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Hirschsprung’s disease: key microRNAs and target genes
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BACKGROUND: This study aimed to identify key microRNAs (miRNAs), pathways, and target genes mediating Hirschsprung’s
disease (HSCR) pathogenesis and identify the diagnostic potential of miRNAs.
METHODS: The Gene Expression Omnibus database and reverse transcription-quantitative PCR were used to compare miRNA
expression between ganglionic and aganglionic colon tissues of children with HSCR, and the TAM 2.0 database was used to identify
colon tissue-specific miRNAs. The StarBase database, TargetScan database, luciferase reporter, and western blot assays were used to
analyze miRNA–messenger RNA interactions. OmicShare was used to perform functional and pathway enrichment analyses of the
target genes. Migration assays were performed to validate the functions of the miRNAs.
RESULTS: The TAM 2.0 database analysis and reverse transcription-quantitative PCR showed that hsa-miR-192-5p, hsa-miR-200a-3p,
and hsa-miR-200b-3p were colon tissue-specific and upregulated in aganglionic colon tissue compared to paired ganglionic colon
tissue. These three miRNAs effectively reduced cell viability and migration. Luciferase reporter and western blot assays verified the
direct interaction between these three miRNAs and the target genes of ZEB2 and FNDC3B. Furthermore, the plasma levels of these
miRNAs were higher in HSCR patients than in non-HSCR patients.
CONCLUSIONS: Three plasma miRNAs (hsa-miR-192-5p, hsa-miR-200a-3p, and hsa-miR-200b-3p) are potential peripheral HSCR
biomarkers.
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IMPACT:

● The molecular mechanisms underlying HSCR are unclear. HSCR is most accurately diagnosed using rectal biopsy samples, and
no consensus has been reached on the use of blood-based tests for HSCR diagnosis. Circulating miRNAs may be candidate
diagnostic HSCR biomarkers because they are typically easily detectable, stable, and tissue-specific. Three plasma miRNAs (miR-
200a-3p, miR-192-5p, and miR-200b-3p) are potential peripheral HSCR biomarkers.

INTRODUCTION
Hirschsprung’s disease (HSCR) is characterized by a deficit of
ganglion cells in the distal bowel1 and is the most common
enteric neuropathy. The annual incidence of HSCR is almost 1 in
5000 children, with a male sex ratio bias of 4:1.2 HSCR can be
categorized into three types based on the length of the
aganglionic segment: short-segment HSCR, long-segment HSCR,
or total colon aganglionosis.3 The clinical symptoms of HSCR in
children usually include abdominal distension and delayed
meconium excretion.4 The treatment of children with HSCR is
surgical extraction of the aganglionic bowel (AB); however, the
long-term outcome remains poor.5 Although the specific
pathogenesis of HSCR has not been elucidated, in the past
few decades, some studies have confirmed that the cause of
HSCR is associated with many genes, including RET, GDNF, NRG1,
SIIP1, and PHOX2B.6–11 The diagnosis or exclusion of HSCR is
typically dependent on clinical manifestations, anorectal mano-
metry, contrast enema followed by radiology, and rectal
biopsy.12 Even though these methods are highly accurate,
misdiagnosis may occur during the neonatal period.13 Therefore,

less invasive, high-throughput, blood-based tests are required to
improve diagnostic accuracy. Previous findings have proven that
microRNAs (miRNAs) are associated with the pathogenesis of
HSCR.14,15

MiRNAs are noncoding endogenous RNAs (18–24 bp in length)
that regulate target messenger RNA (mRNA) expression.16,17

Recent research has indicated that miRNAs are closely related to
various cellular biological processes (BPs), including growth, cell
death, inflammation, development, and differentiation.18 Other
studies have shown that miRNAs may serve as biomarkers of
pathological processes in different diseases,19,20 and several
miRNAs, including miR-488-3p,21 miR-141,22 and miR-637,23 are
associated with HSCR.
To elucidate the pathogenesis of HSCR and to identify potential

new biomarkers, we screened miRNA expression profiles of paired
aganglionic and ganglionic colon samples from children with
HSCR obtained from the Gene Expression Omnibus (GEO)
database.24 The miRNA expression profiles of HSCR samples
obtained from the GEO database were then used as a query for a
TAM 2.0 database search.25 The TAM 2.0 database contains several
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miRNAs that are colon tissue-specific. Based on the miRNA
expression profiles, the BPs, cellular components (CCs), molecular
functions (MFs), and enriched pathways were explored via
enrichment analyses. Then, migration assays and reverse
transcription-quantitative PCR (RT-qPCR), luciferase reporter, and
western blot assays were used to validate the functions of the
miRNAs and evaluate the diagnostic value of dysregulated
miRNAs in the plasma of HSCR patients.

MATERIALS AND METHODS
Availability of miRNA expression profiles
MiRNA expression profiles deposited in a publicly available dataset
(GSE77296) were obtained from the GEO database, a public networking
tool that was used to compare the miRNA profiles of aganglionic and
ganglionic colon samples from three children. The differentially expressed
miRNAs between the aganglionic and ganglionic colon samples were
analyzed according to the following criteria: P value < 0.01 and an absolute
expression log 2 fold change (FC) > 1.5.

Analysis of miRNA–mRNA target networks
Based on TAM 2.0 database analysis, hsa-miR-192-5p, hsa-miR-200a-3p,
and hsa-miR-200b-3p were considered colon tissue-specific genes.
Identifying mRNA target genes is critical for determining the crucial
functions and pathways associated with miRNAs. Thus, StarBase v2.0 was
used to predict the target genes of these three miRNAs.26 In addition,
miRNA–mRNA interaction networks were analyzed using Cytoscape and
the TargetScan database.

Gene functional enrichment analyses
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
(GO) enrichment analyses of the target genes of these three miRNAs were
carried out using the OmicShare datasets (enrichment was considered
significant at P < 0.01) to identify the BPs, CCs, MFs, and pathways
associated with the differentially expressed miRNAs.

Cell culture and transfection
HSCR pathogenesis is driven by defects in ganglion cells that are derived
from neural crest cells.27 Neuroblastomas are a group of sympathetic
ganglia tumors derived from primitive neural crest cells.28 Separation of
primary enteric neurons from HSCR patients is difficult, and few neurons
can be obtained.29 Due to the limitations of obtaining the primary enteric
neurons of patients with HSCR and in accordance with previous
research,30–32 human SH-SY5Y and SK-N-BE(2) cells, which are derived
from neuroblastoma, were used in this study. Both cell lines were obtained
from the American Type Culture Collection (Rockville, MD), grown in
Dulbecco’s modified Eagle’s medium (Gibco, Carlsbad) supplemented with
10% fetal bovine serum and incubated at 37 °C with 5% CO2. In the
transfection experiments, synthetic hsa-miR-200a-3p, hsa-miR-192-5p, and
hsa-miR-200b-3p mimics (Tsingke Biotechnology, Wuhan, China; the
sequences are shown in Table 1) were transfected using a RiboBio FECT™
CP Transfection Kit following the manufacturer’s guidelines.

Cell proliferation assay
Cell growth was assessed with CCK-8 Kit (Dojindo, Tokyo, Japan) following
the manufacturer’s guidelines. Cell viability assays were conducted according
to our previously described method.33 (The OD was detected at 450 nm.)

Migration assays
Scratch wound assay. Cells were seeded into 6-well plates (2 × 105 cells
per well) and incubated until confluent. The middle of the well was
scratched using a 100-μL pipette tip. The two cell lines were then cultured
in a complete medium with or without miRNA mimics. Cells between the
two borders of the migrating cell layer were photographed after 0, 24, and
48 h, and the width of the scratch was measured using the ImageJ
software.34 The ratio of migration area was calculated as follows: migration
area rate (%)= (A0− An)/(A0 × 100), where A0 is the wound area at the 0 h
time point and An is the wound area at the respective measurement time.

Transwell assay. The two cell lines were transfected with or without
miRNA mimics. After transfection for 48 h, both cell lines were seeded in
the upper chamber of the Transwell plate (Corning-Costar, Shanghai,
China) containing a filter with 8-μm pore size. The assay was conducted
according to our previously described method.33 The migrated cells on the
bottom of each chamber membrane were counted manually using the
ImageJ software.

Luciferase reporter assay
The TargetScan and StarBase databases were used to analyze the 3′-
untranslated regions (UTRs) of ZEB2 and FNDC3B as potential binding sites
of miR-192-5p, miR-200a-3p, and miR-200b-3p. The 3′-UTR sequences of
ZEB2 and FNDC3B containing the miR-192-5p, miR-200a-3p, and miR-200b-
3p and mutant 3′-UTR sequences were cloned into the psiCHECKTM-2
vector (Tsingke Biotechnology, Wuhan, China). SH-SY5Y and SK-N-BE(2)
cells were transfected with a mixture of ZEB2 and FNDC3B wild type or
mutant type and mimic NC, miR-192 mimics, miR-200a mimics, or miR-
200b mimics for approximately 48 h. Then, the cells were harvested using a
luminometer to measure the firefly and Renilla luciferase activities.

Western blot
Tissue or cellular proteins were extracted from 1× cell radioimmunopre-
cipitation assay lysis buffer (Beyotime, Wuhan, China). Western blotting
was conducted according to our previously described method33 with
antibodies against ZEB2 (A5705, ABclonal, Wuhan, China), FNDC3B (22605-
1-AP, Proteintech, Wuhan, China), and β-actin (AC026, ABclonal, Wuhan,
China).

Study design, participants, and sample material
The human tissue study was approved by the Ethics Committee of
Tongji Medical College, Huazhong University of Science and Technology
(approval number IORG0003571) and carried out in accordance with the
Declaration of Helsinki. Whole-blood samples from 40 patients with
diagnosed HSCR (30 boys and 10 girls) and 40 sex- and age-matched
controls with no congenital disease were obtained from the Depart-
ment of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, China. Written
informed consent was obtained from the guardians of all participants.
After surgery, HSCR diagnoses were confirmed by pathological
examination and bowel samples were obtained. Exclusion criteria were
established to prevent confounding effects of other congenital
disorders. Blood samples were collected and placed in EDTA tubes
before surgery. Serum was obtained by centrifugation and stored in
RNase-free tubes in liquid nitrogen.

RT-qPCR
RT-qPCR was conducted according to our previously described method33

with the following PCR forward primers: hsa-miR-192-5p, 5′-CCTGACCTA
TGAATTGACAGCC-3′; hsa-miR-200a-3p, 5′-GGCTAACACTGTCTGGTAACGA
TGT-3′; hsa-miR-200b-3p, 5′-GGCTAATACTGCCTGGTAATGATGA-3′; U6: 5′-
CTCGCTTCGGCAGCACA-3′; and the common reverse primer 5′-GT
GCAGGGTCCGAGGT-3′. ZEB2 and FNDC3B primer sets were as follows: for
human ZEB2, 5′-CCTCTGTAGATGGTCCAGTGA-3′ (forward) and 5′-GTCA
CTGCGCTGAAGGTACT-5′ (reverse); FNDC3B, 5′-ATAGCCAAGAGGTGGT
GTGC-3′ (forward) and 5′-TACTCCACTGCAACGTGACC-3′ (reverse); beta-

Table 1. Sequence of miRNA mimics and negative controls (NCs) used
in this study.

Primer name Sequence (5′–3′) Length

hsa-miR-192-
5p mimics

CUGACCUAUGAAUUGACAGCC 21

GGCUGUCAAUUCAUAGGUCAG 21

hsa-miR-200a-
3p mimics

UAACACUGUCUGGUAACGAUGU 22

ACAUCGUUACCAGACAGUGUUA 22

hsa-miR-200b-
3p mimics

UAAUACUGCCUGGUAAUGAUGA 22

UCAUCAUUACCAGGCAGUAUUA 22

Mimic NC UCACAACCUCCUAGAAAGAGUAGA 24

UCUACUCUUUCUAGGAGGUUGUGA 24
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actin, 5′-GCACTCTTCCAGCCTTCCT-3′ (forward) and 5′-AGGTCTTTGCGG
ATGTCCAC-3′ (reverse).

Statistical analyses
The information was analyzed by using the χ2 test, unpaired Student’s t
test, or repeated-measures analysis of variance. The data were conducted
by GraphPad Prism 8.0 software. All experiments were performed in
triplicate, and the results are displayed as the mean ± SD. Asterisk indicates
P < 0.05 and NS indicates no significance. Exact P values are shown in
Supplementary Table S2.

RESULTS
Screening and identification of differentially expressed
miRNAs and colon tissue-specific miRNAs in HSCR
Mining of the RNA-sequencing data deposited in the GEO
database (GSE77296) was performed to identify differential miRNA
expression in aganglionic and GB tissue from three children. In

total, 725 miRNAs with a log 2 FC > 1 and P < 0.01 were identified,
of which 55 were downregulated and 106 were upregulated. A
volcano plot was generated showing the expression of all
downregulated and upregulated genes (Fig. 1a). To identify
molecular markers relevant to HSCR, we screened colon tissue-
specific miRNAs using the TAM 2.0 database, and hsa-miR-192-5p,
hsa-miR-200a-3p, and hsa-miR-200b-3p were identified as colon
tissue-specific. In addition, we further searched the GEO database
(GSE77296), and the results showed that these three miRNAs were
significantly increased in AB compared with paired GB (Fig. 1b).

MiRNA–target gene regulatory network analysis
MiRNAs play major roles in regulating mRNA expression. The
StarBase database was used to predict the target genes of these
miRNAs, and Cytoscape was used to visualize the regulation of
miRNA–mRNA interactions (Fig. 2). The target genes of these three
miRNAs are listed in Appendix Table S1.
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Fig. 1 Identification of differentially expressed miRNAs and screening colon tissue-specific miRNAs in HSCR. a MiRNA expression profiles
in paired normal and HSCR bowel samples are shown in the volcano plot; 55 miRNAs were downregulated and 106 were upregulated in
aganglionic bowel tissue. b Mining of the public GEO database (GSE77296) revealing the miR-192-5p, miR-200a-3p, and miR-200b-3p
transcription levels in HSCR ganglionic bowels and aganglionic bowels.
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KEGG pathway and GO functional enrichment analysis of
target genes
KEGG pathway and GO functional annotation analyses were
performed with the target genes of the three miRNAs. After GO
term enrichment analysis, 55 GO terms, including CC, MF, and BP
terms, and KEGG pathways were identified, and we obtained the
top 20 most significantly enriched terms (Fig. 3a–d). The
following CC terms were mainly enriched in the target genes:
cell, cell part, organelle part, and membrane (Fig. 3a). MF terms
mainly enriched in the target genes included binding, catalytic
activity, transcription regulator activity, and MF regulators
(Fig. 3b). BP terms enriched in the target genes included
positive regulation of cellular processes, biological regulation,
regulation of BPs, and metabolic process (Fig. 3c). KEGG pathway
analysis indicated that the pathways most enriched with the
targets of the three upregulated miRNAs were microRNAs in
cancer, axon guidance, ErbB signaling pathway, and focal
adhesion (Fig. 3d).

MiRNA mimics inhibit cell proliferation and migration
We tested the effects of overexpressing the three miRNAs on SH-
SY5Y and SK-N-BE(2) cell growth and migration. Stable transfec-
tion of the three miRNA mimics resulted in overexpression of the
corresponding miRNAs in these two cell lines. In these two cell
lines transfected with these three miRNA mimics, the CCK-8
assay (Fig. 4a) and Matrigel invasion (Fig. 4b) and scratch wound
(Fig. 4c) assays revealed decreased cell proliferation and
migration, respectively. These data showed that these three
miRNAs play major roles in regulating cell proliferation and
migration.

MiR-192, miR-200a, and miR-200b modulate functions by
inhibiting the target genes of ZEB2 and FNDC3B
To investigate how these three miRNAs regulate proliferation and
migration, we first analyzed these three miRNA–target genes from
the StarBase database. Based on the overlapping analysis of these
three miRNA–target genes, we focused on ZEB2 and FNDC3B, both
of which can interact with miR-192, miR-200a, and miR-200b
(Fig. 5a). Next, we used the TargetScan database to predict
binding sites of the 3′-UTR between these three miRNAs and two
target genes (Supplementary Fig. S1). Dual-luciferase assays
indicated that the relative activity was decreased in SH-SY5Y
(Fig. 5b) and SK-N-BE(2) (Supplementary Fig. S2) cells transfected
with miR-192-5p, miR-200a-3p, and miR-200b-3p mimics in wild-
type 3′-UTR plasmids of ZEB2 and FNDC3B compared with the
miRNA NC group. However, when transfected with the 3′-UTR
mutant vector of ZEB2 and FNDC3B and these three miRNA
mimics, there was no significant change in the dual-luciferase
activity compared with the control group. Then, qRT-PCR (Fig. 5c)
and western blot (Fig. 5d) assays revealed that transfection of
these three miRNA mimics led to both the transcription and
protein levels of ZEB2 and FNDC3B being downregulated in these
two cell lines compared with miRNA NC. These findings indicated
that ZEB2 and FNDC3B were direct target genes of miR-192-5p,
miR-200a-3p, and miR-200b-3p.

Upregulation of miRNA-192/-200a/-200b in AB segments and
plasma of HSCR patients
To verify the microarray analysis results, we investigated the
mRNA levels of these three mRNAs in 40 AB samples and paired
GB samples of HSCR patients using RT-qPCR. The clinical
information of the participants is summarized in Table 2.
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Fig. 2 MiRNA–target gene interactions. Interaction network of miRNA–mRNA in HSCR; the red dots represent miRNAs, and the green dots
represent target genes.
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Consistent with the microarray results, RT-qPCR indicated that the
three miRNAs were significantly upregulated in aganglionic tissue
(Fig. 6a). Moreover, in HSCR tissue specimens, the transcription
levels of ZEB2 and FNDC3B were negatively correlated with the
expression of these three miRNAs (Fig. 6b). We further detected
the expression of these three miRNA–target genes in Hirsch-
sprung tissue specimens by western blot (Fig. 6c and Supple-
mentary Fig. S3), and the results showed that ZEB2 and FNDC3B
were significantly reduced in HSCR AB tissue compared with
paired GB tissue. To determine the potential peripheral HSCR
biomarkers, we analyzed the transcript levels of the three miRNAs
in plasma from HSCR patients (n= 40) and controls (non-HSCR
children, n= 40). The levels of these three miRNAs in plasma
samples were highly expressed in children with HSCR compared
with non-HSCR patients (Fig. 6d). These data indicated that these
three plasma miRNAs could function as promising HSCR
biomarkers.

DISCUSSION
HSCR is a digestive tract condition in neonates that manifests as
incomplete colonization by neural crest-derived cells,35 and its
diagnosis is based on a combination of clinical manifestations,
contrast enema followed by radiology, anorectal manometry, and
rectal biopsy.36,37 Diagnosis by rectal biopsy is most sensitive and
specific, but requires examination of ganglion cells in serial
sections of formalin-fixed tissue and acetylcholinesterase histo-
chemistry using frozen sections.38 However, identifying ganglion
cells in neonates can be difficult.39

The use of plasma miRNA has specific advantages for diagnostic
purposes. MiRNAs originating in the bowel can cross the
endothelium to communicate with the gut and distant organs
through the bloodstream.40 MiRNAs are associated with numerous
human pathologies, and blood-based miRNAs have become a
potential source of diagnostic biomarkers.41 Therefore, these
studies indicated the possibility of profiling tissue-specific miRNAs
found in plasma.
To elucidate the possible roles of miRNAs in HSCR and find

biomarkers for the early diagnosis of HSCR that can be evaluated

by noninvasive blood-based testing, we compared the profiles
of dysregulated miRNAs between AB and GB samples in HSCR
from the public GEO (GSE77296) database, finding that 106
miRNAs were highly expressed and 55 miRNAs were down-
regulated in the AB relative to the GB. Analysis of the TAM 2.0
database showed that hsa-miR-200a, hsa-miR-192, and hsa-miR-
200b are colon tissue-specific genes. GO and KEGG enrichment
analyses indicated that the target genes of these miRNAs were
enriched in various processes that may be associated with the
proliferation and migration of neural crest-derived cells.
Previous findings have shown that dysregulation of the ErbB
pathway leads to developmental disorders of human gastro-
intestinal motility.42 These three miRNAs decreased cell growth
and migration and could inhibit the enteric nervous system. In
addition, our study discovered that these three miRNAs were
significantly upregulated in aganglionic segment tissues and in
plasma from patients with HSCR. These findings show that these
three miRNAs could be used as noninvasive biomarkers.
Previous research has shown that hsa-miR-192-5p participates
in the pathophysiology of Crohn’s disease and colorectal
cancer.43 Moreover, among the three miRNAs, hsa-miR-192-5p
has been used to predict survival in patients with stage IIIB colon
cancer.44 HSCR is a severe neonatal defect in which the distal
bowel lacks ganglion cells.45 These three miRNAs were
upregulated in aganglionic tissues and in plasma from patients
with HSCR, suggesting that they may be used as biomarkers for
HSCR. Through luciferase and western blot assays, the mechan-
ism at the base of these three miRNAs reduced viability and
migration through interaction with ZEB2 and FNDC3B. Our
research indicated that ZEB2 and FNDC3B were downregulated
in HSCR children with AB, and the inhibition of ZEB2 expression
could reduce neuronal differentiation in HSCR.46 We further
explored the mechanism of the increase in these three miRNAs
through the TransmiR v2.0 database,47 which is a transcription
factor-miRNA regulation database. We explored the transcrip-
tion factors that coregulate these three miRNAs through the
TransmiR v2.0 database, and the results showed that there were
a total of 25 transcription factors (Supplementary Fig. S4a). Next,
we selected transcription factors that were statistically signifi-
cant and tissue-specific in the digestive tract, and only the
transcription factors ATF2 and TFAP4 were identified (Supple-
mentary Fig. S4b). Therefore, we speculate that the transcription
factors ATF2 and TFAP4 regulate and upregulate three miRNAs
in HSCR.
Despite these findings, this study has some limitations. First,

the number of miRNA profiles of HSCR samples that we obtained
from GSE77296 was small, resulting in bias when analyzing the
miRNAs. Second, there are currently 40 specimens for verification,
but this is far from sufficient, and more tissues and blood samples
are needed to verify the results. Third, although the pathogenesis
underlying the overexpression of these three miRNAs in the
aganglionic colon suggests that they are related to the
transcription factors ATF2 and TFAP4, further verification is
needed.
In conclusion, by mining the miRNA expression profiles of HSCR

bowel segments coupled with analysis of the TAM 2.0 database,
we identified three colon tissue-specific miRNAs and explored
their signaling pathways. Our data indicated that hsa-miR-192-5p,
hsa-miR-200a-3p, and hsa-miR-200b-3p are upregulated in AB
segments and in the plasma of patients with HSCR. The portfolio
of HSCR biomarkers,6,9,10 including plasma miRNA biomarkers,
should be used complementarily to provide blood-based testing
approaches to facilitate the early diagnosis of HSCR. As these three
miRNAs are promising HSCR markers with great diagnostic value,
their identification represents an important step toward develop-
ing a noninvasive and low-risk diagnostic test.

Table 2. Clinical characteristics of the subjects.

Variables Control
training group

HSCR
training group

P value

Number 40 40

Gender 0.1035

Male 27 30

Female 13 10

Age (months) 0.0339

<6 5 8

>6 35 32

Birth weight 0.0775

Low
birth weight

4 10

Normal
birth weight

36 30

HSCR type

Short
segment

– 21

Long segment – 19

Total colonic – -
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Fig. 6 Hsa-miRNA-192/-200a/-200b expression was highly upregulated in HSCR aganglionic bowel and blood. a RT-qPCR analysis of these
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