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BACKGROUND: Hypertensive disorders of pregnancy and maternal diabetes profoundly affect fetal and newborn growth, yet
disturbances in intermediate metabolism and relevant mediators of fetal growth alterations remain poorly defined. We sought to
determine whether there are distinct newborn screen metabolic patterns among newborns affected by maternal hypertensive
disorders or diabetes in utero.
METHODS: A retrospective observational study investigating distinct newborn screen metabolites in conjunction with data linked
to birth and hospitalization records in the state of California between 2005 and 2010.
RESULTS: A total of 41,333 maternal–infant dyads were included. Infants of diabetic mothers demonstrated associations with short-
chain acylcarnitines and free carnitine. Infants born to mothers with preeclampsia with severe features and chronic hypertension
with superimposed preeclampsia had alterations in acetylcarnitine, free carnitine, and ornithine levels. These results were further
accentuated by size for gestational age designations.
CONCLUSIONS: Infants of diabetic mothers demonstrate metabolic signs of incomplete beta oxidation and altered lipid
metabolism. Infants of mothers with hypertensive disorders of pregnancy carry analyte signals that may reflect oxidative stress via
altered nitric oxide signaling. The newborn screen analyte composition is influenced by the presence of these maternal conditions
and is further associated with the newborn size designation at birth.
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IMPACT:

● Substantial differences in newborn screen analyte profiles were present based on the presence or absence of maternal diabetes
or hypertensive disorder of pregnancy and this finding was further influenced by the newborn size designation at birth.

● The metabolic health of the newborn can be examined using the newborn screen and is heavily impacted by the condition of
the mother during pregnancy.

● Utilizing the newborn screen to identify newborns affected by common conditions of pregnancy may help relate an infant’s
underlying biological disposition with their clinical phenotype allowing for greater risk stratification and intervention.

BACKGROUND
The newborn screen (NBS), obtained via heel stick dried blood spot
collection, is a population metabolic screening test for inborn
errors of metabolism conducted by individual states on all
newborns shortly after birth.1 As such, the NBS reflects the
molecular phenotypic change among analytes of intermediate
metabolism caused by underlying biologic derangements that are
heritable. The NBS has also been used as a means of identifying
altered metabolic states of the newborn associated with clinical
disease unrelated to primary genetic or metabolic diagnoses.2–10

These studies demonstrate that the NBS can yield important
insights on metabolic disturbances associated with conditions

other than genetic inborn errors of metabolism, including
gestational dating, and the risks of acquired diseases of the
newborn, including sepsis, respiratory distress syndrome, hyper-
bilirubinemia, persistent pulmonary hypertension, necrotizing
enterocolitis (NEC), hypoxic–ischemic encephalopathy, and mor-
tality. However, the impact of common maternal conditions such
as diabetes and preeclampsia that may affect newborn metabolic
function as reflected in the NBS has not been widely explored.11

This knowledge gap is important as the NBS metabolic composi-
tion is influenced by the intrauterine environment and immediate
postnatal transition to extrauterine life.11–13 Although there are
studies that have evaluated the metabolic composition of
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newborns vis-à-vis the newborn growth status,14,15 we are not
aware of prior investigations that assess the metabolite composi-
tion of the newborn via the NBS for normal and growth-altered
states secondary to maternal conditions.
The effects of maternal diabetes and hypertensive disorders on

the fetus are often reflected in growth parameters that are
measured throughout gestation and at birth.16 Growth as
measured by anthropometric indices is largely defined by
epidemiologic standards and reference curves17–20 that help
clinicians weigh clinical risk of disease.21 For the fetus and
newborn, the maternal diabetic and hypertensive disorder
phenotypes are most profoundly expressed via metabolic-
dependent processes that manifest in extremes of newborn size
and include large for gestational age (LGA) and small for
gestational age (SGA) designations.22,23 The birth weight for age
designation of the newborn is critical, as significant short- and
long-term morbidity and mortality risk occurs secondary to in
utero growth disturbances. In addition, extremes of birth weight
place the infant at heightened risk for adult metabolic disease.24

Despite these sequelae, little is understood about the relationship
between maternal disorders of pregnancy, infant size, and effects
on the newborn metabolome.
The objective of this study was to determine whether there are

distinct NBS metabolic patterns among newborns affected by
maternal hypertensive disorders and diabetes in utero. We
hypothesized that the effects of maternal diabetes and hyperten-
sion on newborn metabolism and clinical growth phenotypes,
manifested as birth weight, can be quantified using universally
applied NBS analytes. Additionally, we posited that the NBS
analyte composition will enable us to develop a metabolic model
of fetal growth outliers. These findings are potentially significant
as greater mechanistic understanding of the means by which the
intrauterine environment contributes to newborn biologic vulner-
ability for acquired diseases associated with the growth altered
fetus is needed.

METHODS
We analyzed 41,333 singleton live births from a total of 3,175,992 singleton
live births in California between 2005 and 2010 by merging California
Perinatal Quality Care Collaborative (CPQCC) and California Office of
Statewide Health Planning and Development (OSHPD) birth and hospita-
lization records with California Biobank NBS analyte data (Supplemental
Fig. 1). NBS collection in California is mandatory for all newborns, with 80
different genetic and congenital disorders screened for. The NBS analytes
measured via tandem mass spectrometry includes acylcarnitines, amino
acids, and ratios of analytes as visible in Supplemental Table 1. For patients
born between January 2005 and November 2009, all newborns had at least
one blood spot collection for newborn screening performed between 12 h
and 8 days after birth. For infants born between December 2009 and
December 2010, data on timing of collection were not available. Data
regarding blood transfusions, missed NBSs, and other variables related to
timing of collection were also not available. The California Biobank
Program is the biospecimen and data repository of the California Genetic
Disease Screening Program (GDSP). This program oversees and administers
the NBS. Use of these data was approved by the California Committee for
the Protection of Human Subjects, CPQCC, and the Stanford University
Institutional Review Board.
Records obtained from the California GDSP included live born infants at

20–29 weeks gestation, a proportion of whom carried diagnoses of NEC,
retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), and
intraventricular hemorrhage (IVH). Records also included a random
sampling of liveborn infants born at 30–44 weeks gestation, none of
whom carried diagnoses of NEC, ROP, BPD, and IVH. From this case–control
collection of infants, we obtained NBS metabolite measurement values
from the California State Biobank and linked this with demographic
information and clinical data for both the newborn and the mother
obtained from OSHPD and CPQCC. These pooled records favored inclusion
of premature infants, as 33% of the study population included infants born
at <37 weeks gestation. This enabled us to more robustly examine for the
presence or absence of maternal conditions that may lead to early preterm

birth such as preeclampsia and more easily compare preterm and term
populations. Certain demographic and clinical data elements were
converted to categorical form. Additionally, gestational age records were
converted to 2-week intervals and birth weights were converted to 50-g
intervals. All forms of diabetes and hypertensive disorders were defined
using International Classification of Diseases (ICD)-9 code definitions that
were part of the hospital record (Supplemental Table 2). Size for age
definitions at birth were based on World Health Organization records of
normative data for fetal size.25

To determine NBS analyte associations with maternal outcomes of
interest including maternal diabetes and hypertensive disorders of
pregnancy, we used elastic net logistic regression modeling with repeated
tenfold cross-validation. The elastic net modeling assumed statistical
independence between all metabolite variables enabling us to observe
metabolites reflective of a given maternal condition. NBS metabolite
values were used as input features for elastic net logistic regression. Binary
indicators were used for the presence or absence of a given maternal
outcome and were subsequently used as labels for model training.
Controls were defined as mothers who did not have ICD-9 code
definitions of any form of diabetes or hypertensive disorder of pregnancy.
Hyperparameter tuning was performed on an inner K-fold cross-validation
loop on the training set to select an optimal strength of regularization for
metabolite feature selection using area under the receiver-operator curve
(AUROC) as the selection criteria for hyperparameter values. The optimal
hyperparameters were then used in a new model that was evaluated on
the test set. Performance was evaluated on the basis of AUROC for model
predictions made on test set samples. Model coefficients were collected at
the end of each tenfold cross-validation iteration to identify metabolites
that were the most predictive in identifying infants from mothers with
various conditions. For analysis of SGA and LGA outcomes of infants from
mothers with hypertensive or diabetic disorders of pregnancy, additional
regression correction was performed for the potentially confounding
covariates of cigarette smoking, body mass index, gestational age, and
maternal age. Models were then trained using residual metabolite values
after covariate correction.

RESULTS
The maternal and neonatal characteristics from the dataset are
depicted in Supplemental Tables 3 and 4. All mothers with any
form of diabetes were mutually exclusive of one another such
that, if a mother was diagnosed with gestational diabetes, she
did not have concurrent type 1 or type 2 diabetes. This was also
the case for mothers diagnosed with either hypertension or
preeclampsia. The relationship between infants’ NBS analytes
and maternal diabetes or hypertensive disorders was estimated
by the mean area under the AUROC curve as demonstrated in
Fig. 1. As elastic net excels in prediction, Fig. 1 describes the
relative predictive power of the NBS metabolites alone as
measured by AUROC values for each of the maternal outcomes
of interest. An AUROC value of 0.5 is suggestive of no
discriminatory capability or predictive power. Conversely, values
that approach zero or one suggest maximum negative or
positive predictive power. Among mothers with diabetes, the
NBS metabolites of infants exposed to type 1 diabetes best
reflected this condition with a mean AUROC= 0.838 ± 0.003. For
mothers with a hypertensive disorder of pregnancy, the NBS
metabolites of infants exposed to chronic hypertension with
superimposed preeclampsia best reflected this condition with a
mean AUROC= 0.907 ± 0.0007. All maternal conditions had
corresponding NBS metabolite values that uniquely reflected a
given exposure as demonstrated by each mean AUROC value
observed in Fig. 1.
Individual NBS metabolic analytes were also used to develop a

model via elastic net regression to identify mothers with analytes
reflective of all forms of diabetes, including gestational diabetes,
type 1 diabetes, or type 2 diabetes. Figure 2 describes the
importance (coefficients) and predictive power of the metabolites
in relation to one another for each individual model. For instance,
a coefficient of 0.2 is twice as important for model prediction as a
coefficient of 0.1. Only metabolites with the largest absolute
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coefficient values were ultimately selected. Analytes are grouped
according to model coefficient values. All coefficients greater than
or less than zero correspond with positive or negative predictive
capabilities. A coefficient value close to zero suggests minimal

predictive capability. Short-chain acylcarnitines C2, C3, C4, and C5
were predictive of gestational, type 1, and type 2 diabetes in
varying degrees. Free carnitine was also predictive of type 1 and
type 2 diabetes.
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Fig. 2 Box-and-whisker elastic net model coefficients for gestational diabetes, type 1 diabetes, and type 2 diabetes. Coefficients are
shown that demonstrate the relative importance and predictive power for each metabolite utilizing elastic net regression models trained to
identify cases of (a) gestational diabetes, (b) type 1 diabetes and (c) type 2 diabetes from newborn screening metabolite measurements. Box-
and-whisker plots reflect interquartile range with whiskers extending from hinges to the greatest value no larger than 1.5 * the interquartile
range. Box-and-whisker ranges reflect repeated modeling for 10 iterations. Only metabolites with coefficients highly predictive of any form of
diabetes were included. Abbreviations for newborn screen metabolites can be found in Supplemental Table 1.
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Similarly, NBS analytes were used to develop a model of
maternal hypertensive disorders (Fig. 3). For the preeclampsia
without severe features, preeclampsia with severe features, and
chronic hypertension with superimposed preeclampsia cohorts,
C2, FC, C5-DC, C18, and ornithine were notable analytes positively
predictive for the presence of disease. Citrulline was negatively
predictive in cases of preeclampsia without severe features and
preeclampsia with severe features. Additional analytes were
positively and negatively predictive with various forms of
hypertension or preeclampsia as visible in Fig. 3.
Further, the variable of infant size for gestational age was

introduced to the model and overlaid with our prior modeling for
diabetes and hypertensive disorders to determine whether there
were analytes specific to the LGA designation with and without
diabetes. Figure 4 includes plots for LGA infants delivered to
mothers without diabetes (x-axis) and LGA infants with any form
of diabetes (y-axis). Elastic net regression was used to identify
predictive analytes implicated, with Spearman correlation coeffi-
cients used for validation. Notable analytes associated and
predictive of LGA infants born to diabetic mothers include glycine,
C5-OH, C3, and long-chain acylcarnitines C14, C16, C18, and C18:1.
Figure 5 includes plots for SGA infants with and without any form
of preeclampsia, including cases of preeclampsia without severe
features, with severe features, and superimposed on chronic
hypertension. For SGA infants born to mothers with any form of
preeclampsia, notable analytes implicated in both the elastic net
regression prediction model and the Spearman correlation values
include phenylalanine, citrulline, C5:1, C4, and C5. Arginine was
positively associated and ornithine and citrulline were negatively
associated with being born SGA to a mother with any form of
preeclampsia in the Spearman correlation.

DISCUSSION
To our knowledge, this study is the largest to demonstrate that
there are characteristic metabolic signatures observed in new-
borns who have been delivered by mothers who had common
conditions of pregnancy, including hypertensive and diabetic

disorders. This study provides at least three novel findings. First,
the metabolic signs of insulin resistance are already present in
infants born to diabetic mothers, as evidenced by positive
associations with short-chain acylcarnitines and free carnitine,
both of which have been found to be elevated in various
metabolomic studies in animal models and patients with
diabetes.26–29 Second, for infants born to mothers with a
hypertensive disorder of pregnancy, there are significant changes
in analytes that may promote oxidative stress via altered nitric
oxide signaling and abnormal lipid metabolism. Metabolites
implicated in these pathways include C2, ornithine, citrulline,
and free carnitine.30–33 Lastly, the analyte composition in the
newborn is associated with a growth phenotype (i.e., SGA or LGA),
and this association is further influenced by the presence or
absence of maternal diabetes or hypertension. We posit that with
further investigation the analyte composition may act as a
biological taxonomy for the growth altered fetus, extending the
definitions of the SGA and LGA newborn and associated clinical
risk by reflecting underlying biological processes, rather than
relying on anthropometric indices alone.
Few prior studies have examined NBS metabolites to identify

metabolic signatures associated with pregnancy disorders that
also affect the newborn. Ryckman et al. observed that mothers
with preeclampsia had newborns with higher concentrations of
acylcarnitines and free carnitine on their NBS compared to non-
preeclamptic mothers.11 Jelliffe-Pawlowski et al. found that the
NBS metabolites could predict gestational age and that size for
gestational age was a variable that changed the predictive ability
of their model.10 A range of studies have utilized NBS metabolites
to predict newborn and pediatric conditions, with varying degrees
of success.2–11,34–36 Our results extend the extant literature in
several ways. NBS metabolites demonstrate a good ability to
reflect infant metabolic alterations associated with diabetic and
hypertensive disorders of pregnancy. As demonstrated in Fig. 1,
the more severe the maternal phenotype condition, the greater
the strength of association as predicted by the metabolite model
and reflected by the AUROC for the specific condition. Type 1
diabetes and chronic hypertension with superimposed
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preeclampsia, considered among the more severe clinical
phenotypes for their respective categories, had more robust
predictions of metabolic disturbance (highest AUROC values).
Although we did not have detailed information available on blood
pressure ranges or glycemic control, our findings suggest that a
greater degree of metabolic disruption in the neonate is present
as the maternal clinical phenotype varies and becomes increas-
ingly severe.
Since NBS analytes have been chosen by design to reflect

metabolic disturbances associated with specific genetic and/or
metabolic diseases, the analytes themselves robustly reflect
alterations in specific lipid and protein metabolic pathways.
Accordingly, through a detailed examination of the rank order of
coefficients for those analytes associated with a specific maternal
morbidity (Figs. 2 and 3), it is possible to gain greater insight to
potentially altered biologic pathways in the newborn resulting
from a given maternal morbidity and the implications thereof for
clinical outcome risk. There are several leading features that are
common to each of the maternal morbidity categories as reflected
across the models. For diabetes, there were consistent associa-
tions with analytes C2, C3, C5, C5-OH, and free carnitine. Although
not strongly observed in our investigation, other studies have
demonstrated that branched chain (leucine, isoleucine, and valine)
and aromatic amino acids (phenylalanine and tyrosine) are
associated and in some instances predictive of future diabetes.37

For instance, it has been postulated that in obese individuals
various metabolic signaling pathways lead to elevations in
branched chain amino acids and mechanistic target of rapamycin
signaling, which result in elevations in C3 and C5
acylcarnitines.27,38 C2 is also notable, as it associated with insulin
resistance and directly correlates with hemoglobin A1C levels in

adults, perhaps via its role in substrate switching at the level of the
mitochondrial membrane.29 In sum, associations with short-chain
acylcarnitines, C5-OH, and free carnitine in neonates born to
diabetic mothers suggests that the metabolic signs of insulin
resistance may already be present at birth. In fact, changes in
nutrition status over long periods of time can create an imprint or
“memory” of a metabolic disturbance that is passed down to
offspring via germ-line epigenetic changes.39–42 Our investigation
suggests that this effect may have been present for newborns
exposed to maternal diabetes and is reflected in the NBS
metabolites shortly after birth. Future studies that selectively
examine infants from pregnancies with well and poorly controlled
diabetes may help clinicians to understand, target, and design
mitigating strategies to prevent short- and long-term sequelae of
in utero hyperglycemia exposure.
Our results also suggest that there is a unique metabolic

signature for infants born to mothers with preeclampsia with
severe features that involves amino acids associated with the
production and signaling of nitric oxide, a known vasodilator and
mediator of blood pressure during pregnancy.43 While ornithine
was positively predictive for infants born to mothers with
preeclampsia with severe features and chronic hypertension with
superimposed preeclampsia, citrulline was negatively predictive
for infants born to any cohort of hypertensive disorders of
pregnancy (Fig. 3). The role of nitric oxide formation and
L-arginine metabolism in mothers with preeclampsia has received
considerable attention as both a possible pathologic mechanism
for preeclampsia and as a causal pathway for concomitant fetal
growth restriction.33,43 Ornithine serves as a by-product of
L-arginine via arginase, an important step in the urea cycle.
L-arginine also serves as the substrate for nitric oxide synthase in
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the production of nitric oxide. Disturbances in the levels of
vasodilators such as nitric oxide are known to cause endothelial
dysfunction, which has been hypothesized as a possible leading
cause of preeclampsia.33,43 There have been attempts to
therapeutically modify this pathway via sildenafil administration
albeit with limited success.44,45 In an analysis of all infants with
SGA who were born to mothers with any form of preeclampsia
(with or without severe features and/or superimposed on chronic
hypertension, Fig. 5), citrulline was again negatively associated
with SGA infants whose mothers had preeclampsia suggesting
that there may be a biologic relationship between urea cycle
intermediaries, preeclampsia, and SGA status.
The biologic mechanisms for growth altered fetuses affected by

diabetes and hypertensive disorders have not been fully eluci-
dated. There are, however, potentially significant clinical implica-
tions for gaining a deeper understanding of these mechanisms
given that many affected fetuses and newborns later develop
chronic health conditions as adolescents or adults.24,46–52 We
observed several metabolites (Fig. 4) that were consistently
associated with LGA newborns subject to maternal diabetes,
including C5-OH, glycine, and long-chain acylcarnitines C14, C16,
and C18. All of these metabolites have been previously linked with
macrosomia, insulin resistance, or sensitivity.26,27,29,53–55 Long-
chain acylcarnitines are of particular interest, as a preponderance
of evidence suggests that they serve as upstream participants in
pro-inflammatory pathways that help produce cyclooxygenase-2
and nuclear factor kB, resulting in macrophage activation and
interleukin-6 release.56–60 Given that many acquired diseases of the
neonate (NEC, BPD, patent ductus arteriosus, early-onset sepsis) are
mediated via changes in these pro-inflammatory mediators, it is
possible that elevations in long-chain acylcarnitines in LGA infants
of diabetic mothers deleteriously impact an already sensitized

inflammatory milieu. When examining SGA infants born to
preeclamptic mothers (Fig. 5), we see a vastly different metabolite
composition, which includes intermediates of nitric oxide forma-
tion (citrulline) and short-chain acylcarnitines, suggesting impaired
lipid metabolism. Intriguingly, the metabolite associations for each
maternal condition correspond with newborn size designations
and are wholly unique to the designated condition and the
associated newborn growth phenotype. Given that growth is an
energy-dependent process, examining the metabolic function of
the newborn may provide greater biologic insight into both the
appropriately sized and growth altered fetus and thus allow for a
more precise approach to risk stratify newborns as part of a clinical
application of the fetal origins of childhood and adult disease
hypothesis.
This is one of the largest studies to date using standardized NBS

laboratory methods to assess the metabolic profile at birth of
>40,000 newborns, with linked results to the presence or absence
of maternal disease and corresponding newborn size designation
at birth. However, there are a few limitations of this study. The
sample population was not random as this was a population study
that selected infants for specific diseases of prematurity. Because
many mothers who had preeclampsia delivered prematurely, it is
possible that the metabolites in these infants reflect metabolism
at younger gestational ages. There are also some variables such as
birth weight, exposure to total parenteral nutrition, blood
transfusions, enteral intake, and timing of NBS collection that
were not entirely controlled for. Further, maternal conditions such
as diabetes and hypertensive disorders of pregnancy may
contribute to both maternal and fetal oxidative or catabolic
stress.11,22,30 Given that we could not measure such stress impacts,
we cannot know whether our findings represent a direct or
indirect functional relationship to a pathway involving oxidative
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and/or catabolic stress or a function of the specific maternal
condition pathway directly. Additionally, given that analytes
measured on the NBS are markers of dynamic metabolic processes
that likely change over time, future studies will ideally assess the
NBS metabolic profile at multiple time points during and after
pregnancy to identify how maternal disease biometrics (e.g.,
blood pressure or glycemic control) change the analyte composi-
tion longitudinally. Moreover, our findings were derived from a
case–control study, and thus there was an oversampling relative
to the population base of preterm infants. To the extent that our
prediction models are unique to preterm infants, we are not
indicating specific metabolite screening cutoffs be inferred from
this work. Future investigations on a population cohort are
necessary to determine whether recommendations of metabolite
cutoffs might be warranted. Lastly, given that the NBS is a clinical
application of targeted metabolomics limited to a few dozen
analytes designed to alert to the possibility of specific heritable
diseases, we speculate that future non-targeted metabolomic
studies capable of examining hundreds to thousands of additional
analytes will reveal ever greater biologic insight and clinical
precision for applications in maternal and neonatal disease.
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