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The human brain develops through a complex interplay of genetic and environmental influences. During critical periods of
development, experiences shape brain architecture, often with long-lasting effects. If experiences are adverse, the effects may
include the risk of mental and physical disease, whereas positive environments may increase the likelihood of healthy outcomes.
Understanding how psychosocial stress and adverse experiences are embedded in biological systems and how we can identify
markers of risk may lead to discovering new approaches to improve patient care and outcomes. Biomarkers can be used to identify
specific intervention targets and at-risk children early when physiological system malleability increases the likelihood of
intervention success. However, identifying reliable biomarkers has been challenging, particularly in the perinatal period and the first
years of life, including in preterm infants. This review explores the landscape of psychosocial stress and adverse experience
biomarkers. We highlight potential benefits and challenges of identifying risk clinically and different sub-signatures of stress, and in
their ability to inform targeted interventions. Finally, we propose that the combination of preterm birth and adversity amplifies the
risk for abnormal development and calls for a focus on this group of infants within the field of psychosocial stress and adverse
experience biomarkers.
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IMPACT:

● Reviews the landscape of biomarkers of psychosocial stress and adverse experiences in the perinatal period and early
childhood and highlights the potential benefits and challenges of their clinical utility in identifying risk status in children, and in
developing targeted interventions.

● Explores associations between psychosocial stress and adverse experiences in childhood with prematurity and identifies
potential areas of assessment and intervention to improve outcomes in this at-risk group.

INTRODUCTION
For over 20 years, there has been increasing evidence that basic
brain architecture is established early in life through a complex
interplay of genetic and environmental influences.1,2 Social
experiences shape brain structure and function, particularly
during early critical or sensitive periods of development.3–5 As a
result, experiences encountered from the perinatal period
through the first few years can influence development in a
manner that persists across the lifespan.6 Positive experiences
often affect development positively, whereas adverse experi-
ences may elevate the risk of atypical development, which in
turn could have life-long consequences.7,8 Chronic and cumu-
lative exposure to adversity may increase the risk of negative
cognitive, psychosocial, behavioral, and physical health
outcomes,1,6,9–11 and the biological embedding of these
experiences might even influence outcomes in future genera-
tions.2 Historically, marginalized groups in society have

disproportionately high exposure to adversity. When experi-
enced early in life, such exposures might lead to maladaptive
changes that can perpetuate disparities over time.9,12–14 How
experience becomes biologically embedded, in multiple organ
systems, and the identification of biomarkers of psychosocial
stress and adverse experiences in childhood remains limited—
especially for experiences that occur in the perinatal period and
the first years of life.6,15 However, valid and reliable biomarkers
of psychosocial stress and adverse experiences hold the promise
of identifying children at risk of long-term negative outcomes
that arise as a result of such experiences early in life, while at the
same time illuminating underlying mechanisms. Identifying risk
“early” is critical for facilitating effective and specific interven-
tions targeted (a) at the developing systems that are most
affected; (b) for the children who are most at risk; and (c) during
developmental windows when physiological system malleability
increases the likelihood of intervention success.
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Despite the growing evidence that psychosocial stress and
adverse experiences during childhood have long-term conse-
quences, the definition and dimensions of adversity and adverse
experiences remain unresolved.10,16 The number, timing, type, and
duration of exposures, as well as individual variation, intrinsic
characteristics, and developmental status (e.g., born at term or
preterm) may affect perception and responses to psychosocial
stress and adverse experiences. These responses may affect the
lifetime risk of developmental and overall health
outcomes.1,6,10,16,17 For instance, an individual may be exposed
to many stressors and adversities in life but not have a “toxic stress
response” which is the response to such stressors that cause a
chronic activation of the stress response systems and can disrupt
brain development and other systems in the absence of adequate
adult support.10,16

The Adverse Childhood Experiences (ACE) Study is a landmark
study launched in 1995 and the first to describe in a longitudinal
cohort the strong and direct association of adversities during
childhood, such as physical and sexual abuse, substance abuse in
the household, and the increased lifetime risk of disease and
leading causes of death in adults.9 Since that integral study,
researchers have additionally assessed how not only the number
of events experienced, but also the nature and timing of reported
events, degree of the physiological stress response may contribute
to developmental/health outcomes in different ways.18–20 For this
review, we have chosen our terminology to extend beyond the
ACEs descriptor to explicitly account for the interacting facets of
psychosocial stress and adverse experiences that are predicted to
elicit a physiological stress response. We included exposures such
as physical or mental violence, abuse or neglect, discrimination/
racism, and accumulated burden from poverty and economic
hardship/ low-socioeconomic status (SES) without adequate social
support, that might produce a “toxic stress response”.1,6,21 We
noted specific experiences reported in the research, and the age

of exposures whenever possible to facilitate differentiation
between types and exposure periods.

COMPOUNDING PRE-EXISTING FAMILY STRESS WITH
ADVERSITY OF PRETERM BIRTH
Most of the work on psychosocial stress and adverse experiences
early in life has focused on the first years of childhood with less
work on the prenatal and perinatal aspect. While prenatal
exposures influence infant developmental outcomes (e.g., mater-
nal conditions like diabetes, exposure to toxicants, alcohol,
tobacco, and substance abuse) less is known about prenatal and
perinatal exposure to psychosocial stress and adverse experiences,
particularly in preterm infants. Globally, preterm birth (delivery
before 37 weeks of gestation) affects ~11% of births worldwide
(~10% in the US).22–24 Despite medical advances, preterm birth
remains a leading cause of morbidity and mortality in children
under 5 years of age.25,26 Many factors have been associated with
an increased risk of preterm birth (e.g., smoking, maternal age,
multiple births, spacing between pregnancies); however, most
preterm births occur without a known risk factor.22 Preterm birth
in the US is more common among Black than White birthing
people (14.1% versus 9.1%).27 Historically disparities in birth
outcomes had been attributed to biological or genetic variation.
However, there is now strong evidence that disparities are largely
due to the cumulative effects of structural racism leading to
socioeconomic disadvantage, environmental toxicant exposure,
and psychosocial stress.28–30

While preterm birth may arise from exposure to psychosocial
stress and adverse experiences, it can be a source of stress in its own
right. The stress experienced by parents and infants when the
earliest days or months are spent in the Neonatal Intensive Care Unit
(NICU) warrants exploration as a risk factor for ongoing development
(Fig. 1). NICU admission adds levels of psychosocial stress and

Genetic endowment
Genetic variants alter susceptibility to adversity (e.g.,

5-HTTLPR, BDNF, FKBP5, MAOA polymorphisms

Childhood psychosocial stress
and adverse experiences

Experience of adversity

Care environment mediates experience of stress

Type, duration, number of adversities, and
their interaction may differ from the

experience of stress

•  Caregiving environment (caregiver psychopathology (e.g.,
   prenatal and/or postnatal stress, depression), unavailability/
  absence (e.g., mental illness, substance abuse, death))

•  Family context (e.g., familial conflict, domestic violence,
   addiction, marital breakdown)

•  Community environment (e.g., violence and crime, noise
   pollution, poor infrastructure and services)
•  Societal environment (e.g., systemic racism and
   discrimination, gender inequity, political/economic exclusion)

•  Baseline interrupted maturation if preterm

•  Psychosocial stressors (e.g., parental SES, insurance
   status, immigration status, communication, and
   language barriers)

•  Biological stressors (e.g., pain, illness, surgeries)
•  Environmental stressors (e.g., sounds, noises)

Adverse exposures impair specific functions most significantly
when occurring during periods of rapid/foundational development

Critical or sensitive period effects

Neurodevelopmental function,
immune and hormonal

regulation, epigenetic changes

Biologic response:

HIGH RISK

Preterm birth

Preterm birth and NICU admission factors

Fig. 1 Conceptual model of how childhood psychosocial stress and adverse experiences may amplify risk for abnormal development,
particularly in preterm infants who have additional risk factors. Dashed lines show factors that may mediate the experience of stress and
contribute to a difference in susceptibility to adversity including the care environment, the interaction with the genetic endowment that may
influence an individual’s biologic response, and timing of the exposure during critical or sensitive periods of development where adverse
exposures may have a more significant effect. NICU neonatal intensive care unit, SES socioeconomic status.
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adverse experiences (e.g., environmental stressors such as alarms,
bright lights, lack of consistent access to a caregiver, biological
stressors from pain and necessary life-saving procedures, and
financial pressures from hospital bills and lost wages to a baseline
level of neurological and physiological immaturity). We conceptua-
lize the NICU as a necessary, but adverse exposure, that compounds
the high baseline psychosocial stress and adverse experiences that
many NICU families already endure.

LANDSCAPE OF BIOMARKERS ASSESSED IN THE PERINATAL
PERIOD AND EARLY CHILDHOOD
Though a full review of adult biomarkers is beyond the scope of
the present manuscript, we note that considerable work has
reported associations between exposure to adverse childhood
experiences and biomarkers in adulthood.9,31–33 This body of work
provides critical evidence that psychosocial stress and adverse
experiences influence physiology in the long term. In our present
narrative review, we explore the landscape of biomarkers in early
childhood, which have received less attention, and which may
differ from biomarker expression observed in adulthood in
important ways. With these considerations, the aims of this
review are to (a) explore the landscape of biomarkers of
psychosocial stress and adverse experiences in the perinatal
period and early childhood (up to ~5 years); (b) explore and
highlight potential benefits of identifying at-risk infants early,
while considering whether different sub-signatures of toxic stress
might inform more targeted interventions; (c) discuss forthcoming
challenges of using biomarkers in clinical settings with varying
resources; (d) discuss concerns regarding how to interpret
individual differences and exposures to multiple types of
adversity; and (e) propose directions for future research and areas
of opportunity, including the proposal that preterm birth acts in
tandem with psychosocial stress and early adversity to amplify risk
for abnormal development. There is limited research in this last
area, but we highlight ways that psychosocial stress and early
adversity might interact with preterm birth, indicating a particular
need to focus on infants born preterm when identifying stress and
adversity biomarkers (Fig. 1).
We define a biomarker as a biological tool that can be

quantified, measured, or evaluated to indicate differences in
response to psychosocial stress and adverse experiences, and that
is expected to be modulated as a result of intervention.
Historically, biomarkers may aid in screening, diagnosis, prognosis,
or biologic response measurement. An acceptable biomarker
needs to be both sensitive in detecting risk and reliable across
time, with variability reflecting individual differences in the
physiological response to stress.34 Additionally, for clinical use,
biomarkers would ideally be affordable and non-invasive (e.g.,
saliva, urine, skin cells, blood collected for clinical use). For this
review, we include all biomarkers that have been associated with
psychosocial stress and adverse experiences (as described above),
including non-conventional biomarkers of brain function (e.g.,
those identified using electroencephalography (EEG)).
Psychosocial stress and adverse experiences in childhood can

impact multiple systems. Animal and human models demonstrate
changes in brain structure and function, chronic inflammation,
reduced immunity and autoimmunity (immune dysfunction),
premature aging and mortality, and poor health outcomes that
arise from chronic and metabolic disease.6,9 We reviewed recent
studies from PubMed searching for terms associated with
psychosocial stress and adverse experiences and individual
biomarker terms. We included recent studies and reviews in
humans published in English in children ≤5 years of age (see
Supplementary Fig. 1 for search strategy). We present biomarkers
in different systems and organs, including 1. Biomarkers of brain
structure and function, 2. Biomarkers of neuroendocrine function,

and 3. Biomarkers of immune function. Table 1 summarizes the
benefits and limitations of each biomarker reviewed.

Biomarkers of brain structure and function
Tools that have been used to assess associations between early
psychosocial stress and adverse experiences and neurodevelopment
during infancy and early childhood primarily include magnetic
resonance imaging (MRI), electroencephalography (EEG), and func-
tional near-infrared spectroscopy (fNIRS).

Magnetic resonance imaging (MRI). Studies using MRI have
revealed critical information about the impact of early exposure
to psychosocial stress and adverse experiences on the developing
brain. Given that MRI is feasible but challenging to perform
without sedation during infancy and early childhood, and that
sedation, even if minimal, may present some risks,35 the majority
of studies have retrospectively examined how structural and
functional changes in adolescence and adulthood are associated
with adverse experiences that happened early in life.36,37 A body
of work examining associations between psychosocial stress and
adverse experiences and neurodevelopment in infancy and early
childhood (i.e., from the neonatal period up to 6 years)38 has
revealed that prenatal, and early postnatal experiences (e.g.,
poverty, abuse/neglect, maternal depression, etc.), including
preterm birth,39,40 are associated with global reductions in white
matter integrity and myelination,41,42 changes to brain volume,
cortical thickness,43–45 and functional networks,46 as well as
structural and functional alterations to brain regions that
contribute specifically to the stress response system (i.e.,
hippocampus, amygdala, prefrontal cortex).47–50 Effects from
maternal prenatal stress exposure are also seen in preterm infants
as early as term-equivalent age.51 These neurodevelopmental
changes map onto patterns observed later in life.36,37

Electroencephalography (EEG). EEG is relatively inexpensive and
well-tolerated by even very young infants, compared to MRI
(described above). Although EEG provides relatively poorer spatial
localization compared to MRI and does not allow for structural
analyses, EEG does provide a readout of cortical function and can
be used to probe network-level disruptions in neural
development.52,53 Critically, analyses of both baseline and task-
related EEG power, functional connectivity, and event-related
potentials (ERPs) have revealed that early adverse experiences are
associated with perturbations in the developing EEG that underlie
later cognitive, language, and socioemotional outcomes.53–55

Several distinct EEG patterns have been observed within
baseline and task-based EEG. For example, a pattern of elevated
power in low-frequency bands (e.g., delta and theta) alongside
concomitantly reduced power in high-frequency bands (e.g., beta
and gamma) has been observed in children exposed to
psychosocial adversity,56,57 as well as in children from low-SES
backgrounds,58–60 and those exposed to high levels of maternal
stress (both self-reported and physiological, as measured by
cortisol).61,62 This pattern may reflect delayed maturation, and
associations have been observed between white matter architec-
ture, EEG rhythms,63 and performance on cognitive tasks.59 Low
gamma power in particular, especially at frontal electrode
locations, has also been associated with low-SES status, poverty,
and maternal stress.58,59,61,64–66 Critically, (frontal) gamma power
from as early as the neonatal period appears to predict
performance on language and cognitive measures throughout
childhood.59,67–70 Furthermore, differences in functional neural
networks and functional connectivity patterns, particularly cross-
gamma and cross-alpha coupling, have been associated with
exposure to early psychosocial stressors, suggesting that commu-
nication between local and long-distance brain regions may be
impacted by certain adverse experiences that occur early in life.71
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In the socioemotional domain, a considerable body of work has
found associations between patterns of frontal alpha asymmetry
(FAA) and both psychosocial stress and adverse experiences72 and
maternal depression.73 FAA is thought to be associated with
temperamental approach/avoidance behavior in infants and
children and is predictive of later development of mood disorders
such as depression and anxiety.74–76 Features of the EEG have also
been associated with preterm birth, and interactions between
preterm birth and exposure to psychosocial stress and adverse
experiences warrant further investigation.77

There is also evidence that certain ERP components of the EEG
provide a readout of neural processing that is influenced by early
experience and maps on specific sensory and cognitive domains
as well. Adverse experiences in childhood (e.g., stress, poverty,
malnutrition) have been associated with perceptual/sensory
development and cortical maturation, as reflected by reduced
amplitude and increased latency of the visual (VEP) and auditory
(AEP) evoked potential components.78,79 Experiences associated

with living in a low-SES context (as measured by parental income
or education levels), or exposure to maternal psychosocial stress
and adverse experiences early in life are also associated with
diminished selective attention and attention allocation (particu-
larly in the auditory domain),80–87 and differences in error/reward
processing,88,89 executive function,90,91 and emotional processing
of faces.92–94 Some of these effects are mediated by factors such
as maternal sensitivity88 and sympathetic nervous system activa-
tion of the child,80 and in some cases, appear to be moderated by
differential genetic susceptibility(i.e., 5-HTTLPR polymorphism).81

Functional near-infrared spectroscopy (fNIRS). The majority of
studies reporting associations between early psychosocial stress
and childhood adversity with neurodevelopment have used MRI
and EEG, yet increasing evidence supports the use of fNIRS as a
tool for evaluating early neurodevelopment. While fNIRS has been
used as early as the neonatal period to reveal the influence of
experience on neurodevelopment,95 some studies deployed in

Table 1. Summary of projected benefits and limitations of biomarkers of psychosocial stress and adverse experiences in the perinatal period and
early childhood.

Biomarkers Benefits/positive findings Limitations

Biomarkers of brain
function and activity

Magnetic resonance imaging (MRI):
- Understand structural and functional changes
- Potential available read in the prenatal period (fetus) and after
birth

- Need of sedation in some cases to obtain good
images

- Might not be available at every institution, hard
to implement in community/rural locations/at
scale

- Expensive
- Still under study

Electroencephalography (EEG)/functional near-infrared spectroscopy
(fNIRS)
- Relatively affordable and well-tolerated by young infants
- Easy to use from the earliest stages of development (newborns,
including preterm infants)

- Measures reflect processes and cortical readouts that are
proximal to neurodevelopmental change with potential to
identify children at risk

- Efficiently and reliably may be collected from a large number of
infants/children within a clinical setting

- Potential adaptation and use in non-clinical settings (e.g., at
home or community with mobile systems)

- No structural information
- Less ability for localization of specific brain areas
- Still under study, early in the research process,
particularly for fNIRS

Biomarkers of
neuroendocrine function

Hypothalamus–pituitary–adrenal-axis (HPA)
- Well known that glucocorticoids are released under the
influence of stress

- Glucocorticoids can be easily accessed through hair, saliva, and
other easily accessible bodily samples

- More research is required to standardize
paradigms for eliciting the stress response, both
when the stressor occurs and when the sample
is collected influence findings

- Some bodily samples are able to capture the
nature and timing of certain stressors more than
others

Biomarkers of immune
functioning

CRP and cytokines
- Available research overall indicates that the association
between adversity exposure and immune functioning emerges
already in infancy

- CRP and cytokines can be easily measured from blood and
saliva

- Limited number of studies and the
inconsistencies between some of the findings
hinders the use of inflammation as a biomarker
of adversity exposure

- Further research is required to elucidate whether
these effects a can be captured prenatally, how
stable these effects are in childhood, what is the
best marker (or combination of marker) to
collect as index of chronic low-grade
inflammation

- Lack of age-group specific thresholds (cutoffs)
for each marker

- Measurement of inflammatory stress response
via saliva is a more feasible way to collect
samples, however, its study is more recent and
still represent many challenges. Most studies
measure inflammatory markers in blood, which
is a good marker of systemic inflammation,
saliva samples might be easier to collect,
however, they might represent more local
inflammation in the oral cavity.
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low- and middle-income countries are beginning to see adversity-
related perturbations in the fNIRS signal later in life as well. For
example, a study in rural India used fNIRS in children (4–48-
months) to demonstrate that early adverse experiences were
associated with brain network activation underlying visual work-
ing memory.96 In a study of children (6 and 36-months) in
Bangladesh, maternal education, maternal stress, and caregiving
environment were associated with the magnitude of a neural
response to social stimuli.97 While the use of fNIRS in this context
is in its early days, this tool is relatively affordable and easy to
administer in a wide range of contexts, making it a promising
emerging tool to understand how early psychosocial stress and
adverse experiences shape the developing brain. However, more
research is needed before its deployment for clinical purposes.

Biomarkers of neuroendocrine function
Hypothalamus–pituitary–adrenal-axis (HPA). Dysregulation of the
HPA axis in response to early life and chronic stress has been studied
and reviewed at length.98–100 Under the influence of stress, the HPA
axis is activated and releases glucocorticoids, cortisol, and deriva-
tives, into the bloodstream. Glucocorticoids can be measured across
development from saliva, hair, nails, and other fluids (e.g., plasma).
These samples are relatively easy to collect and, thus, provide
promising biomarkers for assessing HPA functioning in pediatric
populations. However, the timing of sample collection (e.g.,
measuring basal levels of cortisol vs. cortisol awakening response)
and the timing of stress (e.g., acute stress best captured by saliva vs.
chronic stress best captured by hair) must be addressed when
interpreting HPA axis biomarkers.101,102

Despite the extensive literature, a recent meta-analysis across 14
vertebrate species, including humans, only supported small-to-
moderate effects of maternal distress on offspring glucocorticoid
levels.103 This could be explained by various studies yielding
seemingly contradictory results, as both hyper- and hypo-
activation of the HPA axis have been found in response to early
psychosocial stress and adverse experiences.104,105 Hyper-activation
of the HPA axis may suggest an acquired resistance to glucocorti-
coid negative feedback, while hypo-activation may suggest
attenuated stress reactivity or an exaggerated suppression of the
axis with chronic stress.106,107 Both have been found in response to
early psychosocial stress and adverse experiences and predict
downstream stress-related chronic illness.108

The effects of early psychosocial stress and adverse experiences
on the HPA axis appear to be impacted by the age at which these
events were experienced and the sex of the offspring.109–111 Some
studies suggest an interaction whereby the sex of a fetus moderates
maternal cortisol at certain points in pregnancy.112 However,
variation in the timing of the stress response, and the stress
paradigm used, could explain varying results. Although studies using
physical stressors have produced consistent cortisol increases in
young infants, studies using psychosocial stressors have produced
mixed or null results.113 A recent meta-analysis on psychosocial
stress paradigms and cortisol responses in infants <18-months
found the normative response to be small, even when controlling
for age.114 As such, more research is essential to tease apart
methodological noise from differential effects of early psychosocial
stress and adverse experiences on the HPA axis.

Biomarkers of immune function
Exposure to early psychosocial stress and adverse experiences has
been associated with an increased risk of psychiatric and medical
conditions later in life. Alteration of the immune system has been
suggested as one of the biological mechanisms mediating this
relationship.6,115,116 Chronic exposure to psychosocial stress and
adverse experiences leads to chronic low-grade inflammation, which
is also aided by the concurrent downregulation of anti-inflammatory
pathways such as the HPA axis.14,117,118 The link between early
psychosocial stress and adverse experiences and inflammation was

initially identified in adults who were exposed to such experiences
during childhood and had increased baseline levels of inflammatory
markers like C-Reactive Protein (CRP) and pro- and anti-
inflammatory cytokines.116,119,120 Maintaining a pro-inflammatory
state due to early psychosocial stress and adverse experiences has
been additionally associated with metabolic dysfunction later in life,
increasing the risk of immunosuppression (linked to increased risk of
infections and cancer) as well as chronic and metabolic diseases in
adulthood (i.e., cardiovascular risk, diabetes, obesity).6,115,116,121 A
meta-analysis of 25 studies showed the associations of childhood
trauma with CRP and two pro-inflammatory cytokines (IL-6 and TNF-
α) to be small yet significant.116

While most studies have examined associations later in life, a
few have examined the association of psychosocial stress and
adverse experiences with inflammation in children <5 years
(including infants).122 A study determining the association of low-
SES, maternal psychosocial stress, depression, and familial stress in
infancy showed an association with increased salivary CRP and a
composite measurement of pro-inflammatory cytokines (e.g., IL-
1β, IL-6, IL-8, and TNF- α) in 17-month-old children.123,124 In
Tanzania, a study demonstrated that increased levels of CRP in
infants (1–10 months) was associated with lower maternal
education and maternal depression.125 Another study, also in
Tanzania, found that maternal experiences of intimate partner
violence during the previous 12 months were associated with
increased CRP levels in children ages 6 months to 5 years of
age.126 However, other studies in 3–5-year-old children found no
association between psychosocial stress and adverse experiences
and CRP.127 Only some variables measured (number of recent and
lifetime contextual stressors and traumatic life events) were
positively associated with increased salivary interleukin (IL-1β).127

Approaching the question from a different perspective, Riis
et al. investigated how psychosocial stress and adverse experi-
ences impact the regulatory mechanisms of inflammation in 5-
year-olds and found that maternal distress (measured by
depression, anxiety, and parenting stress index) moderates the
relationship between cortisol and pro-inflammatory cytokines (IL-
1b, IL-6, IL-8, TNF-a).128 As levels of distress increased, the
relationship between cortisol and cytokines shifted from negative
to positive, supporting the idea that chronic inflammation
associated with adverse experiences is also explained by less
efficient regulation of anti-inflammatory mechanisms.
A recent meta-analysis of studies of children and adolescents

found effect sizes for CRP and IL-6 to be similar in magnitude as
those reported in adult studies, but associations were not statistically
significant.129 While data suggest that effects are stronger in infancy
and adolescence, the authors invite caution when interpreting these
findings, given the limited number of available studies and the
heterogeneity in methodological approaches.

PROJECTED BENEFITS OF RECOGNIZING INDIVIDUAL
DIFFERENCES IN RISK
Focusing on exposures that occur during critical or sensitive
periods prenatally and in early childhood is essential to prevent
lasting effects throughout the lifespan.3 The biomarkers reviewed
herein may inform our understanding of neurodevelopmental and
physiological changes and help predict long-term negative health
and developmental outcomes, mainly if measured early and
longitudinally. Many of these biomarkers can be collected in an
efficient, reliable, and impactful way prenatally, in nurseries or the
NICU after birth, in pediatric clinics, and even at home with mobile
technology.
In addition to identifying precise mechanisms and individual

indicators of risk for adverse outcomes, biomarker analysis can
begin to identify different sub-signatures of toxic stress—namely,
whether different types of early exposures lead to different types
of physiological change in different sub-groups. Identifying
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markers associated with very specific exposures, or categories of
exposures will help develop more specific and targeted interven-
tions for families.16,130 Nonetheless, we recognize that the
resolution of disparities will ultimately require large-scale struc-
tural changes to reduce exposure to psychosocial stress and
adverse experiences among populations facing discrimination and
barriers in access to resources and social supports.

FORTHCOMING CHALLENGES AND LIMITATIONS OF THE USE
OF BIOMARKERS IN THE CLINICAL SETTING
It remains unknown whether there are specific periods of
development during which exposure to psychosocial stress and
adverse experiences is most deleterious, and whether this varies
by type of exposure or outcome measured.17 Concomitantly, some
conceptual models have suggested that cumulative exposure to
multiple adverse experiences over time may influence develop-
ment more profoundly than acute exposures alone, regardless of
their timing.131 Given the difficulty in separating types of
adversity, since many occur concurrently, few studies have
compared these factors directly to determine each unique
influence and their interaction.
We have included a wide range of potentially negative

experiences (e.g., accumulated burden from poverty, abuse,
neglect, maternal mental health issues, etc.). However, we know
that different experiences might impact development in different
ways and that not every child exposed to the same experience will
have the same response; perception of stressors, support/
resources (extrinsic in the case of environmental context, intrinsic
in the case of differential genetic susceptibility), and resiliency
tools to overcome exposure to these events vary. Thus, it is
difficult to interpret individual differences in physiological
responses and, in turn, how to “treat” or intervene.
Another key limitation in research to date is that the

identification of generalizable biomarkers requires large and
diverse samples. Even when able to include diverse samples,
there are still vulnerable and isolated groups with additional
barriers to research participation, including indigenous popula-
tions, undocumented immigrants, refugees, and asylum seekers,
that may have experienced different types of psychosocial
stressors and extreme adversity.
Once biomarkers have proven to be reliable, feasible, and highly

predictive, another factor to consider is that the availability of
tools varies across settings. Collection of blood, saliva, or urine
samples may be widely implemented across contexts, however in
some remote locations ability to run assays on physiological
samples might be limited. Neuroimaging tools are becoming more
portable and have been used effectively in very low-resource
settings; however, restrictions still exist in terms of cost and ease
of access for the most vulnerable populations. Moving forward,
the combination of tools will be critical to determine how to
identify children at risk and uncover underlying mechanisms that
lead to long-lasting effects on health and development. Finally,
ethical considerations are paramount when incorporating the use
of biomarkers to assess risk into clinical practice (e.g., making sure
biomarkers are equally available for all and when risks are
identified, interventions to improve outcomes must be promptly
deployed).132–134

DIRECTIONS FOR FUTURE RESEARCH AND AREAS OF
OPPORTUNITY
Biomarkers of epigenetic change (Accelerated telomere
shortening and DNA methylation)
In addition to the biomarkers reviewed, associations between
psychosocial stress and adverse experiences, and biological aging
has received recent attention, though predominantly in older
children and adults. In particular telomeres, or repeating segments

of noncoding DNA that serve as protective caps at the ends of
chromosomes and help maintain chromosomal integrity,135 have
been found to shorten with each cell division contributing to
aging and disease in humans.136,137 Accelerated shortening may
be due to higher oxidative stress and inflammation affecting
telomerase activity.138 Telomeres are easily collected from saliva or
blood139,140 and although more research is required to standar-
dize TL assessment, TL is a promising biomarker. In addition to
being linked to health, longevity, and chronic diseases, TL has
been associated with psychosocial stressors and adverse experi-
ences (e.g., family violence and disruption, discrimination, and
racism).141–145 According to a large meta-analysis, telomere
heritability could be as high as 70%, contributing to intergenera-
tional transmission of stress exposure.146 Recently, accelerated
telomere shortening has been studied in the context of stressors
in the perinatal period and early childhood adversity.147–153 While
shorter telomeres have been associated with various psychologi-
cal and physiological health ailments in adults, further research is
required to determine whether TL at birth and/or in infancy can
predict TL later in life.
DNA methylation may also be used to obtain as a marker of

aging that may explain intergenerational transmission of stress.154

However, most studies have been conducted in adult populations.
Recently, multidisciplinary teams have been working on develop-
ing accurate and non-invasive methods to assess biological aging
by using mathematical models to characterize an “epigenetic
clock” that can measure and predict biological age, including in
children. In the future, this clock may help to evaluate the impact
of psychosocial and environmental factors on child development
by revealing how gene expression is modified as a result of
psychosocial stress and adverse experiences and, as a result, how
these modifications impact health outcomes in the long term.155

Preterm birth and NICU environment as a critical avenue for
future research
Considerable research has explored the influence of preterm birth on
development156,157 and the exposure to biological stress (i.e., from
pain).158 However, little work to date has explored the interaction of
familial psychosocial stress and adverse experiences that pre-dated
the preterm birth with adversity that resulted from the preterm birth.
Together these stressors likely affect developmental and health
outcomes159 which may be modified by identifying infants and
families “at risk” and targeting tailored early interventions inclusive of
parental education, support and follow up programs.160,161 Admission
to the NICU offers an opportunity to assess risk, study biomarkers
within other studies assessing neurodevelopmental outcomes, and to
design interventions to empower families and support infant
neurodevelopment.162

Other areas of opportunity
In the future, studies may consider performing economic
evaluations to assess the cost of incorporating biomarker screen-
ing in the clinical setting and the cost of early interventions for
children at risk versus the potential cost of the consequences of
toxic stress in adult life (e.g., chronic and metabolic diseases in
adulthood). Several questions remain regarding the biological
embedding of early experiences with long-term development and
the clinical use of biomarkers in the perinatal and early childhood
period. More studies are needed—particularly longitudinal studies
with larger sample sizes and diverse demographic representation.
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