Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hemodynamic dysfunction in neonatal sepsis

Abstract

Cardiovascular disturbances are a frequent occurrence in neonatal sepsis. Preterm and term infants are particularly vulnerable due to the unique features of their cardiovascular function and reserve, compared to older children and adults. The clinical manifestations of neonatal sepsis are a product of the variable inflammatory pathways involved (warm vs. cold shock physiology), developmental state of the cardiovascular system, and hormonal responses. Targeted neonatal echocardiography has played an important role in advancing our knowledge, may help delineate specific hemodynamic phenotypes in real-time, and supports an individualized physiology-based management of sepsis-associated cardiovascular dysfunction.

Impact

Cardiovascular dysfunction is a common sequela of sepsis. This review aims to highlight the pathophysiological mechanisms involved in hemodynamic disturbance in neonatal sepsis, provide insights from targeted neonatal echocardiography-based clinical studies, and suggest its potential incorporation in day-to-day management.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hemodynamic considerations among preterm infants with sepsis.
Fig. 2: Management of suspected late-onset sepsis and septic shock.

References

  1. 1.

    Shane, A. L., Sánchez, P. J. & Stoll, B. J. Neonatal sepsis. Lancet 390, 1770–1780 (2017).

    PubMed  Google Scholar 

  2. 2.

    Weiss, S. L. et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Intens. Care Med. 46, 10–67 (2020).

    CAS  Google Scholar 

  3. 3.

    Ceneviva, G., Paschall, J. A., Maffei, F. & Carcillo, J. A. Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics 102, e19 (1998).

    CAS  PubMed  Google Scholar 

  4. 4.

    Peverill, R. E. Understanding preload and preload reserve within the conceptual framework of a limited range of possible left ventricular end-diastolic volumes. Adv. Physiol. Educ. 44, 414–422 (2020).

    PubMed  Google Scholar 

  5. 5.

    Drosatos, K. et al. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr. Heart Fail. Rep. 12, 130–140 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Greer, J. Pathophysiology of cardiovascular dysfunction in sepsis. BJA Educ. 15, 316–321 (2015).

    Google Scholar 

  7. 7.

    Giesinger, R. E. et al. Controversies in the identification and management of acute pulmonary hypertension in preterm neonates. Pediatr. Res. 82, 901–914 (2017).

    PubMed  Google Scholar 

  8. 8.

    Sorensen, G. K., & Redding, G. J. (1984, October). Cardiopulmonary effects of sepsis in the newborn. In Seminars in Respiratory Medicine Vol. 6 141–147. (Thieme Medical Publishers, Inc., 1984).

  9. 9.

    Noori, S., Friedlich, P., Seri, I. & Wong, P. Changes in myocardial function and hemodynamics after ligation of the ductus arteriosus in preterm infants. J. Pediatr. 150, 597–602 (2007).

    PubMed  Google Scholar 

  10. 10.

    Wolf, A. R. & Humphry, A. T. Limitations and vulnerabilities of the neonatal cardiovascular system: considerations for anesthetic management. Pediatr. Anesth. 24, 5–9 (2014).

    Google Scholar 

  11. 11.

    Tibby, S. M., Hatherill, M., Marsh, M. J. & Murdoch, I. A. Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch. Dis. Child. 77, 516–518 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    LeFlore, J. L. & Engle, W. D. Capillary refill time is an unreliable indicator of cardiovascular status in term neonates. Adv. Neonatal Care 5, 147–154 (2005).

    PubMed  Google Scholar 

  13. 13.

    Osborn, D., Evans, N. & Kluckow, M. Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch. Dis. Child. Fetal Neonatal Ed. 89, F168–F173 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Miletin, J., Pichova, K. & Dempsey, E. Bedside detection of low systemic flow in the very low birth weight infant on day 1 of life. Eur. J. Pediatr. 168, 809 (2009).

    CAS  PubMed  Google Scholar 

  15. 15.

    Strozik, K. S., Pieper, C. H. & Cools, F. Capillary refilling time in newborns-optimal pressing time, sites of testing and normal values. Acta Paediatr. 87, 310–312 (1998).

    CAS  PubMed  Google Scholar 

  16. 16.

    Strozik, K. S., Pieper, C. H. & Roller, J. Capillary refilling time in newborn babies: normal values. Arch. Dis. Child Fetal Neonatal Ed. 76, F193–F196 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Raju, N. V., Maisels, M. J., Kring, E. & Schwarz-Warner, L. Capillary refill time in the hands and feet of normal newborn infants. Clin. Pediatr. 38, 139–144 (1999).

    CAS  Google Scholar 

  18. 18.

    Devinck, A., Keukelier, H., De Savoye, I., Desmet, L. & Smets, K. Neonatal blood pressure monitoring: visual assessment is an unreliable method for selecting cuff sizes. Acta Paediatr. 102, 961–964 (2013).

    CAS  PubMed  Google Scholar 

  19. 19.

    Kent, A. L., Kecskes, Z., Shadbolt, B. & Falk, M. C. Normative blood pressure data in the early neonatal period. Pediatr. Nephrol. 22, 1335–1341 (2007).

    PubMed  Google Scholar 

  20. 20.

    Kent, A. L., Meskell, S., Falk, M. C. & Shadbolt, B. Normative blood pressure data in non-ventilated premature neonates from 28–36 weeks gestation. Pediatr. Nephrol. 24, 141–146 (2009).

    PubMed  Google Scholar 

  21. 21.

    Pejovic, B., Peco-Antic, A. & Marinkovic-Eric, J. Blood pressure in non-critically ill preterm and full-term neonates. Pediatr. Nephrol. 22, 249–257 (2007).

    PubMed  Google Scholar 

  22. 22.

    Baczynski, M. et al. Bloodstream Infections in Preterm Neonates and Mortality-Associated Risk Factors. J. Pediatr. 237, 206–212.e1. https://doi.org/10.1016/j.jpeds.2021.06.031 (2021).

    PubMed  Google Scholar 

  23. 23.

    Takci, S., Yigit, S., Korkmaz, A. & Yurdakök, M. Comparison between oscillometric and invasive blood pressure measurements in critically ill premature infants. Acta Paediatr. 101, 132–135 (2012).

    PubMed  Google Scholar 

  24. 24.

    Briassoulis, G. Arterial pressure measurement in preterm infants. Crit. Care Med. 14, 735–738 (1986).

    CAS  PubMed  Google Scholar 

  25. 25.

    Levene, M. et al. Development of audit measures and guidelines for good practice in the management of neonatal respiratory distress syndrome. Arch. Dis. Child. 67, 1221–1227 (1992).

    Google Scholar 

  26. 26.

    Ince, C. et al. The endothelium in sepsis. Shock 45, 259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Dugas, B., Mossalayi, M. D., Damais, C. & Kolb, J.-P. Nitric oxide production by human monocytes: evidence for a role of Cd23. Immunol. Today 16, 574–580 (1995).

    CAS  PubMed  Google Scholar 

  28. 28.

    Sciorati, C. et al. Generation of nitric oxide by the inducible nitric oxide synthase protects Γδ T cells from Mycobacterium tuberculosis-induced apoptosis. J. Immunol. 163, 1570–1576 (1999).

    CAS  PubMed  Google Scholar 

  29. 29.

    Nathan, C. Inducible nitric oxide synthase: what difference does it make?. J. Clin. Investig. 100, 2417–2423 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Matejovic, M. et al. Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock 21, 458–465 (2004).

    CAS  PubMed  Google Scholar 

  31. 31.

    Ungureanu-Longrois, D., Balligand, J.-L., Kelly, R. A. & Smith, T. W. Myocardial contractile dysfunction in the systematic inflammatory response syndrome: role of a cytokine-inducible nitric oxide synthase in cardiac myocytes. J. Mol. Cell. Cardiol. 27, 155–167 (1995).

    CAS  PubMed  Google Scholar 

  32. 32.

    Lorente, J. A. et al. Role of nitric oxide in the hemodynamic changes of sepsis. Crit. Care Med. 21, 759–767 (1993).

    CAS  PubMed  Google Scholar 

  33. 33.

    Kirkebøen, K. & Strand, Ø. The role of nitric oxide in sepsis—an overview. Acta Anaesthesiol. Scand. 43, 275–288 (1999).

    PubMed  Google Scholar 

  34. 34.

    Tschaikowsky, K., Sdner, S., Lehnert, N., Kaul, M. & Ritter, J. Endothelin in septic patients: effects on cardiovascular and renal function and its relationship to proinflammatory cytokines. Crit. Care Med. 28, 1854–1860 (2000).

    CAS  PubMed  Google Scholar 

  35. 35.

    Freeman, B. D., Machado, F. S., Tanowitz, H. B. & Desruisseaux, M. S. Endothelin-1 and its role in the pathogenesis of infectious diseases. Life Sci. 118, 110–119 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Goto, T. et al. Endothelin receptor antagonist attenuates inflammatory response and prolongs the survival time in a neonatal sepsis model. Intens. Care Med. 36, 2132–2139 (2010).

    CAS  Google Scholar 

  37. 37.

    Marom, D., Yuhas, Y., Sirota, L., Livni, G. & Ashkenazi, S. Nitric oxide levels in preterm and term infants and in premature infants with bacteremia. Neonatology 86, 160–164 (2004).

    CAS  Google Scholar 

  38. 38.

    Figueras-Aloy, J. et al. Plasma endothelin-1 and clinical manifestations of neonatal sepsis. J. Perinat Med. 32, 522–526. https://doi.org/10.1515/JPM.2004.126 (2004).

    CAS  PubMed  Google Scholar 

  39. 39.

    Wynn, J. L. & Wong, H. R. Pathophysiology and treatment of septic shock in neonates. Clin. Perinatol. 37, 439–479 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Virág, M., Leiner, T., Rottler, M., Ocskay, K. & Molnar, Z. Individualized hemodynamic management in sepsis. J. Pers. Med. 11, 157 (2021).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Bessler, H. et al. Cd14 receptor expression and lipopolysaccharide-induced cytokine production in preterm and term neonates. Neonatology 80, 186–192 (2001).

    CAS  Google Scholar 

  42. 42.

    Kumar, A., Parrillo, J. E. & Kumar, A. Clinical review: myocardial depression in sepsis and septic shock. Crit. Care 6, 1–9 (2002).

    Google Scholar 

  43. 43.

    Cunnion, R. E., Schaer, G. L., Parker, M. M., Natanson, C. & Parrillo, J. E. The coronary circulation in human septic shock. Circulation 73, 637–644 (1986).

    CAS  PubMed  Google Scholar 

  44. 44.

    Cuenca, J., Martín-Sanz, P., Álvarez-Barrientos, A. M., Boscá, L. & Goren, N. Infiltration of inflammatory cells plays an important role in matrix metalloproteinase expression and activation in the heart during sepsis. Am. J. Pathol. 169, 1567–1576 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Altit, G., Vigny-Pau, M., Barrington, K., Dorval, V. & Lapointe, A. 174: corticosteroid therapy in neonatal management of shock. Paediatr. Child Health 20, e96–e96 (2015).

    Google Scholar 

  46. 46.

    Alanee, A., H. & Azeez, S. Effect of hydrocortisone therapy on the outcome of neonatal sepsis. Med. J. Tikrit Univ. 17, 177–186 (2011).

    Google Scholar 

  47. 47.

    Ni, M. et al. Use of vasopressin in neonatal intensive care unit patients with hypotension. J. Pediatr. Pharmacol. Ther. 22, 430–435 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Frayn, K. N. Hormonal control of metabolism in trauma and sepsis. Clin Endocrinol (Oxf). 24, 577–599 (1986).

    CAS  Google Scholar 

  49. 49.

    van der Poll, T. Effects of catecholamines on the inflammatory response. Sepsis 4, 159–167 (2001).

    Google Scholar 

  50. 50.

    Mitra, J. K., Roy, J. & Sengupta, S. Vasopressin: its current role in anesthetic practice. Indian J. Crit. Care Med. 15, 71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Demiselle, J., Fage, N., Radermacher, P. & Asfar, P. Vasopressin and its analogues in shock states: a review. Ann. Intens. Care 10, 1–7 (2020).

    Google Scholar 

  52. 52.

    Mutlu, G. M. & Factor, P. Role of vasopressin in the management of septic shock. Intens. Care Med. 30, 1276–1291 (2004).

    Google Scholar 

  53. 53.

    Landry, D. W. et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 95, 1122–1125 (1997).

    CAS  PubMed  Google Scholar 

  54. 54.

    Aradhya, A. S. et al. Low vasopressin and progression of neonatal sepsis to septic shock: a prospective cohort study. Eur. J. Pediatr. 179, 1147–1155 (2020).

    CAS  PubMed  Google Scholar 

  55. 55.

    Patel, A. et al. Vasopressin for septic shock in a medical-surgical intensive care unit. Can. J. Hosp. Pharm. 73, 209 (2020).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Prigent, H., Maxime, V. & Annane, D. Clinical review: corticotherapy in sepsis. Crit. Care 8, 1–8 (2003).

    Google Scholar 

  57. 57.

    Fernandez, E. & Watterberg, K. Relative adrenal insufficiency in the preterm and term infant. J. Perinatol. 29, S44–S49 (2009).

    PubMed  Google Scholar 

  58. 58.

    Ng, P. et al. Refractory hypotension in preterm infants with adrenocortical insufficiency. Arch. Dis. Child. Fetal Neonatal Ed. 84, F122–F124 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Scott, S. M. & Watterberg, K. L. Effect of gestational age, postnatal age, and illness on plasma cortisol concentrations in premature infants. Pediatr. Res. 37, 112–116 (1995).

    CAS  PubMed  Google Scholar 

  60. 60.

    Khashana, A., Ojaniemi, M., Leskinen, M., Saarela, T. & Hallman, M. Term neonates with infection and shock display high cortisol precursors despite low levels of normal cortisol. Acta Paediatr. 105, 154–158 (2016).

    CAS  PubMed  Google Scholar 

  61. 61.

    Zielińska, K. A., Van Moortel, L., Opdenakker, G., De Bosscher, K. & Van den Steen, P. E. Endothelial response to glucocorticoids in inflammatory diseases. Front. Immunol. 7, 592 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Bersten, A. D. & Holt, A. W. Vasoactive drugs and the importance of renal perfusion pressure. N. Horiz. 3, 650–661 (1995).

    CAS  Google Scholar 

  63. 63.

    Bezemer, R. et al. Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging. Opt. Express 18, 15054–15061 (2010).

    CAS  PubMed  Google Scholar 

  64. 64.

    Zarbock, A., Gomez, H. & Kellum, J. A. Sepsis-induced AKI revisited: pathophysiology, prevention and future therapies. Curr. Opin. Crit. Care 20, 588 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Zarbock, A., Gomez, H. & Kellum, J. A. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr. Opin. Crit. Care 20, 588–595 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Mathur, N., Agarwal, H. S. & Maria, A. Acute renal failure in neonatal sepsis. Indian J. Pediatr. 73, 499–502 (2006).

    CAS  PubMed  Google Scholar 

  67. 67.

    Peck, T. J. & Hibbert, K. A. Recent advances in the understanding and management of ARDS. F1000Research 8, F1000 Faculty Rev–1959 (2019).

  68. 68.

    de Jong, H. K., van der Poll, T. & Wiersinga, W. J. The systemic pro-inflammatory response in sepsis. J. Innate Immun. 2, 422–430 (2010).

    PubMed  Google Scholar 

  69. 69.

    Vincent, J.-L., Zhang, H., Szabo, C. & Preiser, J.-C. Effects of nitric oxide in septic shock. Am. J. Respir. Crit. Care Med. 161, 1781–1785 (2000).

    CAS  PubMed  Google Scholar 

  70. 70.

    Fujishima, S. Pathophysiology and biomarkers of acute respiratory distress syndrome. J. Intens. Care 2, 1–6 (2014).

    Google Scholar 

  71. 71.

    De Luca, D. et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir. Med. 5, 657–666 (2017).

    PubMed  Google Scholar 

  72. 72.

    Joyce, J. J. et al. Normal right and left ventricular mass development during early infancy. Am. J. Cardiol. 93, 797–801 (2004).

    PubMed  Google Scholar 

  73. 73.

    Marijianowski, M. M., van der Loos, C. M., Mohrschladt, M. F. & Becker, A. E. The neonatal heart has a relatively high content of total collagen and type I collagen, a condition that may explain the less compliant state. J. Am. Coll. Cardiol. 23, 1204–1208 (1994).

    CAS  PubMed  Google Scholar 

  74. 74.

    Archie, J. G., Collins, J. S. & Lebel, R. R. Quantitative standards for fetal and neonatal autopsy. Am. J. Clin. Pathol. 126, 256–265 (2006).

    PubMed  Google Scholar 

  75. 75.

    Anderson, P. A. Fetal and neonatal physiology and pharmacology. Curr. Opin. Cardiol. 5, 3–16 (1990).

    Google Scholar 

  76. 76.

    Kane, C., Couch, L. & Terracciano, C. Excitation–contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes. Front. Cell Dev. Biol. 3, 59 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Bensley, J. G., Moore, L., De Matteo, R., Harding, R. & Black, M. J. Impact of preterm birth on the developing myocardium of the neonate. Pediatr. Res. 83, 880–888 (2018).

    PubMed  Google Scholar 

  78. 78.

    Friedman, W. F. & George, B. L. Treatment of congestive heart failure by altering loading conditions of the heart. J. Pediatr. 106, 697–706 (1985).

    CAS  PubMed  Google Scholar 

  79. 79.

    Romero, T., Covell, J. & Friedman, W. F. A comparison of pressure-volume relations of the fetal, newborn, and adult heart. Am. J. Physiol. 222, 1285–1290 (1972).

    CAS  PubMed  Google Scholar 

  80. 80.

    Rowland, D. G. & Gutgesell, H. P. Noninvasive assessment of myocardial contractility, preload, and afterload in healthy newborn infants. Am. J. Cardiol. 75, 818–821 (1995).

    CAS  PubMed  Google Scholar 

  81. 81.

    Parrillo, J. E. Pathogenetic mechanisms of septic shock. N. Engl. J. Med. 328, 1471–1477 (1993).

    CAS  PubMed  Google Scholar 

  82. 82.

    Aneja, R. K. & Carcillo, J. A. Differences between adult and pediatric septic shock. Miner. Anestesiol. 77, 986–992 (2011).

    CAS  Google Scholar 

  83. 83.

    McKiernan, C. A. & Lieberman, M. Circulatory shock in children. Pediatr. Rev. 26, 451 (2005).

    PubMed  Google Scholar 

  84. 84.

    Singh, Y., Katheria, A. C. & Vora, F. Advances in diagnosis and management of hemodynamic instability in neonatal shock. Front. Pediatr. 6, 2 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Wright, I. M. & Dyson, R. M. in Microcirculation Revisited—From Molecules to Clinical Practice. (ed. Lenasi, H.) (IntechOpen, 2016).

  86. 86.

    Noori, S. et al. Hemodynamic changes after low-dosage hydrocortisone administration in vasopressor-treated preterm and term neonates. Pediatrics 118, 1456–1466 (2006).

    PubMed  Google Scholar 

  87. 87.

    Alvira, C. M. Aberrant pulmonary vascular growth and remodeling in bronchopulmonary dysplasia. Front. Med. 3, 21 (2016).

    Google Scholar 

  88. 88.

    Mertens, L. et al. Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training: Writing Group of the American Society of Echocardiography (Ase) in Collaboration with the European Association of Echocardiography (Eae) and the Association for European Pediatric Cardiologists (Aepc). Eur. J. Echocardiogr. 12, 715–736 (2011).

    PubMed  Google Scholar 

  89. 89.

    Kharrat, A., McNamara, P. J., Weisz, D. & Jain, A. Merits and perils of targeted neonatal echocardiography-based hemodynamic research: a position statement. Can. J. Physiol. Pharmacol. 97, 183–186 (2019).

    CAS  PubMed  Google Scholar 

  90. 90.

    de Waal, K. & Evans, N. Hemodynamics in preterm infants with late-onset sepsis. J. Pediatr. 156, 918–922.e911 (2010).

    PubMed  Google Scholar 

  91. 91.

    Abdel-Hady, H. E., Matter, M. K. & El-Arman, M. M. Myocardial dysfunction in neonatal sepsis: a tissue Doppler imaging study. Pediatr. Crit. Care Med. 13, 318–323 (2012).

    PubMed  Google Scholar 

  92. 92.

    Tomerak, R. H., El-Badawy, A. A., Hussein, G., Kamel, N. R. & Razak, A. R. Echocardiogram done early in neonatal sepsis: What does it add? J. Investig. Med. 60, 680–684 (2012).

    PubMed  Google Scholar 

  93. 93.

    Saini, S. S., Kumar, P. & Kumar, R. M. Hemodynamic changes in preterm neonates with septic shock: a prospective observational study*. Pediatr. Crit. Care Med. 15, 443–450 (2014).

    PubMed  Google Scholar 

  94. 94.

    Ramadhina, N. et al. Ventricular function and high-sensitivity cardiac troponin T in preterm infants with neonatal sepsis. Paediatr. Indones. 55, 203–208 (2015).

    Google Scholar 

  95. 95.

    Awany, M., Tolba, O., Al-Biltagi, M., Al-Asy, H. & El-Mahdy, H. Cardiac functions by tissue doppler and speckle tracking echocardiography in neonatal sepsis and its correlation with sepsis markers and cardiac troponin-T. J. Pediatr. Neonatal Care 5, 184–181 (2016).

    Google Scholar 

  96. 96.

    Alzahrani, A. Cardiac function affection in infants with neonatal sepsis. J. Clin. Trial 7, 329 (2017). 870.

    Google Scholar 

  97. 97.

    Deshpande, S., Suryawanshi, P., Chaudhary, N. & Maheshwari, R. Cardiac output in late onset neonatal sepsis. J. Clin. Diagn. Res. 11, 25–28 (2017).

    Google Scholar 

  98. 98.

    Fahmey, S. S., Hodeib, M., Refaat, K. & Mohammed, W. Evaluation of myocardial function in neonatal sepsis using tissue doppler imaging. J. Matern. Fetal Neonatal Med. 33, 3752–3756 (2020).

    PubMed  Google Scholar 

  99. 99.

    Deshpande, S. et al. Pulmonary hypertension in late onset neonatal sepsis using functional echocardiography: a prospective study. J. Ultrasound (2021). Epub ahead of print.

  100. 100.

    Saini, S. S., Sundaram, V., Kumar, P. & Rohit, M. K. Functional echocardiographic preload markers in neonatal septic shock. J. Matern. Fetal Neonatal Med. 1–8 (2021). Online ahead of print.

  101. 101.

    Yengkhom, R. et al. Point of care neonatal ultrasound in late-onset neonatal sepsis. J. Neonatol. 09732179211007599 (2021).

  102. 102.

    Verma, B., Daga, S. R. & Mahapankar, A. Persistent pulmonary hypertension among neonates with sepsis. Indian J. Pediatr. 73, 250–251 (2006).

    PubMed  Google Scholar 

  103. 103.

    Abdel Mohsen, A. H. & Amin, A. S. Risk factors and outcomes of persistent pulmonary hypertension of the newborn in neonatal intensive care unit of Al-Minya University Hospital in Egypt. J. Clin. Neonatol. 2, 78–82 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    De Simone, G. & Pasanisi, F. Systolic, diastolic and pulse pressure: pathophysiology. Ital. Heart J. Suppl. 2, 359–362 (2001).

    PubMed  Google Scholar 

  105. 105.

    Kharrat, A. et al. The relationship between blood pressure parameters and left ventricular output in neonates. J. Perinatol. 39, 619–625 (2019).

    PubMed  Google Scholar 

  106. 106.

    Sassano-Higgins, S., Friedlich, P. & Seri, I. A meta-analysis of dopamine use in hypotensive preterm infants: blood pressure and cerebral hemodynamics. J. Perinatol. 31, 647–655 (2011).

    CAS  PubMed  Google Scholar 

  107. 107.

    De Backer, D., Aldecoa, C., Njimi, H. & Vincent, J.-L. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit. Care Med. 40, 725–730 (2012).

    PubMed  Google Scholar 

  108. 108.

    Avni, T. et al. Vasopressors for the treatment of septic shock: systematic review and meta-analysis. PLoS ONE 10, e0129305 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Rhodes, A. et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intens. Care Med. 43, 304–377 (2017).

    Google Scholar 

  110. 110.

    Martin, C., Papazian, L., Perrin, G., Saux, P. & Gouin, F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 103, 1826–1831 (1993).

    CAS  PubMed  Google Scholar 

  111. 111.

    Martin, C., Viviand, X., Arnaud, S., Vialet, R. & Rougnon, T. Effects of norepinephrine plus dobutamine or norepinephrine alone on left ventricular performance of septic shock patients. Crit. Care Med. 27, 1708–1713 (1999).

    CAS  PubMed  Google Scholar 

  112. 112.

    De Backer, D., Creteur, J., Silva, E. & Vincent, J.-L. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: Which is best? Crit. Care Med. 31, 1659–1667 (2003).

    PubMed  Google Scholar 

  113. 113.

    Martin, C., Viviand, X., Leone, M. & Thirion, X. Effect of norepinephrine on the outcome of septic shock. Crit. Care Med. 28, 2758–2765 (2000).

    CAS  PubMed  Google Scholar 

  114. 114.

    Martin, K. & Weiss, S. L. Initial resuscitation and management of pediatric septic shock. Miner. Pediatr. 67, 141 (2015).

    CAS  Google Scholar 

  115. 115.

    Tourneux, P., Rakza, T., Abazine, A., Krim, G. & Storme, L. Noradrenaline for management of septic shock refractory to fluid loading and dopamine or dobutamine in full‐term newborn infants. Acta Paediatr. 97, 177–180 (2008).

    CAS  PubMed  Google Scholar 

  116. 116.

    Rizk, M., Lapointe, A., Lefebvre, F. & Barrington, K. Norepinephrine infusion improves haemodynamics in the preterm infants during septic shock. Acta Paediatr. 107, 408–413 (2018).

    CAS  PubMed  Google Scholar 

  117. 117.

    Baske, K., Saini, S. S., Dutta, S. & Sundaram, V. Epinephrine versus dopamine in neonatal septic shock: a double-blind randomized controlled trial. Eur. J. Pediatr. 177, 1335–1342 (2018).

    CAS  PubMed  Google Scholar 

  118. 118.

    Ezaki, S. et al. Levels of catecholamines, arginine vasopressin and atrial natriuretic peptide in hypotensive extremely low birth weight infants in the first 24 h after birth. Neonatology 95, 248–255 (2009).

    CAS  PubMed  Google Scholar 

  119. 119.

    Matok, I. et al. Terlipressin as rescue therapy for intractable hypotension during neonatal septic shock. Pediatr. Crit. Care Med. 5, 116–118 (2004).

    PubMed  Google Scholar 

  120. 120.

    Meyer, S., Gottschling, S., Baghai, A., Wurm, D. & Gortner, L. Arginine-vasopressin in catecholamine-refractory septic versus non-septic shock in extremely low birth weight infants with acute renal injury. Crit. Care 10, 1–6 (2006).

    Google Scholar 

  121. 121.

    Meyer, S., Löffler, G., Polcher, T., Gottschling, S. & Gortner, L. Vasopressin in catecholamine‐resistant septic and cardiogenic shock in very‐low‐birthweight infants. Acta Paediatr. 95, 1309–1312 (2006).

    PubMed  Google Scholar 

  122. 122.

    Altit, G., Vigny-Pau, M., Barrington, K., Dorval, V. G. & Lapointe, A. Corticosteroid therapy in neonatal septic shock—Do we prevent death? Am. J. Perinatol. 35, 146–151 (2018).

    PubMed  Google Scholar 

  123. 123.

    Baker, C. et al. Hydrocortisone administration for the treatment of refractory hypotension in critically ill newborns. J. Perinatol. 28, 412–419 (2008).

    CAS  PubMed  Google Scholar 

  124. 124.

    Johnson, P. J. Hydrocortisone for treatment of hypotension in the newborn. Neonatal Netw. 34, 46–51 (2015).

    PubMed  Google Scholar 

  125. 125.

    Feng, M. et al. Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database. Intens. Care Med. 44, 884–892 (2018).

    CAS  Google Scholar 

  126. 126.

    Dempsey, E. M. et al. Hypotension in Preterm Infants (Hip) Randomised Trial. Arch. Dis. Child. Fetal Neonatal Ed. 106, 398–403 (2021).

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

A.K. and A.J. both conceived and designed the review. A.K. drafted the manuscript and A.J. revised it critically. Both A.K. and A.J. approve the final version as submitted.

Corresponding author

Correspondence to Ashraf Kharrat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kharrat, A., Jain, A. Hemodynamic dysfunction in neonatal sepsis. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01855-2

Download citation

Search

Quick links