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KIF5C deficiency causes abnormal cortical neuronal migration,
dendritic branching, and spine morphology in mice
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BACKGROUND: Malformation of cortical development (MCD) includes a variety of developmental disorders that are common
causes of neurodevelopmental delay and epilepsy. Most recently, clinical studies found that patients carrying KIF5C mutations
present early-onset MCD; however, the underlying mechanisms remain elusive.
METHODS: KIF5C expression level was examined in mouse primary cortical neurons and human ips-derived forebrain organoids.
We studied the cortical neuronal migration, dendritic branching, and dendritic spine growth after knocking down the KIF5C gene by
electroporation in vitro and in vivo. Then, we studied the transcriptome differences between the knockdown and control groups
through RNA sequencing.
RESULTS: We observed high KIF5C expression in neurons during the early developmental stage in mice and the human brain. Kif5c
deficiency results in disturbed cortical neuronal migration, dendritic, and spine growth. Finally, we found that Kif5c knockdown
affected several genes associated with cortical neuronal development in vitro.
CONCLUSIONS: These results suggested a critical role for Kif5c in cortical development, providing insights into underlying
pathogenic factors of kinesins in MCD.

Pediatric Research (2022) 92:995–1002; https://doi.org/10.1038/s41390-021-01922-8

IMPACT:

● KIF5C mutation-related MCD might be caused by abnormal early cortical neuronal development.
● Kif5c deficiency led to abnormal cortical neuronal dendritic and spine growth and neuronal migration.
● Our findings explain how Kif5c deficiency is involved in the aberrant development of cortical neurons and provide a new

perspective for the pathology of MCD.

INTRODUCTION
Precisely controlled dendritic arborization, spine morphogenesis,
and neuronal migration ensure functional neural circuit assembly
and neural network integrity during cortical development.1

Abnormal neurite patterning and disturbed neuronal positioning
result in various MCD, including lissencephaly/pachygyria (LIS),
polymicrogyria (PMG), and microcephaly.2–5 These disorders have
been observed in individuals with neurodevelopmental disorders,
such as seizures, intellectual disability, Rett syndrome, and autism
spectrum disorder (ASD).6–9 Therefore, it is necessary to find the
factors that regulate the growth and migration of neurons in the
early stage of cortical development to understand the possible
molecular mechanisms of the pathogenesis of MCD.
The KIF5C gene encodes heavy chain isoform 5C of kinesin, a

microtubule-dependent motor protein that generates force during
intraneuronal transport. It transports various cargos, including

vesicles, membranous organelles, protein complexes, mRNAs, and
chromosomes, over long distances along neuronal microtubules.
These molecular motors are expected to play critical roles in
several processes in the brain, including neuronal function,
development, survival, and plasticity, by regulating transport
within the axons, dendrites, and synapses of neurons.10–13

Previous studies have provided evidence that kinesin super-
family members play a fundamental role in early brain develop-
ment. In vivo knockout of the Kif1a, Kif1b, Kif2a, Kif3a, Kif3b, Kif4a,
Kif5a, Kif5b, or Kif5c genes result in various neurological
phenotypes, including brain structural malformation, abnormal
brain size, disturbed neuronal proliferation or apoptosis, altered
synapse density, and even perinatal death due to severe
neurological problems.13–23 The early embryonic death of Kif1b,
kif2a, Kif3a/3b, and Kif5b knockout mice suggests an essential
function in general developmental processes as well.16–18,23
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Because genetic diagnostic technology has improved, an increas-
ing number of clinical findings have revealed that KIF gene (KIF1A,
KIF2A, KIF4A, KIF5A, KIF5C, KIF7, KIF11, and KIF14) deficiency is
associated with various neurodevelopmental defects24–37 (Supple-
ment Table I). With the widespread application of next-generation
sequencing technology, several clinical studies have identified
mutations in KIF5C in patients with MCD, suggesting its critical role
in cortical lamination.27,28,38–42

In the present study, we investigated the effects of Kif5c
knockdown on neurite branching, spine morphology, and cortical
migration during early brain development. We found that Kif5c is
required for proper dendritic branching and spine shaping. Kif5c
knockdown causes a temporary delay in migration. Furthermore,
the expression of a group of genes related to neuronal
morphology and migration is altered after Kif5c knockdown in
cortical neurons. These findings indicate that Kif5c is essential for
cortical neuron growth and function in the early development
stage and provide new insight into the neuronal pathology of
Kif5c-related MCD in humans.

RESULT
Case series
Eleven cases of KIF5C mutation-related MCD have been reported
since 2013 (Supplement Table II). According to the summary of
clinical and genetic findings, we found that 100% of patients had

malformations of cortical development and microcephaly, 5 patients
were diagnosed with pachygyria and 2 with polymicrogyria. Five of
six patients with EEG data presented seizures before 1 year of age, 4
patients presented generalized seizures, among which 2 presented
intractable seizures. Six of six patients developed severe psychomo-
tor and cognitive impairment and five of five patients presented
abnormal behaviors, such as stereotypic hand movements and auto-
mutilation. Additionally, nine of eleven patients carried p.E237V hot
spot mutations, and the other 2 patients presented p.A268S and p.
Y135C mutations. In addition to cortical malformations, some
patients also exhibited an abnormal callosum, cerebellum, and
increased ventricles. These findings elucidate that KIF5Cmight have a
critical role in early human brain development.

Kif5c expression during cerebral cortex maturation
In vertebrates, the Kif5 gene family has 3 members, Kif5a, 5b, and
5c. Kif5b is widely expressed in all tissues, while Kif5a and Kif5c are
mainly expressed in neurons.23 We reviewed publicly available
single-cell data and found that KIF5C was predominantly
expressed in the developing cerebral tissue in mice and humans
(GSE156793 and GSE132044). We validated the Kif5c mRNA levels
in the mouse cortical tissue at the early postnatal period using
quantitative PCR. We observed increasing Kif5c expression after
E14.5. The peak expression was detected between E16.5 and P0,
and then the expression gradually decreased to a low level
(Fig. 1a).
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Fig. 1 Kif5c is expressed in neurons of the early developing cortex. a Quantitative analysis of the Kif5c mRNA expression in the mouse early
cortical tissues (n= 3 pups at each time point) using Q-PCR. The expression level of Kif5c in P0 mice was considered as 1. Error bars indicate ±
SEM. b Schematic diagram of the development of forebrain organoids that recapitulate the inside-out pattern of human cortical lamination.
The pictures indicate the neuronal lamination of the human forebrain organoid (upper panel) and mouse cerebral cortex (lower panel). The
green arrows show the direction of neuronal migration. c Quantitative analysis of the Kif5c mRNA expression level in forebrain organoids (n=
3 at each time point) using Q-PCR. The Kif5c expression level at DIV0 was considered as 1. Error bars indicate ± SEM. d Example pictures of
forebrain organoids stained with SOX2 (green), CTIP2 (red), and CUX1 (red) antibodies. CTIP2 and CUX1 are the marks of the fifth and second
layers of the cortical plate, respectively. Scale bar, 100 μm.
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We further examined the KIF5C expression pattern during the
early development of the human brain. We used human induced
pluripotent stem cells (iPSCs) to generate forebrain organoids to
investigate KIF5C expression. The lamination of forebrain orga-
noids mimics the inside-out pattern of the developing cortex in
humans (Fig. 1b).43 KIF5C expression was significantly increased
and reached the peak level at approximately Day 30, when V layer
of the organoid was formed (Fig. 1c). These findings indicate a
critical role of KIF5C in neuronal lamination. In summary, the
expression results of humans and mice suggest that Kif5c is pivotal
for developing cortical neurons.

Kif5c knockdown leads to abnormal cortical neuronal
migration
We performed in utero electroporation to reduce Kif5c expression in
mouse cortical neural progenitors to investigate its role in cortical
neuron migration. First, we designed three candidate shRNA (fugw-
H1-GFP) targeted Kif5c (shKif5c-#1, shKif5c-#2, and shKif5c-#3) and
shDsred as control. Then we infected mouse cortical primary neurons
with lentivirus containing those shRNAs. We found that the neurons
expressing shKif5c-#2 showed a significant decrease in the Kif5c
mRNA level (Fig. 2c). Therefore, shKif5c-#2 was used in subsequent
experiments to reduce Kif5c in vivo and in vitro.
We introduced shKif5c-#2 and shDsred into the embryonic

mouse brain at E13.5, and the embryos were fixed and analyzed at
E18.5. These constructs were injected into the lateral brain
ventricle. Therefore, the shRNA was only expressed in GFP-
labeled cortical ventricular zone (VZ) neurons, allowing us to trace
neuronal migration from the VZ. At E18.5, most GFP-expressing
neurons left the VZ and arrived at the intermediate zone (IZ) and
the cortical plate (CP) in both groups. However, far more shDsred-
expressing neurons reached the surface of the CP than shKif5c-
expressing neurons (Fig. 2).

However, all GFP-labeled neurons of both groups arrived at the
surface of the CP at P30, suggesting that early Kif5c deficiency
leads to a short delay in cortical migration. These results suggest
that Kif5c is necessary for the precise control of cortical neuron
migration.

Kif5c knockdown leads to abnormal dendrite branching and
spine development in vitro
Inhibition of kinesin heavy chain expression using antisense
oligonucleotides leads to a significant reduction in total neurite
length.44 Therefore, we knocked down Kif5c in primary neurons of
the cortex to check whether Kif5c is involved in neuronal dendrite
growth. Neurons were transfected with shDsred (control) and
shKif5c-#2 by electroporation at 1 DIV, and then we performed
anti-GFP immunostaining at 10 DIV. We found that neurons
transfected with shKif5c-#2 had fewer primary dendrites, but no
significant difference in the total dendrite length was found
between the shKif5c-expressing neurons and the controls (Fig. 3).
Thus, during early neuronal morphogenesis, Kif5c deficiency
disturbs dendrite outgrowth in vitro.
After in utero electroporation at E13.5, we collected the brain at

P30 to analyze the density of dendritic spines with different
morphologies. The thin spines in shKif5c-expressing neurons were
denser than those in the control neurons. However, no significant
difference in mushroom spines was found between the two
groups (Fig. 4). The disturbed spine development might lead to
increased neuronal excitability and induce seizures. In the above 6
patients with accessible EEG data, 83% (5/6) had seizures within 1
year of age. Based on these results, KIF5C deficiency might
contribute to seizures by affecting early dendritic spine
development.
In addition, all GFP-labeled cells arrived at the surface of the CP in

both the shKif5c and shDsred groups, indicating that kif5c deficiency
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Fig. 2 Kif5c knockdown results in delayed neuron migration in vivo. a, b Example pictures of E18.5 mouse brain expressed the indicated
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(a total of 13 pups from 3 dams under each condition were analyzed). Error bars indicate ± SEM. ****P < 0.0001 by multiple t-tests.
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would not lead to permanent termination of cortical migration. Taken
together, Kif5c is required for neurite development and thus regulates
the establishment of the functional neuronal circuits in the brain.

A neuronal development-associated gene set is differentially
expressed between the shKif5c and control groups
We collected the total RNA from neurons transfected with
lentivirus containing shKif5c vs. shDsred for RNA sequencing to
define the transcriptomic differences between two groups. The
mRNA levels of 204 genes were altered in Kif5c-deficient neurons
compared with control neurons (Fig. 5a). Among these genes, 49
genes were upregulated, and 155 genes were downregulated
(adjusted P-value < 0.01, log2(fold-change) > 1). Then, a Gene
Ontology (GO) analysis of altered genes related to neuronal
development was performed (Fig. 5b, c) according to the
phenotypes observed in shKif5c-expressing neurons in vivo and
in vitro. We further validated the alteration of 7 genes, including
Kif5c, Itgb1, Nrp1, Nrp2, Gli3, and Pafah1b1 (Fig. 5d).

DISCUSSION
Only one Kif5 gene is expressed in the invertebrates Drosophila,
Caenorhabditis elegant, and Aplysia, while 3 Kif5 variants are
expressed in vertebrates, namely, Kif5a, Kif5b, and Kif5c.10 Kif5a
and Kif5c are mainly expressed in neurons, and Kif5b is
ubiquitously expressed. The expression of Kif5c in the cortex,
hippocampus, cerebellum, and spinal cord is 3 to 5 times higher
than that of Kif5a. These findings indicated that Kif5c might play a
more important role in the function of the central nervous system
(CNS). Although the three Kif5s have some functional redun-
dancy,23 more recent findings have revealed their specific
functions. For example, the transport of mitochondria in axons
only depends on KIF5A in zebrafish.45 Knockdown of Kif5b and
Kif5c leads to a significant reduction in the number of dendritic
spines on mouse primary cortical neurons, while Kif5a deficiency
does not affect spine development.46 Clinical findings showed
that KIF5A deficits cause spastic paraplegia 10 (SPG 10,
OMIM#602821) and neonatal intractable myoclonus (NEIMY,
OMIM# 617235). Recently, several cases carrying rare KIF5C
mutations have been reported. All of these patients presented
microcephaly and malformation of cortical development (such as
polymicrogyria, pachygyria, and cortical dysplasia), and some had
experienced seizures beginning at an early age, suggesting its
deficiency might lead to early neuronal development
abnormalities.
We found that Kif5c is expressed at high levels during early

brain development and Kif5c deficiency leads to abnormal
neuronal morphology and radial migration. By performing an
embryonic electroporation study, we found that Kif5c deficiency
leads to an increased density of thin spines on cortical neurons
during early brain development in vivo. Swarnkar et al. also
reported a significant increase in the number of thin spines
following Kif5c knockdown, but the number of mushroom spines
was reduced.47 However, Zhao et al. observed reductions in the
densities of both thin and mushroom spines following Kif5c
knockdown in hippocampal neurons in vitro.46 Willemsen et al.
found that KIF5C-E237K, the hot spot mutation, showed a
significant reduction in distal neurite localization, which led to a
significant decrease in the mEPSC amplitude.28 Based on these
findings, Kif5c deficiency might cause disease by contributing to
abnormal synaptic function. However, unlike the human brain, the
mouse brain has no gyrus. Therefore, in addition to a smaller brain
size of the mice with kif5c gene knockout, the nervous system
does not show apparent malformations.23

A traditional claim is that proteins are synthesized in the
neuronal soma and then conveyed to the terminals in membra-
nous organelles or protein complexes. However, a group of
mRNAs is delivered to neurite terminals to carry out local protein
synthesis.48 KIF5C, which is involved in transporting cargos
(including vesicles, membranous organelles, protein complexes,
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mRNAs, and chromosomes) from the minus end of microtubules
to the plus end in neurites, is implicated in regulating local mRNA
transport.49 In the present study, we harvested cortical neurons
transfected with control or shkif5c plasmid. Then we found that

Kif5c knockdown affects the mRNA levels of pivotal genes—Itgb1,
Nrp1, Nrp2, Gli3, Neurog2, and Pafah1b1—related to neurite
development and neuronal migration (Fig. 5d).
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The cell surface receptors Itgb1, Nrp1, and Nrp2 have critical
roles in regulating cortical neuronal migration during early brain
development, and Nrp1 is also involved in neocortical dendrite
development.50–55 Conditional knockout of Gli3 causes neuronal
overmigration, resulting in an enlarged brain and abnormally
folded structures.56 Neurog2 deficiency leads to cortical migration
defects and changes in dendrite morphology.57,58 Pafah1b1
knockout studies revealed its essential function in the regulation
of neuronal migration, progenitor cell proliferation, and synaptic
E/I balance in the dentate gyrus.59–63 However, the mechanism by
which kif5c deficiency alters the mRNA levels of these genes and
whether it affects their local protein synthesis by modifying
neurite transportation require further study.

METHODS
Plasmids
The shKif5c (#1, #2, #3, and Dsred) was generated by inserting the annealed
oligonucleotide primers into the FUGW-H1 construct (Addgene, 14883)
using XbaI–BamHI cloning sites. Primers’ sequences are listed in
Supplement Table III.

RNA extraction and reverse transcription
After anesthetized with pentobarbital sodium and sacrificed, we isolated
the cortical area of the brain in pre-cooled PBS according to the map of
The Mouse Brain in Stereotaxic Coordinates.64 We isolated total RNA from
the cortical brain under manufacturer’s instructions of TRIzol™ Reagent
(Invitrogen, 15596018) and then reversed the RNA by the Reverse
Transcriptase M-MLV kit (TaKaRa, D2639B).

Quantitative real-time PCR
The mRNA expression level of indicated genes was measured through
quantitative real-time PCR (Q-PCR) using SYBR green (Toyobo, QPK-201).
The internal control is mouse Gapdh or Rpl191 or human GAPDH gene. The
primer sequences are listed in Supplement Table III.

The culture and transfection of primary cortical neurons
Cortical tissues of E13.5 mouse embryos were minced and digested with 20 U/
ml papain (Worthington, LS003126) to obtain dissociated neurons.65 Two
neuronal transfection methods were used in our study. For assessing KD
efficiency and transcriptomic experiments, we packaged the shRNAs into
lentivirus for higher transfection efficiency. For the dendrite branching
experiment, neurons and plasmids were mixed and resuspended in the
Nucleofector Solution buffer and then electrotransfected using the “mouse,
neuron, 0–005” process on the AMAXA nucleofector II device (AAD-1001S,
Germany), in which the neuron viability was over 80%. In Lab-Tek II chamber
slides (ThermoFisher Scientific, 154941), Cells were fed with Neurobasal
medium (Gibco, 21103-049) supplemented with 2mM Glutamax-I (Gibco,
35050-061) and 0.2% B27 (Gibco, 17504-044). We mixed the transfected
neurons with untreated neurons in a ratio of 1:8 for sparse labeling.

In utero electroporation
In utero electroporation was performed using the previously reported
methods.66 Firstly, E13.5 pregnant mice (C57BL/6J, RRID: IMSR_JAX: 000664)
were intraperitoneally injected with 0.7% pentobarbital sodium (10 μl/g per
mouse) to achieve deep anesthesia. Plasmids (shDsred or shKif5c, 2 µg/µl) with
Fast Green (0.05%, Sigma) were injected into the ventricle using a glass
micropipette by an experimenter who was blinded to the groups. In each
embryo, only one side of the brain ventricle was injected with constructs.
Plasmids were then delivered into the ventricular zone (VZ) cells by applying 5
electric pulses at 30 V for 50ms at 1 s intervals using the Electro Square Porator
(ECM 830, BTX, San Diego, CA). After closing the abdomen, mice were left to
recover from anesthesia on a warm blanket. Pup’s brains were harvested at
E18.5 or P30, then were fixed with 4% PFA and dehydrated in sucrose solutions.

Generation of forebrain organoids derived from human iPSCs
Forebrain organoids were produced following the previously published
methods.67 For the first 4 days, human iPSCs were cultured with neural
induction medium (NIM), which consists of DMEM/F12, 1xGlutaMAX, 1xN2,
1xNEAA, 2 μM dorsomorphin (Sigma-Aldrich), and 2 μM SB-431542 (Tocris).

On days 5–6, the culture medium was half changed with differentiation
medium (DM), which includes DMEM/F12, 1xGlutaMAX, 1xN2, 1xNEAA, 1 μM
CHIR (Cellagentech), and 2 μM SB-431542. Then the organoids were
embedded in Matrigel (BD Biosciences) and cultivated in cortical DM for
another 7 days. On day 14, embedded organoids were gently separated from
the Matrigel and cultured in DM supplemented with 1× B27 (Invitrogen), 1× 2-
mercaptoethanol, and 2.5 μg/ml insulin (Sigma). The forebrain organoids were
harvested on Days 15, 30, and 60 for subsequent experiments.

Immunohistochemical staining and image analysis
All the sample sections on slices were produced using the Leica freezing
microtome (CM1950). The neurons, brain slices, and forebrain organoid
slices were all fixed with 4% PFA and blocked at room temperature. The
composition of the blocking buffer is slightly different. For cultured
neurons, the blocking buffer is 3% BSA and 0.1% Triton X-100 in PBS. For
brain and organoid slices, the buffer is 5% BSA and 0.3% Triton X-100 in
PBS. Then the slices were incubated with indicated antibodies in a blocking
buffer of 3% BSA and 0.1% Triton X-100. The following antibodies were
used: anti-GFP (rabbit, Invitrogen, A11122): 1:1000, anti-CTIP2 (rat, Abcam,
#ab18465): 1:300, anti-SOX2 (goat, R&D, AF2018): 1:500, and anti-CUX1
(mouse, Santa Cruz, sc_514008): 1:500. For immunohistochemical staining,
organoid slices were stained with 2 cortical layer markers (CTIP2: Layer V
and CUX1: Layer II) to examine developmental milestones.
All images were analyzed using ImageJ software (RRID: SCR_003070). For

the dendrite branching experiments, the center of the cell soma was taken
as the starting point when calculating the length of a primary dendrite.
Slices labeling was blinded to the person who recorded the images to
prevent selection bias.

Transcriptome sequencing and analysis
Sequencing libraries were generated using NEBNext® UltraTM RNA Library
Prep Kit for Illumina® following the manufacturer’s recommendations. The
clean data were obtained by removing reads containing adapter, ploy-N,
and low-quality reads from raw data. Index of the reference genome was
built and paired-end clean reads were aligned to the reference genome
using Hisat2 v2.0.5. FeatureCounts v1.5.0-p3 was used to count the reads
numbers mapped to each gene. And then Reads/Fragments Per Kilobase
Million Reads (FPKM) of each gene was calculated based on the length of
the gene and reads count mapped to this gene. Differential expression
analysis of two groups was performed using the DESeq2 R package
(1.16.1). Gene Ontology (GO) enrichment analysis of differentially
expressed genes was implemented by the clusterProfiler R package.
Significant differentially expressed genes were determined as those with
adjusted P-values < 1e−4 and log2(fold-change) (FC) > 0.4.

Statistics
Comparisons between two groups were performed using a Two-tailed
Student’s t-test, and multiple t-tests were used for the curves (dendrite
branching and neuronal migration). GraphPad Prism 8 (www.graphpad.
com) software was used for statistical analysis. Data are shown as the
means ± SEM, and P-values are reported in the figure legend (statistical
significance was determined at P < 0.05). The in vitro experiments were
performed at least 3 times independently and at least 3 mice from 2
different litters were used. For migration experiments, we used one E13.5
mouse each time to minimize the bias caused by individual differences
and repeated the operation three times independently. At E18.5, we
collected all embryonic brains from three independent experiments, and
the brains were selected under a fluorescence dissecting microscope
(Nikon 80i, MBA75020, Japan). Only those with EGFP expression were
retained for further immunofluorescence staining (Supplement Fig. I).

Study approval
All animal experiments were performed according to the Biomedical
Research Ethics Committee guidelines of the Shanghai Institutes for
Biological Science.
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