Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Click-evoked auditory brainstem responses and autism spectrum disorder: a meta-analytic investigation of disorder specificity

Abstract

Background

Click-evoked auditory brainstem response (ABR) alterations are associated with autism spectrum disorder (ASD), but the specificity of these findings to the disorder is unclear. We therefore performed a meta-analysis on ABRs and attention-deficit/hyperactivity disorder (ADHD), a neurodevelopmental disorder that shares some etiologic and symptom overlap with ASD.

Methods

Seven papers compared ABR latency components (I, III, V, I–III, III–V, and I–V) between participants with and without ADHD. We used random-effects regression to generate component-specific estimates (Hedges’s g) that adjusted for study sample sizes and the number of studies contributing to each estimate. We compared these estimates to our recently published meta-analysis of ABRs and ASD.

Results

All ADHD studies employed cross-sectional designs. ADHD was associated with longer latencies for waves III and V (g = 0.6, 95% confidence interval (CI) 0.3, 1.0 and g = 0.6, 95% CI 0.3, 0.9) and waves I–III and I–V (g = 0.7, 95% CI 0.2, 1.3 and g= 0.6, 95% CI 0.3, 1.0). Effect sizes from the ASD and ADHD meta-analyses did not differ from each other.

Conclusions

Similar patterns of ABR alterations are observed in ADHD and ASD. However, studies rarely screen for middle ear dysfunction or hearing loss and rely upon cross-sectional designs. Addressing these issues will inform the viability of ABRs as a prognostic and/or etiologic biomarker for these disorders.

Impact

  • Click-evoked ABR alterations are associated with ASD, but the specificity of these findings to the disorder is unclear. We therefore performed a meta-analysis of the association between ABRs and ADHD, a disorder that shares some etiologic and symptom overlap with ASD.

  • ADHD was associated with longer ABR latencies for several components. These components are identical to those implicated in ASD. Effect sizes were similar in magnitude across disorders.

  • The viability of ABRs as prognostic and/or etiologic biomarkers for neurodevelopmental risk requires addressing limitations in the literature (e.g., cross-sectional data, non-standardized ABR protocols, minimal characterization of symptom heterogeneity).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Study identification and selection process.
Fig. 2: Comparison of ABR latency effect size estimates (Hedges’s g, 95% CI) between participants with ADHD (current meta-analysis) and participants with ASD.7

References

  1. 1.

    Gliga, T., Jones, E. J., Bedford, R., Charman, T. & Johnson, M. H. From early markers to neuro-developmental mechanisms of autism. Dev. Rev. 34, 189–207 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Dawson, G. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev. Psychopathol. 20, 775–803 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Courchesne, E., Gazestani, V. H. & Lewis, N. E. Prenatal origins of ASD: the when, what, and how of ASD development. Trends Neurosci. 43, 326–342 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Newschaffer, C. J. et al. The epidemiology of autism spectrum disorders. Annu. Rev. Public Health 28, 235–258 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Stoner, R. et al. Patches of disorganization in the neocortex of children with autism. N. Engl. J. Med. 370, 1209–1219 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S. & Romano, J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol. 370, 247–261 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Talge, N. M., Tudor, B. M. & Kileny, P. R. Click-evoked auditory brainstem responses and autism spectrum disorder: a meta-analytic review. Autism Res. 11, 916–927 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Zwaigenbaum, L. et al. Studying the emergence of autism spectrum disorders in high-risk infants: methodological and practical issues. J. Autism Dev. Disord. 37, 466–480 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Moore, J. K. The human auditory brain stem as a generator of auditory evoked potentials. Hearing Res. 29, 33–43 (1987).

    CAS  Article  Google Scholar 

  10. 10.

    Ponton, C. W., Moore, J. K. & Eggermont, J. J. Auditory brain stem response generation by parallel pathways: differential maturation of axonal conduction time and synaptic transmission. Ear Hearing 17, 402–410 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Jerger, J. & Hall, J. Effects of age and sex on auditory brainstem response. Arch. Otolaryngol. 106, 387–391 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Li, M. et al. Sex and gestational age effects on auditory brainstem responses in preterm and term infants. Early Hum. Dev. 89, 43–48 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Jiang, Z. D., Brosi, D. M. & Wilkinson, A. R. Immaturity of electrophysiological response of the neonatal auditory brainstem to high repetition rates of click stimulation. Early Hum. Dev. 52, 133–143 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Jiang, Z. D., Brosi, D. M., Li, Z. H., Chen, C. & Wilkinson, A. R. Brainstem auditory function at term in preterm babies with and without perinatal complications. Pediatr. Res 58, 1164–1169 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Maziade, M. et al. Prolongation of brainstem auditory-evoked responses in autistic probands and their unaffected relatives. Arch. Gen. Psychiatry 57, 1077–1083 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Jerger, J., Chmiel, R., Tonini, R., Murphy, E. & Kent, M. Twin study of central auditory processing disorder. J. Am. Acad. Audiol. 10, 521–528 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Miron, O., Beam, A. L. & Kohane, I. S. Auditory brainstem response in infants and children with autism spectrum disorder: a meta-analysis of wave V. Autism Res. 11, 355–363 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Tu, S., Mason, C. A., Rooks-Ellis, D. L. & Lech, P. Odds of autism at 5 to 10 years of age for children who did not pass their automated auditory brainstem response newborn hearing screen, but were diagnosed with normal hearing. J. Early Hear. Detect. Interv. 5, 1–12 (2020).

    Google Scholar 

  19. 19.

    Cohen, I. L. et al. Neonatal brainstem function and 4-month arousal-modulated attention are jointly associated with autism. Autism Res. 6, 11–22 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Miller, M. et al. Sibling recurrence risk and cross-aggregation of attention deficit/hyperactivity disroder and autism spectrum disorder. JAMA Pediatr. 173, 147–152 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Karalunas, S. L. et al. Overlapping and distinct cognitive impairments in attention-deficit/hyperactivity and autism spectrum disorder without intellectual disability. J. Abnorm. Child Psychol. 46, 1705–1716 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Karalunas, S. L., Geurts, H. M., Konrad, K., Bender, S. & Nigg, J. T. Annual research review: reaction time variability in adhd and autism spectrum disorders: measurement and mechanisms of a proposed trans-diagnostic phenotype. J. Child Psychol. Psychiatry 55, 685–710 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Musser, E. D. et al. Shared familial transmission of autism spectrum and attention-deficit/hyperactivity disorders. J. Child Psychol. Psychiatry 55, 819–827 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Satterstrom, F. K. et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci. 22, 1961–1965 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Azzam, H. & Hassan, D. M. Speech-evoked auditory potentials in attention deficit hyperactivity disorder. Audiol. Med. 8, 129–136 (2010).

    Article  Google Scholar 

  26. 26.

    Ismail, N. & Amin, A. Auditory brainstem response in attention deficit hyperactivity disorders in children. Curr. Psychiatry 6, 63–69 (1999).

    Google Scholar 

  27. 27.

    Ahmed, M. A., El-Beh, K. A., Mohammad, T. A., Mansour, D. F. & Ezz-Eldine, M. Y. Learning disabilities in different types of attention deficit hyperactivity disorders in relation to cortical and brainstem function. J. Neurol. Res. 4, 22–30 (2014).

    Google Scholar 

  28. 28.

    Vaney, N., Anjana, Y. & Khaliq, F. No auditory conduction abnormality in children with attention deficit hyperactivity disorder. Funct. Neurol. 26, 159–163 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Jafari, Z., Malayeri, S. & Rostami, R. Subcortical encoding of speech cues in children with attention deficit hyperactivity disorder. Clin. Neurophysiol. 126, 325–332 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Lahat, E. et al. BAEP studies in children with attention deficit disorder. Dev. Med. Child Neurol. 37, 119–123 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Puente, A., Ysunza, A., Pamplona, M., Silva-Rojas, A. & Lara, C. Short latency and long latency auditory evoked responses in children with attention deficit disorder. Int. J. Pediatr. Otorhinolaryngol. 62, 45–51 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Skoe, E., Krizman, J., Anderson, S. & Kraus, N. Stability and plasticity of auditory brainstem function across the lifespan. Cereb. Cortex 25, 1415–1426 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Card, N. A. Applied Meta-Analysis for Social Science Research (Guilford Press, 2011).

  34. 34.

    Hueda-Medina, T. B., Sanchez-Meca, J., Marin-Martinez, F. & Batella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 11, 193–206 (2006).

    Article  Google Scholar 

  35. 35.

    Sersen, E. A., Heaney, G., Clausen, J., Belser, R. & Rainbow, S. Brainstem auditory-evoked responses with and without sedation in autism and Down’s syndrome. Biol. Psychiatry 27, 834–840 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Grillon, C., Courchesne, E. & Akshoomoff, N. Brainstem and middle latency auditory evoked potentials in autism and developmental language Disorder. J. Autism Dev. Disord. 19, 255–269 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Gillberg, C. & Gillberg, I. C. Infantile autism: a total population study of reduced optimality in the pre-, peri-, and neonatal period. J. Autism Dev. Disord. 13, 153–166 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Rumsey, J. M., Grimes, A. M., Pikus, A. M., Duara, R. & Ismond, D. R. Auditory brainstem responses in pervasive developmental disorders. Biol. Psychiatry 19, 1403–1418 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Taylor, M. J., Rosenblatt, B. & Linschoten, L. Auditory brainstem response abnormalities in autistic children. Can. J. Neurol. Sci. 9, 429–433 (1982).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Eggermont, J. J. On the rate of maturation of sensory evoked potentials. Electroencephalogr. Clin. Neurophysiol. 70, 293–305 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Rhode, W. S. & Greenberg, S. Physiology of the Cochlear Nuclei, Vol. 2, 95–145 (Springer, 1992).

  42. 42.

    Johnston, B. A. et al. Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Hum. Brain Mapp. 35, 5179–5189 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Travers, B. et al. Brainstem correlates of combined autism spectrum and attention-deficit/hyperactivity symptoms in children. In Society for Neuroscience (Chicago, IL 2019).

  44. 44.

    Lim, L. et al. Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLoS ONE 8, e63660 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Durston, S., van Belle, J. & de Zeeuw, P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol. Psychiatry 69, 1178–1184 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Castellanos, F. X. et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 288, 1740–1748 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Luo, F., Wang, Q., Kashani, A. & Yan, J. Corticofugal modulation of initial sound processing in the brain. J. Neurosci. 28, 11615–11621 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Nigg, J.T., Sibley, M. H., Tharpar, A. & Karalunas, S. L. Development of ADHD: etiology, heterogeneity, and early life course. Annu. Rev. Dev. Psychol. 2, 559–583 (2020).

  49. 49.

    Boedhoe, P. S. W. et al. Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the enigma ADHD, ASD, and OCD working groups. Am. J. Psychiatry 177, 834–843 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Insel, T. et al. Research Domain Criteria (Rdoc): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Russell, G., Rodgers, L. R., Ukoumunne, O. C. & Ford, T. Prevalence of parent-reported ASD and ADHD in the UK: findings from the millennium cohort study. J. Autism Dev. Disord. 44, 31–40 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Ghirardi, L. et al. The familial co-aggregation of asd and adhd: a register-based cohort study. Mol. Psychiatry 23, 257–262 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Ghirardi, L. et al. Genetic and environmental contribution to the overlap between ADHD and ASD trait dimensions in young adults: a twin study. Psychol. Med. 49, 1713–1721 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Jiang, Z. D., Brosi, D. M. & Wilkinson, A. R. Auditory neural responses to click stimuli of different rates in the brainstem of very preterm babies at term. Pediatr. Res. 51, 454–459 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Jacobson, J. T., Murray, T. J. & Deppe, U. The effects of ABR stimulus repetition rate in multiple sclerosis. Ear Hear. 8, 115–120 (1987).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Rubia, K. et al. Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology 57, 640–652 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Peterson, B. S. et al. An FMRI study of the effects of psychostimulants on default-mode processing during stroop task performance in youths with ADHD. Am. J. Psychiatry 166, 1286–1294 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Jiang, Z. D. Maturation of the auditory brainstem in low risk-preterm infants: a comparison with age-matched full term infants up to 6 years. Early Hum. Dev. 42, 49–65 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Jiang, Z. D., Zhou, Y., Ping, L. L. & Wilkinson, A. R. Brainstem auditory response findings in late preterm infants in neonatal intensive care unit. Acta Paediatr. 100, e51–e54 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Jiang, Z. D. & Li, Z. H. Mild maturational delay of the brainstem at term in late preterm small-for-gestation age babies. Early Hum. Dev. 91, 265–269 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Talge, N. M. et al. Late-preterm birth and its association with cognitive and socioemotional outcomes at 6 years of age. Pediatrics 126, 1124–1131 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M. & Anand, K. J. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288, 728–737 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Funding

The support for this analysis was provided, in part, by the National Institutes of Deafness and Other Communication Disorders (R21DC015550; R01DC019098) (to N.M.T.).

Author information

Affiliations

Authors

Contributions

Study conception, abstract and full-text reviews, effect size coding, data analysis, manuscript drafting: N.M.T.; reliability coding, effect size coding, manuscript edits: M.A.; manuscript edits and conceptual guidance: P.R.K.; abstract and full-text reviews, reliability coding, manuscript edits: I.F.

Corresponding author

Correspondence to Nicole M. Talge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Talge, N.M., Adkins, M., Kileny, P.R. et al. Click-evoked auditory brainstem responses and autism spectrum disorder: a meta-analytic investigation of disorder specificity. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01730-0

Download citation

Search

Quick links