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BACKGROUND: Respiratory tract microbial dysbiosis can exacerbate inflammation and conversely inflammation may cause
dysbiosis. Dysbiotic microbiome metabolites may lead to bronchopulmonary dysplasia (BPD). Hyperoxia and lipopolysaccharide
(LPS) interaction alters lung microbiome and metabolome, mediating BPD lung injury sequence.
METHODS: C57BL6/J mice were exposed to 21% (normoxia) or 70% (hyperoxia) oxygen during postnatal days (PND) 1–14. Pups
were injected with LPS (6 mg/kg) or equal PBS volume, intraperitoneally on PND 3, 5, and 7. At PND14, the lungs were collected for
microbiome and metabolomic analyses (n= 5/group).
RESULTS: Microbiome alpha and beta diversity were similar between groups. Metabolic changes included hyperoxia 31 up/18
down, LPS 7 up/4 down, exposure interaction 8. Hyperoxia increased Intestinimonas abundance, whereas LPS decreased
Clostridiales, Dorea, and Intestinimonas; exposure interaction affected Blautia. Differential co-expression analysis on multi-omics
data identified exposure-altered modules. Hyperoxia metabolomics response was integrated with a published matching
transcriptome, identifying four induced genes (ALDOA, GAA, NEU1, RENBP), which positively correlated with BPD severity in a
published human newborn cohort.
CONCLUSIONS: We report hyperoxia and LPS lung microbiome and metabolome signatures in a clinically relevant BPD model. We
identified four genes correlating with BPD status in preterm infants that are promising targets for therapy and prevention.
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IMPACT:

● Using multi-omics, we identified and correlated key biomarkers of hyperoxia and LPS on murine lung micro-landscape and
examined their potential clinical implication, which shows strong clinical relevance for future research.

● Using a double-hit model of clinical relevance to bronchopulmonary dysplasia, we are the first to report integrated
metabolomic/microbiome landscape changes and identify novel disease biomarker candidates.

INTRODUCTION
The human microbiome project has enhanced our understanding
of the human microbiome and its relation to health and disease.1

The development and the normal progression of the respiratory
microbiome is crucial for health, and conversely, its perturbation is
associated with respiratory disease.2–5 Recent evidence indicates
that the microbiota colonizes the respiratory tract at birth and may
even be present in the fetal lungs.6,7 The diversity and
composition of the lung microbiome evolve in the first months
of life and disruption and imbalance of microbial communities
(dysbiosis) may exacerbate inflammation leading to respiratory
diseases in infants and children.4,7 This may be mediated by

microbial metabolites such as short-chain fatty acids or trypto-
phan catabolites.8 Conversely, inflammation has been shown to
impact the development and normal progression of microbial
communities in the lung.9 Very few studies have reported
microbiome–metabolome integration after lung inflammation
that might help us understand the pathophysiology of bronch-
opulmonary dysplasia (BPD), which is characterized by interrupted
lung development and alveolar simplification.10,11

Excessive supplemental oxygen (O2) use or hyperoxia leads to
BPD by disrupting growth factor signaling, extracellular matrix
assembly, cell proliferation, and vasculogenesis.12 Multiple studies
have shown that hyperoxia-induced lung parenchymal and
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vascular injury in neonatal mice leads to a phenotype similar to
that of human BPD with pulmonary hypertension.13 Another insult
that leads to inflammation is infection or colonization with
pathogens. Lipopolysaccharide (LPS, also termed endotoxin), a
component of the outer membrane of gram-negative bacteria
leads to systemic and lung inflammation. LPS activates airway
epithelial cells, neutrophils, and alveolar macrophages, resulting in
the release of inflammatory mediators, such as reactive oxygen
species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-6
(IL-6).14 In an LPS-induced ARDS model in male rats, a comparison
between the LPS-treated rats and the control group revealed
changes in metabolites associated with oxidative stress.15 In
another experiment, a rat model of ventilator-induced lung injury,
the metabolomic assay was able to capture multiple metabolites
associated with this injury in serum.16 Since hyperoxia and
multiple doses of LPS were both demonstrated to produce BPD
phenotypes, we used a double-hit mice model to study the impact
of the two factors (hyperoxia and LPS) on mice lung microbiome
and metabolome17,18 (Fig. 1).
Investigating and integrating changes in microbiome and

metabolome related to BPD risk factors and the interplay between
such changes provides a unique opportunity to gain insights into
the pathogenesis of BPD and respiratory diseases in general.19

Based on the fore-mentioned double-hit mice model, we report
multiple lung microbiome genera and lung metabolites that were
influenced by hyperoxia, LPS, or the interaction between the two
factors. Differential Correlation Expression Analysis (DiffCoEx)20

were performed to find subsets of microbiomes and/or metabo-
lites whose response to one of the two factors might be similar,
and thus might interact with each other. Using a published
transcriptomic profile of a matching hyperoxia exposure model,21

we determined genes associated with our hyperoxia metabolic
response using the MetaboAnalyst server.22 We then evaluated
the association of gene signatures with clinical variables of
interest, including BPD status, need for oxygen, birth weight, and
gestational age from a published blood transcriptomic cohort
from human newborns at risk of BPD.23 We specifically identified 4
genes that may play a major role in disease pathogenesis after
hyperoxia-induced inflammation. The effect of hyperoxia and LPS
on the microbiome and metabolome of mice in the double-hit
model used is clinically relevant to the development of BPD in
preterm infants.

METHODS
Animal model of hyperoxia- and LPS-induced lung
inflammation
We used a double hit model of lung inflammation during the saccular and
alveolar phases of lung development that was an adaptation from animal
models previously reported17,18 (Fig. 1). This study was approved by the
Institutional Animal Care and Use Committee of Baylor College of Medicine
and conducted as per American Physiological Society (2010–2011)
guidelines for animal studies. C57BL6/J WT mice were obtained from the

Jackson Laboratory (Bar Harbor, ME). Mice raised from timed pregnancy in
our facility were used. Male and female pups were collected from various
litters and then reallocated to the dams before being exposed to 21%
oxygen (normoxia) or 70% oxygen (hyperoxia) during postnatal days
(PNDs) 1–14. Plexiglass chambers were used to perform the hyperoxia
experiments, into which oxygen was delivered continuously through an
oxygen blender to reach a steady continuous level of 70% oxygen. Every
24 h, the dams were switched between the normoxia and hyperoxia
exposed litters during the exposure period to prevent oxygen toxicity in
the dams and to control maternal effects between the groups. The pups
were injected with 6mg/kg of Escherichia coli O55:B5 LPS (Sigma-Aldrich,
St. Louis, MO; Cat No. L2280) or an equivalent volume of control vehicle
(PBS), intraperitoneally on postnatal days (PNDs) 3, 5, and 7 while they
were being exposed to normoxia or hyperoxia through PNDs 1–14. Thus,
20 pups were distributed into 4 experimental groups each containing 5
pups (normoxia and LPS, normoxia and PBS, hyperoxia and LPS, hyperoxia
and PBS). At PND 14, the animals were euthanized using intraperitoneal
injections of 200mg/kg of sodium pentobarbital, and the lung tissues were
collected for microbiome and metabolome analyses (Fig. 1).

Microbiome analysis
Lung microbiome was evaluated by 16S rDNA sequencing at the Alkek
Center for Metagenomics and Microbiome Research (CMMR) (https://www.
bcm.edu/research/centers/metagenomics-and-microbiome-research).
Genomic DNA was extracted from lung tissue using the PowerLyzer Tissue
& Cells Kit (Qiagen), amplified by PCR, and sequenced on an Illumina MiSeq
using the 2 × 250 bp paired-end protocol. Primers used for amplification
(515F/806R) targeted the V4 region and contained adapters for MiSeq
sequencing along with a single-index molecular barcode on the reverse
primer. The resulting read pairs were demultiplexed based on their
molecular barcode and merged using USEARCH v7.0.100,24 allowing zero
mismatches with a minimum overlap of 50 bases. Merged reads were
trimmed at first base with Q5 and reads containing >0.05 expected errors
were removed. Sequences were assigned into Operational Taxonomic
Units (OTUs) at an identity cutoff value of 97% using the UPARSE
algorithm.25 To determine taxonomies, OTUs were mapped to an
optimized version of the SILVA Database26(v.128) containing only the
16S v4 region. A custom script constructed an OTU table from the output
files generated in the previous steps. The data have been deposited with
links to BioProject accession number PRJNA800055 in the NCBI BioProject
database (https://www.ncbi.nlm.nih.gov/bioproject/).
Analysis and visualization of microbiome communities were conducted

in the statistical platform R, utilizing the phyloseq package27 to import
sample data and calculate alpha and beta diversity metrics. Microbiome
genera with relative abundance >0.5% were analyzed using the two-way
analysis of variance (ANOVA) test, without post hoc analyses, with
significance achieved at p value <0.05, using the R statistical system.
Boxplots of significant microbiota associated with independent factors or
with factor interaction were generated using GraphPad Prism version 9.1.
Alpha- and beta-diversity association with either hyperoxia or LPS
exposures was assessed using PERMANOVA via the vegan R package.28

Metabolome analysis
Metabolome analysis was performed using mass-spectrometry at the
Metabolomics Core, Baylor College of Medicine. Metabolites were
extracted from cell pellets using previously described standard procedures
for targeted metabolomic profiling using ultra-high-performance liquid
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Fig. 1 Analytical approach. Wild-type C57BL/6J mice were exposed to a two-factor combination of room air/hyperoxia and PBS/LPS (n= 5
per group). Lung microbiome was profiled using 16S rRNA sequencing and lung metabolome was profiled using targeted metabolomics via
mass spectrometry. The effect of each individual exposure as well as of the hyperoxia/LPS interaction on the multi-modal omics profiles were
analyzed via two-way ANOVA. Differential co-expression analysis (DiffCoEx) revealed that both single-omic and multi-omics modules were
affected significantly by the individual exposures.
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chromatography/tandem mass spectrometry.29–32 The extracted samples
were analyzed using high-performance liquid chromatography coupled to
Agilent 6495 QQQ mass spectrometry. The data were normalized with
respect to the internal standards on a per-sample basis then log2-
transformed. Metabolome data was then analyzed using the two-way
ANOVA test, with significance achieved at false discovery rate-corrected p
value <0.05, using the R statistical system. Heatmaps of significant
microbiota associated with independent factors or with factor interaction
were generated using the R statistical system. Enriched pathway analysis
was performed on metabolites identified to show significant differences
due to each differing clinical condition using the MetaboAnalyst server.22

Correlation-based bioinformatics analysis
We utilized the statistical workflow DiffCoEx20 to identify and visualize
groups or modules of metabolites, microbiota, or combined modules of
metabolites and microbiota combined that show a significant change in
correlation between different experimental conditions. The experimental
groups were defined based on either oxygen exposure (normoxia vs.
hyperoxia) or toxin exposure (LPS vs. PBS). We explored yet unappreciated
systems biology associations of the metabolites, microbiota, or mixed
metabolites and microbiota present in the same module and in the same
experimental condition.
We assessed the correlation between the above-mentioned significant

microbiota genera and the significant metabolites. For each exposure
(hyperoxia or LPS), a microbiome vs. metabolome Spearman rank
correlation matrix33 was constructed and visualized with the pheatmap
library34 as implemented in the R statistical system and with GraphPad
Prism version 9.1.

Clinical association with BPD status
Using a transcriptomic gene signature of hyperoxia from a matched
murine model of hyperoxic lung injury,21 we determined genes associated
with our hyperoxia metabolic response using the MetaboAnalyst server.22

Next, we used a blood transcriptomic cohort from human newborns at risk
of BPD23 to evaluate the association of gene signatures with clinical
variables of interest, including BPD status, need for oxygen, birth weight,
and gestational age. A gene signature score was computed for each
specimen in the cohort as follows: each gene was converted to a z-score,
then z-scores of upregulated genes were added followed by subtraction of
z-scores for downregulated genes. Association between gene signature
scores and clinical variables was performed using Pearson’s Correlation
Coefficient, with significance achieved at p < 0.05. Multivariable analysis of
association with BPD status and with oxygen therapy was conducted using
the lm package in the R statistical system.

RESULTS
Exposure to hyperoxia- or LPS-induced inflammation altered
the microbial relative abundances in the murine lung
Hyperoxia exposure and LPS injection both impacted the murine
lung microbiome. Specific microbiota whose relative abundance
were significantly altered after hyperoxia exposure or LPS injection
were identified through a parametric two-way ANOVA test
(Table 1). Hyperoxia exposure was associated with a significantly
increased abundance of Intestinimonas, whereas LPS exposure
was associated with a decreased relative abundance of three
genera: Clostridiales (Unc04zd2), Dorea, and Intestinimonas;
the relative abundance of Blautia was significantly associated

with the interaction of these two exposures (Fig. 2a–c). Mice lung
microbiome composition across all four groups show that the
phylum Firmicutes comprised 98.4%, the class Clostridia comprised
96.5%, and the order Clostridiales comprised 96.2% respectively of
all mice lung microbiome profiled. Potentially due to the
dominance of Firmicutes, there were no statistically significant
differences observed for either alpha diversity or beta diversity
associated with hyperoxia exposure or LPS injections (Fig. 3a–c).

Exposure to hyperoxia or LPS-induced inflammation was
associated with significant changes in the metabolites of the
murine lung
Hyperoxia exposure and LPS injection both impacted metabolite
expression in murine lungs. Specific metabolites altered signifi-
cantly by hyperoxia exposure or LPS treatment were identified
through a parametric two-way ANOVA test (Table 1) and
visualized using hierarchical clustering (Fig. 2d, e). Hyperoxia
exposure was associated with upregulation of 31 metabolites and
downregulation of 18 metabolites, with top enriched metabolic
pathways including glycine, serine, and threonine metabolism,
arginine biosynthesis, and glycerophospholipid metabolism (Sup-
plementary Fig. S1). LPS exposure was associated with upregula-
tion of 7 metabolites and downregulation of 4 metabolites, also
enriching for glycine, serine, and threonine metabolism, and for
arginine biosynthesis (Supplementary Fig. S1). Finally, 8 metabo-
lites were significantly associated with the interaction of these two
exposures, with purine metabolism the top enriched pathway
(Supplementary Fig. S1).

A multi-omic interaction map for exposure-associated
microbiome and metabolome
Whereas we identified the significant microbiome genera and
significant metabolites associated with hyperoxia or LPS expo-
sures, systemic associations between microbiome genera and
metabolites are yet unappreciated. Using Spearman rank correla-
tions, we generated the interaction map between microbiome
genera and metabolites associated with each individual exposure.
Specifically, we computed correlations between hyperoxia-
associated microbiome and metabolites in the normoxia and
hyperoxia group (Fig. 4a). Similarly, we computed the correlation
between the LPS associated microbiome and metabolites in the
PBS and LPS treatment groups (Fig. 4b). This analysis provides
more nuanced insights on exposure-specific individual
metabolite–microbiome interactions. Our analysis reveals that
normoxia samples show different microbiome–metabolome
correlation than hyperoxia samples. Interestingly, Intestinimonas
shows similar patterns of correlation with metabolites in the PBS
and LPS sample groups, but Clostridiales (Unc04zd2) and Dorea
show distinct correlation patterns.

Differential co-expression analysis identifies novel exposure-
associated single-omic and multi-omic modules
By conducting multi-omics profiling on lung microbiome and lung
metabolome from the same mice, we were able to probe

Table 1. Summary of microbiome genera and metabolites significantly associated with hyperoxia exposure, LPS exposure, or the interaction of the
two exposures.

Comparison Number of significant genera Number of significant metabolites

Increased abundance Decreased abundance Upregulated Downregulated

Hyperoxia vs. Normoxia 1 0 31 18

LPS vs. PBS 0 3 7 4

Interaction 1 8

p value <0.05 and abundance >0.5% was used for microbiome analysis. FDR <0.05 was used for metabolomics analysis.
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systematic yet unappreciated relationships between microbiome
and metabolites. Specifically, we conducted differential co-
expression analysis using DiffCoEx20 on both single-omic
(Fig. 5a–d) and multi-omic profiles (Fig. 5e, f). Modules were
considered significant at p < 0.05 after performing permutation
testing using 1000 permutations (Supplementary Fig. S2 and
Supplementary Table 1). A module that gained or lost correlation
after a particular exposure could represent either a direct
exposure effect or a systemic adaptation of the murine host. In
particular, metabolites or microbiota in a gained or lost module
might impact one another in a functional network. For micro-
biome only analysis, we noticed a pink module of 73 genera gains
correlation after LPS exposure, whereas a brown module of 17
metabolites loses correlation. Similarly, at the metabolite level, the
turquoise module of 28 metabolites loses coherence after LPS
exposure, whereas both the brown module (18 metabolites) and
blue module (19 metabolites) gain coherence. We then conducted
DiffCoEx20 on combined microbiome and metabolome data. In the
multi-omic DiffCoEx analysis, LPS exposure led to more robust
module changes (Supplementary Fig. S2e, f), in particular lost
correlation in a brown module of 28 features, all of which are
microbiome features, with 10 of them belonging to the Family
Lachnospiraceae.

An integrated transcriptomics and metabolomics signature of
hyperoxia associates with BPD risk
We have shown previously35 that hyperoxia signatures derived in
neonatal murine models associate with BPD risk in blood
transcriptome from human newborns.23 Using the metabolomic
profiling conducted in the current study, we integrated it with a
transcriptomic signature from an age-matched murine study.21

Specifically, we utilized MetaboAnalyst to identify genes associated
with metabolites significantly altered by hyperoxia exposure. The
human study assessed 111 newborns, with a mean birth weight of
1029 g (SD, 290), and a mean gestational age of 27.8 weeks (SD,
2.5).23 Blood samples drawn on 5th, 14th, and 28th day of life were
evaluated for gene expression. Infants with bronchopulmonary
dysplasia (n= 68), defined as per Jobe and Bancalari,36 were
compared with controls (n= 43). We assessed the association with
several clinical variables of interest, including BPD status, birth
weight, gestational age, and oxygen therapy (defined as whether
oxygen was administered or not for a period greater than or equal
to 28 days). Our analysis determined that the complete transcrip-
tomics signature previously reported, positively associated with
BPD status (Pearson correlation coefficient, p value <0.05) (Fig. 6a).
Next, we identified four genes both induced in the previously
reported hyperoxia transcriptome and associated with hyperoxia
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altered lung metabolites, specifically Aldoa, Gaa, Neu1, and Renbp,
that were positively correlated both as a single gene and as a
combined gene signature with BPD status and oxygen requirement
but negatively correlated with birth weight and gestational age
(Fig. 6a). Detailed analysis for association with BPD status was
presented via scatterplots for the complete transcriptomic signa-
ture, for each of the individual four genes, and for the combined
four-gene signature (Fig. 6b). We performed multivariable analysis
for the association with BPD status and with oxygen therapy

incorporating the demographic variables birth weight and gesta-
tional age; we showed that Neu1 achieved a p= 0.092 and the
four-gene signatures achieved a p= 0.118 for BPD status associa-
tion using multivariable analysis (Supplementary Table 2).

DISCUSSION
We report the microbiome and metabolome signatures in
response to lung inflammation in a double-hit murine model
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(hyperoxia and LPS exposure) of lung inflammation and BPD. We
identified modules of metabolites and microbial genera that are
altered in lock-step in response to individual exposure by using
differential co-expression analysis (DiffCoEx). We also report an
integrated analysis of our metabolic profiling in conjunction with

published transcriptome data from lungs of age-matched mice
with a similar hyperoxia exposure. Our analysis revealed four
genes that associate with the development of BPD using blood
transcriptome from a human newborn cohort.
The reported changes in metabolic and microbiome signatures

are significant as most of the published microbiome and
metabolomic studies have focused on adult lung diseases
including ARDS and COPD with little data on neonatal lung
inflammation and injury.5 We report here the changes in
metabolic signatures in the lung in a murine double-hit model
of experimental BPD, and evaluate the affected biological path-
ways regulated via metabolomics changes. The lung of neonatal
mice is similar to the structure of the developing human lungs and
is at the saccular stage of development.37 Together with the
inflammation that results from hyperoxia exposure with LPS
injection, the oxidative stress results in a phenotype similar to the
bronchopulmonary dysplasia and hence we decided to use this
double hit model.37

We report microbial genera that are associated with hyperoxia
and LPS exposure in our murine model of lung inflammation. We
first highlight the dominance of Order Clostridiales (Phylum
Firmicutes) whose relative abundance is consistently high for all
mice studied and averages at ~96.2% of all microbial counts. We
identified more microbial genera whose relative abundances
change significantly due to LPS vs. PBS when compared with
hyperoxia vs. normoxia (three LPS-associated genera vs. one
hyperoxia-associated genera). Furthermore, differential co-
expression analysis using DiffCoEx identified modules of micro-
biome genera that are changed robustly after LPS exposure
compared to only minor changes in co-expression after hyperoxia
exposure. Unlike studies that reported differences in the microbial
diversity and abundance (alpha and beta diversity) between
patients with BPD and controls,6,38 we did not find a difference in
the alpha and beta diversity after LPS or/and hyperoxia exposures
in this murine model of BPD, possibly due to the dominance of
Order Clostridiales (Phylum Firmicutes).
An airway microbiome is present at birth in preterm neonates

which may prime the immune system and its perturbation may
result in BPD.6,7 Early airway metagenomic and metabolomic
signatures that associate with BPD have been described.39 Reports
on airway microbiome immediately after birth show that there is
an evolution of microbial colonization, with increases in bacterial
DNA loads during the first weeks of life, with older infants with
established BPD having more diverse microbiomes compared with
preterm infants at birth.7 Ashley et al. in an elegant study describe
the effects of hyperoxia on lung injury and dysbiosis.9 After
hyperoxia, dysbiosis precedes lung injury suggesting dysbiosis
might have an impactful role in lung injury, further supported by
experiments reporting that germ-free mice are protected from
hyperoxic lung injury.9 These findings provide insight on the
pathogenesis of BPD in preterm infants who are exposed to high
concentrations of oxygen, often on antibiotics that cause
dysbiosis.
Interestingly, in contrast to the microbiome analysis, hyperoxia

exposure produces a more profound impact on the murine lung
metabolome. We identified more metabolites whose levels
change significantly due to the hyperoxia compared to LPS (49
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metabolites identified for hyperoxia compared to 11 metabolites
identified for LPS exposure). Similarly, differential co-expression
analysis using DiffCoEx20 revealed more metabolites included in
modules that are changed in lock-step after hyperoxia exposure
compared to the number of metabolites included in modules that
respond to the LPS; interestingly, the changes in correlation were
stronger after LPS exposure, at both microbiome and metabolome
level. While the effect of both exposures on individual metabolic
and microbiome networks is robust, neither exposure shows a

statistically significant impact on community-level microbiome
diversity.
Hyperoxia produced a significant change in the metabolomic

map in this BPD mouse model, and the interaction between LPS
and hyperoxia led to a profound effect on the metabolites. Gentle
et al. have reported decreased nitrate reductase activity in the oral
cavity of preterm infants with BPD.40 Previously, Pintus et al. and
Fanos et al., identified multiple metabolites including trimethyla-
mine-N-oxide, alanine, betaine, lactate, taurine, and glycine as
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distinct metabolites between controls and BPD patients.41,42

Taurine is important in apoptosis, detoxification, and calcium
homeostasis, with glycine being crucial in the synthesis of
glutathione and its antioxidant role.43 Our study matches with
these studies by identifying several alanine variants, namely,
phenyl alanine, N-acetyl alanine, methyl alanine, as well as betaine,
glycine, and N, N dimethyl glycine to be metabolites whose levels
changed significantly under the impact of hyperoxia. Conversely, N,
N dimethyl glycine levels changed significantly under the impact of
LPS, whereas the lactate levels were associated with the interaction
between hyperoxia and LPS. We also note that multiple
metabolites in the carnitine family have levels impacted signifi-
cantly by hyperoxia and/or LPS, such as octonyl carnitine and 2-
methylbutyrylcarnitine, whereas acetyl carnitine, butyryl carnitine,
and carnitine levels were significantly altered only by hyperoxia
exposure. This agrees with an existing mice-model paper which
concludes that the deletion of the gene coding for carnitine
palmitoyl transferase that limits the shuttling rate of carnitine can
augment oxygen-induced apoptosis.44 Identifying these changes
in metabolites and amino acids in BPD neonates, may outline key
metabolic pathways that may be amenable for prevention or
ameliorating the disease pathogenesis.
The reconfiguration of the micro-metabolic landscape due to

inflammation may regulate gene expression.44 The effects of such
landscape have been demonstrated in multiple processes in the
human body including oncogenesis and embryological develop-
ment, and it may play a role in lung injury and repair. Metabolomic
signatures have led to discovery of novel therapies in cancer
biology4,39,45; however, these signatures are not well characterized
in BPD. In this study, by integrating our metabolomic response to
hyperoxia with a publicly available gene signature from age-
matched and exposure-matched mouse lung, we identified four
genes involved in metabolism ALDOA (aldolase A), GAA (alpha
glucosidase), NEU1 (neuraminidase 1), and RENBP (renin-binding
protein), that both individually and as a group associate with BPD
severity in a blood transcriptomic cohort from human newborns at
PND28. ALDOA, GAA, and NEU1 have been linked with pulmonary
conditions or diseases according to existing literature. ALDOA is a
key glycolytic enzyme and is a strong driver gene for lung,
pancreatic, and hepatocellular cancers. Mutations in GAA cause
Pompe’s disease, which is a lysosomal storage disease that causes
smooth muscle dysfunction in the trachea and bronchi and has
been known to be related to asthma.44,46,47 NEU1 has been
expressed in lung microvasculature, is shown to restrict endothe-
lial cell migration, and is associated with idiopathic pulmonary
fibrosis.48,49 RENBP has been shown to be expressed in the lungs
and its expression changes significantly under sodium depletion
and captopril administration in mice44,50 underlining the role for
fluid status and BPD exacerbation. It is not clear how the four
identified genes affect the microbiome–metabolome interactions
or inflammation and needs further studies.
A limitation of our study is that there are inherent differences in

the microbiome between humans and animals but among rodent
models, the human microbiome is closest to mice.51 Extrapolation
of results from the mice to the human will have to be done with
caution. Another limitation is the small sample size in the groups,
and we may be underpowered to detect important differences
among the groups. Comparing datasets and proteomic signatures
between blood and lung have been done with caution. In a study
evaluating transcriptomic profiles from blood and lung after
exposure to carbon nanoparticles, lung profile was not completely
replicable in whole blood, but specific systemic responses were
shared.52

Dysregulation of the microbiome and metabolomic landscape
may contribute to the response to hyperoxia- or LPS-induced
health sequala. In addition to illustrating the microbiome land-
scape of mice lung and how it is impacted by hyperoxia and LPS,
we identified robust metabolic-related responses to individual

treatments with hyperoxia or LPS, as well as combined hyperoxia/
LPS treatment, much remains to be learned on if and how the
metabolome and microbiome can therapeutically be targeted to
improve the outcomes of respiratory disorders including BPD. By
integrated analysis with published literature, we identified four
candidate genes that can be further studied in the context of
microbial dysbiosis and inflammation and potentially act as
targets for BPD prevention or treatment.
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