly decreased MCV (fL) on P8 (68.07 ± 1.12 SD
vs. control 76.89 ± 0.38 SD; p < 0.001; n= 25 per each group)
(Fig. 3a), and MCH (pg) was found to be significantly reduced
from P6 (22.16 ± 0.40 SD vs. 24.58 ± 0.41 control; p < 0.05) to P10
(14.67 ± 0.37 SD vs. 17.71 ± 0.41 control; p < 0.001; n= 25 per
each group) (Fig. 3b). MCHC (g/dL) was slightly decreased from
P6, then dropped down further at P10 (26.54 ± 0.41 SD vs. 29.40 ±
0.36 control; p < 0.001; n= 25 per each group) (Fig. 3c). The red
cell distribution width (%) significantly increased at P8 (20.0 ±
0.31 SD vs. control 16.21 ± 0.28 SD; p < 0.001) and P10 (22.53 ±
0.45 vs. control 18.70 ± 0.33 SD; p < 0.001; n= 25 per each group)
(Fig. 3d).

WBC response in phlebotomy-induced anemia
Compared to their age-specific control mice, P4 and P6 anemic
mouse pups (n= 20 per each group) showed relatively high WBC
counts (×103/μL) (P4; 4.47 ± 0.17 vs. control 2.71 ± 0.06 SD; p <
0.001 and P6; 4.78 ± 0.18 vs. control 3.68 ± 0.16 SD; p < 0.001),
which then dropped below P10 (3.58 ± 0.12 vs. control 4.95 ± 0.13
SD; p < 0.001; n= 20) (Fig. 4a). Monocytes (%) were the primary
contributor to the increase in total WBC (P4; 26.55 ± 1.30 vs.
control 20.40 ± 1.59 SD; p < 0.05 and P6; 31.91 ± 1.38 vs. control
24.30 ± 1.38 SD; p < 0.001; n= 20 per each group) (Fig. 4b) though
neutrophils (%) also had a significant rise at P4 (26.20 ± 2.22 vs.
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Fig. 1 Phlebotomy-induced anemia is associated with loss of RBCs and their hemoglobin. Line diagram (means ± SE) shows the (a) count of
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control 19.45 ± 1.06 SD; p < 0.05; n= 20 per each group) (Fig. 4c).
Both monocytes and neutrophils significantly dropped after P6.
No significant lymphocyte (%) changes were noted between the
two groups (n= 25 per each group) (Fig. 4d).

DISCUSSION
In this study, we present a detailed investigation of the
hematological effects of PIA in pre-weaned mice. We observed
that serial-timed phlebotomy in neonatal mice caused abnorm-
alities in RBC content and their hemoglobin, reticulocyte proper-
ties, RBC morphology, and immune cell responses. These
observations are similar to human findings, which have already
established the ubiquitous nature of anemia in preterm infants
and also provide additional evidence of anemia’s contribution to
common co-morbidities. For example, we have previously
described3 the increase in gut mucosal permeability resulting
from PIA, due to hypoxia-mediated upregulation of microRNA let-
7e-5p and evidenced by decreased levels of E-cadherin, an
adherens junction protein.
Anemic pups with declining hematocrits expectedly showed a

gradual reduction in RBC count during the period of study,
reaching a reduction of 50% at P10. This is in contrast to control
pups, in whom RBC count increased over the course of
development (consistent with the findings of White et al.26). In
anemic pups, hemoglobin counts initially dropped at P4 and then
steadily maintained until P10. Reticulocytes are erythrocyte
precursors whose count represents erythropoietic activity, a clue
to distinguishing anemia caused by rapid destruction or loss from
anemia caused by bone marrow suppression.27 Significantly

higher reticulocyte counts were observed in our phlebotomy-
induced anemic mouse pups after P5, indicating that phlebotomy
does indeed stimulate bone marrow reticulocyte production. This
finding mirrors the fact that corrected reticulocyte counts are
higher in preterm human infants with blood loss and/or anemia of
prematurity.28,29 However, the reticulocyte hemoglobin content is
significantly reduced after P6, which is consistent with the loss of
hemoglobin in PIA groups. Reticulocyte hemoglobin content is the
strongest independent predictor of iron deficiency anemia, and
though the level usually decreases after birth,30 phlebotomy
exacerbates the rate of Ret-Hb decline. The higher reticulocyte
count in anemic mouse pups represents brisk erythropoiesis,
confirmed by a higher IRF in anemic pups. This was seen
microscopically as the presence of increased “young immature
reticulocytes” with high fluorescence.31 However, a significant
reduction of reticulocyte low and medium fluorescence in PIA
groups indicated a substantial loss of mature and/or old
reticulocytes. This finding is additional evidence of a sudden
erythropoietic response in response to blood loss.
Red cell morphology can assist in differentiating among various

etiologies of anemia; as erythrocytes affected by blood loss,
marrow failure, and hemolysis will likely appear differently under
the microscope. MCV is a useful RBC parameter, characterizing
anemia as microcytic, normocytic, or macrocytic, which may give
clues to the underlying diagnosis.32 Anemic mouse pups showed
significantly lowered MCV only on P8 compared to respective age
controls, indicating that microcytic anemia develops after 3 timed
phlebotomies and causes no changes at P10. However, the lower
MCH on P8 and P10 in anemic mouse pups might be due to
decreased hemoglobin at P6 onwards. In addition, the MCHC is
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slightly lower on P6 and P10, indicating that these anemic RBCs
are hypochromic. Increased RDW in anemic mouse pups confirms
the ineffective erythropoiesis in the bone marrow during
phlebotomy, causing anisocytosis where RBCs are unequal in size.

The RBC indices from PIA groups are similar to indices found in
human infant populations.27

Our investigation of WBCs counts is based on the fact that some
types of human anemia may affect the production of WBC
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precursors.33 In our PIA model, the WBC counts were relatively
stable and slightly increased over the period of development in
control mice groups; whereas anemic mouse pups showed a
sudden increase of total WBC on P4 and continued slightly on P6,
but dropped down at P10. The initial increase of WBC after the first
phlebotomy might be a stress response to the sudden reduction
in oxygen-carrying capacity and is unlikely to be attributed to
infection. Since P4 is the day of the second blood draw, its results
reflect any changes that took place between the first and second
phlebotomies. Our previous findings25 confirmed that serial
phlebotomy in mouse pups did not show an increased plasma
endotoxin level until after P8 (i.e., measured at the time of the
fourth phlebotomy), indicating that any rise in white count that
occurs prior to P8 should be attributed to a separate phenom-
enon. Monocytes and neutrophils were slightly increased in
response to phlebotomy and down trended close to control
groups; these low counts in blood support our existing findings25

that circulating monocytes are likely recruited from blood to
anemic organs, notably the hypoxic intestine. However, no
changes occurred in lymphocytes, providing evidence that
phlebotomy does not induce any T or B cell response.
In conclusion, this study has shown that phlebotomy-induced

neonatal anemia can alter hematological parameters in mice. Our
findings will lay the foundation for further preclinical investigation
of the role that anemia plays in the development of neonatal co-
morbidities.
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