Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sensory stimulation for apnoea mitigation in preterm infants

Abstract

Apnoea, a pause in respiration, is ubiquitous in preterm infants and are often associated with physiological instability, which may lead to longer-term adverse neurodevelopmental consequences. Despite current therapies aimed at reducing the apnoea burden, preterm infants continue to exhibit apnoeic events throughout their hospital admission. Bedside staff are frequently required to manually intervene with different forms of stimuli, with the aim of re-establishing respiratory cadence and minimizing the physiological impact of each apnoeic event. Such a reactive approach makes apnoea and its associated adverse consequences inevitable and places a heavy reliance on human intervention. Different approaches to improving apnoea management in preterm infants have been investigated, including the use of various sensory stimuli. Despite studies reporting sensory stimuli of various forms to have potential in reducing apnoea frequency, non-invasive intermittent positive pressure ventilation is the only automated stimulus currently used in the clinical setting for infants with persistent apnoeic events. We find that the development of automated closed-looped sensory stimulation systems for apnoea mitigation in preterm infants receiving non-invasive respiratory support is warranted, including the possibility of stimulation being applied preventatively, and in a multi-modal form.

Impact

  • This review examines the effects of various forms of sensory stimulation on apnoea mitigation in preterm infants, namely localized tactile, generalized kinesthetic, airway pressure, auditory, and olfactory stimulations.

  • Amongst the 31 studies reviewed, each form of sensory stimulation showed some positive effects, although the findings were not definitive and comparative studies were lacking.

  • We find that the development of automated closed-loop sensory stimulation systems for apnoea mitigation is warranted, including the possibility of stimulation being applied preventatively, and in a multi-modal form.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Fairchild, K. et al. Clinical associations of immature breathing in preterm infants: part 1-central apnea. Pediatr. Res. 80, 21–27 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Di Fiore, J. et al. Cardiorespiratory events in preterm infants: interventions and consequences. J. Perinatol. 36, 251 (2016).

    PubMed  Google Scholar 

  3. 3.

    Miller, M. J., Carlo, W. A. & Martin, R. J. Continuous positive airway pressure selectively reduces obstructive apnea in preterm infants. J. Pediatr. 106, 91–94 (1985).

    CAS  PubMed  Google Scholar 

  4. 4.

    Schmidt, B. et al. Caffeine therapy for apnea of prematurity. N. Engl. J. Med. 354, 2112–2121 (2006).

    CAS  PubMed  Google Scholar 

  5. 5.

    Hagan, R., Bryan, A., Bryan, M. & Gulston, G. Neonatal chest wall afferents and regulation of respiration. J. Appl. Physiol. 42, 362–367 (1977).

    CAS  PubMed  Google Scholar 

  6. 6.

    Iscoe, S. & Polosa, C. Synchronization of respiratory frequency by somatic afferent stimulation. J. Appl. Physiol. 40, 138–148 (1976).

    CAS  PubMed  Google Scholar 

  7. 7.

    Ishida, K., Yasuda, Y. & Miyamura, M. Cardiorespiratory response at the onset of passive leg movements during sleep in humans. Eur. J. Appl. Physiol. Occup. Physiol. 66, 507–513 (1993).

    CAS  PubMed  Google Scholar 

  8. 8.

    Iwamoto, E. et al. The neural influence on the occurrence of locomotor–respiratory coordination. Respir. Physiol. Neurobiol. 173, 23–28 (2010).

    PubMed  Google Scholar 

  9. 9.

    Potts, J. T., Rybak, I. A. & Paton, J. F. Respiratory rhythm entrainment by somatic afferent stimulation. J. Neurosci. 25, 1965–1978 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lijowska, A. S., Reed, N. W., Chiodini, B. A. M. & Thach, B. T. Sequential arousal and airway-defensive behavior of infants in asphyxial sleep environments. J. Appl. Physiol. 83, 219–228 (1997).

    CAS  PubMed  Google Scholar 

  11. 11.

    Dong, L.-B., Li, Y.-F., Zhang, Y. & Qiao, S. A pilot study of limb stimulation for the treatment of neonatal apnea. Medicine 97, e12827 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Jirapaet, K. The effect of vertical pulsating stimulation on apnea of prematurity. J. Med. Assoc. 76, 319–326 (1993).

    CAS  Google Scholar 

  13. 13.

    Kattwinkel, J. et al. Apnea of prematurity. Comparative therapeutic effects of cutaneous stimulation and nasal continuous positive airway pressure. J. Pediatr. 86, 588–592 (1975).

    CAS  PubMed  Google Scholar 

  14. 14.

    Kesavan, K. et al. Neuromodulation of limb proprioceptive afferents decreases apnea of prematurity and accompanying intermittent hypoxia and bradycardia. PLoS ONE 11, e0157349 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Camargo, V. C., Honorato da Silva, S., Freitas de Amorim, M. & Nohama, P. Instrumentation for the detection and interruption of apnea episodes for premature newborn. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 2127–2130 (2014).

    Google Scholar 

  16. 16.

    Pichardo, R. et al. Vibrotactile stimulation system to treat apnea of prematurity. Biomed. Instrum. Technol. 37, 34–40 (2003).

    PubMed  Google Scholar 

  17. 17.

    Frank, U. A. et al. Treatment of apnea in neonates with an automated monitor-actuated apnea arrestor. Pediatrics 51, 878–883 (1973).

    CAS  PubMed  Google Scholar 

  18. 18.

    Lovell, J. et al. Vibrotactile stimulation for treatment of neonatal apnea: a preliminary study. Conn. Med. 63, 323–325 (1999).

    CAS  PubMed  Google Scholar 

  19. 19.

    Osborn, D. A. & Henderson-Smart, D. J. Kinesthetic stimulation for treating apnea in preterm infants. Cochrane Database Syst. Rev. 1999, CD000499 (2000).

  20. 20.

    Osborn, D. A. & Henderson‐Smart, D. J. Kinesthetic stimulation for preventing apnea in preterm infants. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000373, CD000373 (2002).

  21. 21.

    Mortola, J. P. Respiratory Physiology of Newborn Mammals: A Comparative Perspective (JHU Press, 2001).

  22. 22.

    Bloch-Salisbury, E., Indic, P., Bednarek, F. & Paydarfar, D. Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J. Appl. Physiol. 107, 1017–1027 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lehtonen, L. & Martin, R. J. Ontogeny of sleep and awake states in relation to breathing in preterm infants. Semin. Neonatol. 9, 229–238 (2004).

    PubMed  Google Scholar 

  24. 24.

    Svenningsen, N., Wittström, C. & Hellström-Westas, L. OSCILLO-oscillating air mattress in neonatal care of very preterm babies. Technol. Health Care 3, 43–46 (1995).

    CAS  PubMed  Google Scholar 

  25. 25.

    Jones, R. A. A controlled trial of a regularly cycled oscillating waterbed and a non-oscillating waterbed in the prevention of apnoea in the preterm infant. Arch. Dis. Child 56, 889–891 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Korner, A. F., Guilleminault, C., Van den Hoed, J. & Baldwin, R. B. Reduction of sleep apnea and bradycardia in preterm infants on oscillating water beds: a controlled polygraphic study. Pediatrics 61, 528–533 (1978).

    CAS  PubMed  Google Scholar 

  27. 27.

    Korner, A. F., Kraemer, H. C., Haffner, M. E. & Cosper, L. M. Effects of waterbed flotation on premature infants: a pilot study. Pediatrics 56, 361–367 (1975).

    CAS  PubMed  Google Scholar 

  28. 28.

    Korner, A. F., Ruppel, E. M. & Rho, J. M. Effects of water beds on the sleep and motility of theophylline-treated preterm infants. Pediatrics 70, 864–869 (1982).

    CAS  PubMed  Google Scholar 

  29. 29.

    Saigal, S., Watts, J. & Campbell, D. Randomized clinical trial of an oscillating air mattress in preterm infants: effect on apnea, growth, and development. J. Pediatr. 109, 857–864 (1986).

    CAS  PubMed  Google Scholar 

  30. 30.

    Tuck, S. et al. Effect of a rocking bed on apnoea of prematurity. Arch. Dis. Child 57, 475–477 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Smith, V. C. et al. Stochastic resonance effects on apnea, bradycardia, and oxygenation: a randomized controlled trial. Pediatrics 136, e1561–e1568 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ryan, C. A., Finer, N. N. & Peters, K. L. Nasal intermittent positive-pressure ventilation offers no advantages over nasal continuous positive airway pressure in apnea of prematurity. Am. J. Dis. Child. 143, 1196–1198 (1989).

    CAS  PubMed  Google Scholar 

  33. 33.

    Moretti, C. et al. Synchronized nasal intermittent positive pressure ventilation of the newborn: technical issues and clinical results. Neonatology 109, 359–365 (2016).

    PubMed  Google Scholar 

  34. 34.

    Abu-Osba, Y. K., Brouillette, R. T., Wilson, S. L. & Thach, B. T. Breathing pattern and transcutaneous oxygen tension during motor activity in preterm infants. Am. Rev. Respir. Dis. 125, 382–387 (1982).

    CAS  PubMed  Google Scholar 

  35. 35.

    Widdicombe, J. Henry Head and his paradoxical reflex. J. Physiol. 559(Part 1), 1 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Gizzi, C. et al. Is synchronised NIPPV more effective than NIPPV and NCPAP in treating apnoea of prematurity (AOP)? A randomised cross-over trial. Arch. Dis. Child Fetal Neonatal Ed. 100, F17–F23 (2015).

    PubMed  Google Scholar 

  37. 37.

    Lin, C. H., Wang, S. T., Lin, Y. J. & Yeh, T. F. Efficacy of nasal intermittent positive pressure ventilation in treating apnea of prematurity. Pediatr. Pulmonol. 26, 349–353 (1998).

    CAS  PubMed  Google Scholar 

  38. 38.

    Pantalitschka, T. et al. Randomised crossover trial of four nasal respiratory support systems for apnoea of prematurity in very low birthweight infants. Arch. Dis. Child Fetal Neonatal Ed. 94, F245–F248 (2009).

    CAS  PubMed  Google Scholar 

  39. 39.

    Lim, K. et al. Predicting apnoeic events in preterm infants. Front. Pediatr. 8, 570 (2020).

  40. 40.

    Dargaville, P. A. et al. An authentic animal model of the very preterm infant on nasal continuous positive airway pressure. Intens. Care Med. Exp. 3, 51 (2015).

    Google Scholar 

  41. 41.

    Uchida, M. O. et al. Effect of mother’s voice on neonatal respiratory activity and EEG delta amplitude. Dev. Psychobiol. 60, 140–149 (2018).

    PubMed  Google Scholar 

  42. 42.

    Ingersoll, E. W. & Thoman, E. B. The breathing bear: effects on respiration in premature infants. Physiol. Behav. 56, 855–859 (1994).

    CAS  PubMed  Google Scholar 

  43. 43.

    Cassidy, J. W. & Standley, J. M. The effect of music listening on physiological responses of premature infants in the NICU. J. Music Ther. 32, 208–227 (1995).

    Google Scholar 

  44. 44.

    Schwilling, D. et al. Live music reduces stress levels in very low‐birthweight infants. Acta Paediatr. 104, 360–367 (2015).

    CAS  PubMed  Google Scholar 

  45. 45.

    Shellhaas, R. A. et al. Maternal voice and infant sleep in the neonatal intensive care unit. Pediatrics 144, e20190288 (2019).

    PubMed  Google Scholar 

  46. 46.

    Parga, J. J. et al. A prospective observational cohort study of exposure to womb-like sounds to stabilize breathing and cardiovascular patterns in preterm neonates. J. Matern. Fetal Neonatal Med. 31, 2245–2251 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Doheny, L. et al. Exposure to biological maternal sounds improves cardiorespiratory regulation in extremely preterm infants. J. Matern. Fetal Neonatal Med. 25, 1591–1594 (2012).

    PubMed  Google Scholar 

  48. 48.

    Marlier, L. et al. Premature newborns differentiate the affective value of odours during sleep. J. Matern. Fetal Neonatal Med. 11(Suppl. 1), 64 (2002).

    Google Scholar 

  49. 49.

    Marlier, L., Schaal, B., Gaugler, C. & Messer, J. Olfaction in premature human newborns: detection and discrimination abilities two months before gestational term. Chem. Signals Vertebrates 9, 205–209 (2001).

  50. 50.

    Arzi, A. et al. The influence of odorants on respiratory patterns in sleep. Chem. Senses 35, 31–40 (2010).

    PubMed  Google Scholar 

  51. 51.

    Bartocci, M. et al. Activation of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy study. Pediatr. Res. 48, 18–23 (2000).

    CAS  PubMed  Google Scholar 

  52. 52.

    Aoyama, S. et al. Maternal breast milk odour induces frontal lobe activation in neonates: a NIRS study. Early Hum. Dev. 86, 541–545 (2010).

    PubMed  Google Scholar 

  53. 53.

    Marlier, L., Gaugler, C. & Messer, J. Olfactory stimulation prevents apnea in premature newborns. Pediatrics 115, 83–88 (2005).

    PubMed  Google Scholar 

  54. 54.

    Kanbur, B. N. & Balci, S. Impact of the odors of vanilla extract and breast milk on the frequency of apnea in preterm neonates. Jpn. J. Nurs. Sci. 17, e12271 (2020).

    PubMed  Google Scholar 

  55. 55.

    Edraki, M. et al. Olfactory stimulation by vanillin prevents apnea in premature newborn infants. Iran. J. Pediatr. 23, 261 (2013).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Aghagoli, S. et al. Aromatherapy with rosa damascenes in apnea, bradycardia and Spo2 of preterm infants; a randomized clinical trial. Int. J. Pediatr. 4, 1911–1918 (2016).

    Google Scholar 

  57. 57.

    Yaghoubi, S., Salmani, N., Dehghani, K. & DavoodiZadehJolgeh, H. Investigating effect of olfactory stimulation by vanilla on the rate of apnea attacks in neonates with apnea of prematurity: a randomized clinical trial. Int. J. Pediatr. 5, 6221–6229 (2017).

    Google Scholar 

  58. 58.

    Castillo, M. U., de Moraes Barros, M. C. & Guinsburg, R. Habituation responses to external stimuli: is the habituation of preterm infants at a postconceptual age of 40 weeks equal to that of term infants? Arch. Dis. Child 99, F402–F407 (2014).

    Google Scholar 

  59. 59.

    McNamara, F., Wulbrand, H. & Thach, B. T. Habituation of the infant arousal response. Sleep 22, 320–326 (1999).

    CAS  PubMed  Google Scholar 

  60. 60.

    Williamson, J. R., Bliss, D. W. & Paydarfar, D. Forecasting respiratory collapse: theory and practice for averting life-threatening infant apneas. Respir. Physiol. Neurobiol. 189, 223–231 (2013).

    PubMed  Google Scholar 

  61. 61.

    Garcia, A. P. & White-Traut, R. Preterm infants’ responses to taste/smell and tactile stimulation during an apneic episode. J. Pediatr. Nurs. 8, 245–252 (1993).

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by an Australian NHMRC Post-Graduate Scholarship to Dr. Kathleen Lim (#1190694), and an NHMRC Ideas Grant (#118251).

Author information

Affiliations

Authors

Contributions

K.L. conceived and conducted the review (with P.A.D), wrote the first draft of the manuscript and approved the final draft. S.J.E.C., A.B.t.P. and T.J.G provided intellectual input to the review, edited the manuscript and approved the final draft. P.A.D conceived and conducted the review (with K.L.), edited the manuscript and approved the final draft.

Corresponding author

Correspondence to Peter A. Dargaville.

Ethics declarations

Competing interests

All authors declare that this review was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, K., Cramer, S.J.E., te Pas, A.B. et al. Sensory stimulation for apnoea mitigation in preterm infants. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01828-5

Download citation

Search

Quick links