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BACKGROUND: Metabolic regulation plays a significant role in energy homeostasis, and adolescence is a crucial life stage for the
development of cardiometabolic disease (CMD). This study aims to investigate the genetic determinants of metabolic biomarkers—
adiponectin, leptin, ghrelin, and orexin—and their associations with CMD risk factors.
METHODS: We characterized the genetic determinants of the biomarkers among Hispanic/Latino adolescents of the Santiago
Longitudinal Study (SLS) and identified the cumulative effects of genetic variants on adiponectin and leptin using biomarker
polygenic risk scores (PRS). We further investigated the direct and indirect effect of the biomarker PRS on downstream body fat
percent (BF%) and glycemic traits using structural equation modeling.
RESULTS: We identified putatively novel genetic variants associated with the metabolic biomarkers. A substantial amount of
biomarker variance was explained by SLS-specific PRS, and the prediction was improved by including the putatively novel loci.
Fasting blood insulin and insulin resistance were associated with PRS for adiponectin, leptin, and ghrelin, and BF% was associated
with PRS for adiponectin and leptin. We found evidence of substantial mediation of these associations by the biomarker levels.
CONCLUSIONS: The genetic underpinnings of metabolic biomarkers can affect the early development of CMD, partly mediated by
the biomarkers.

Pediatric Research (2022) 92:563–571; https://doi.org/10.1038/s41390-021-01729-7

IMPACT:

● This study characterized the genetic underpinnings of four metabolic hormones and investigated their potential influence on
adiposity and insulin biology among Hispanic/Latino adolescents.

● Fasting blood insulin and insulin resistance were associated with polygenic risk score (PRS) for adiponectin, leptin, and ghrelin,
with evidence of some degree of mediation by the biomarker levels. Body fat percent (BF%) was also associated with PRS for
adiponectin and leptin. This provides important insight on biological mechanisms underlying early metabolic dysfunction and
reveals candidates for prevention efforts.

● Our findings also highlight the importance of ancestrally diverse populations to facilitate valid studies of the genetic
architecture of metabolic biomarker levels.

INTRODUCTION
Obesity in early life and subsequent cardiometabolic disease
(CMD) is a major public health concern. In 2015–2016 in the US,

1 out of 5 adolescents aged 12–19 years were affected by obesity1

with a prevalence of 25.8% among self-identified Hispanic/Latino
(H/L) youth (aged 2–19 years) compared to 14.1% among non-
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Hispanic white youth.1 Such alarming data are not restricted to the
US H/L population, as many self-identified H/L populations in
South and Central America are also suffering. For example, Chilean
citizens also suffer from an increasing burden of obesity due to
the epidemiological and nutritional transition that began in the
1980s.2,3

Energy homeostasis is particularly critical in obesity biology4

since its related hormones play significant roles in balancing
energy expenditure and energy intake by exchanging physiolo-
gical information between the central nervous system and other
parts of the body.4,5 In this regard, appetite-related metabolic
hormones function as signaling molecules, and malfunction of this
system may interrupt energy homeostasis and consequently
contribute to the development of obesity.
Four such metabolic hormones—adiponectin, leptin, ghrelin,

and orexin—are involved in diverse cardiometabolic pathways.
Adiponectin is well known for its protective roles in appetite
regulation, energy metabolism, diabetes, and inflammation.6

Leptin shows anorexigenic and proinflammatory roles; individuals
with obesity tend to have higher levels of circulating leptin
together with leptin resistance.7 Ghrelin is an appetite-stimulating
gut hormone that has been associated with glucose metabolism,
which is closely linked to diabetes.8–11 Orexin is a hypothalamic
neuropeptide that regulates feeding behaviors and arousal
status12–14 and is ubiquitously expressed in different body sites,15

including plasma.16

There is a paucity of information on the genetic determinants of
metabolic biomarkers, particularly among adolescents and in H/L.
Such work is critical as H/L have continental ancestry and
admixture that is different than that found in European
populations. Moreover, the inter-relations among the genetic
underpinnings of metabolic biomarkers, phenotypic variability,
and downstream CMD risk factors (e.g., body fat percent (BF%)
and insulin resistance (IR)) among adolescents have also been
understudied. Previous studies have revealed that some obesity-
associated genetic factors are associated with appetite regula-
tion17,18 and Mendelian randomization studies have suggested
causal relationships between metabolic biomarkers and CMD risk
factors. However, studies focusing on the mediating roles of
metabolic biomarkers in the relationship between the genetic
underpinnings of metabolic biomarkers and CMD risk factors are
lacking.
We sought to address these important gaps in the literature by

first describing the known and novel large-effect genetic
determinants of the four metabolic biomarkers among H/L
adolescents (Fig. S1) and second by assessing the influence of
aggregated genetic contributions to each biomarker by construct-
ing polygenic risk scores (PRS) based on both known and novel
genetic loci. Lastly, we aimed to investigate the relationship
between the aggregated effects of biomarker-influencing genetic
factors on obesity and glycemic traits and to estimate the degree
to which this association is mediated by these biomarker levels.
Investigating these relationships among adolescents with a high
burden of obesity could provide critical insight into the biological
mechanisms of obesity and downstream CMD during adolescence.

METHODS
Study population
The Santiago Longitudinal Study (SLS) originally began as a preventive trial
for infancy iron deficiency anemia, funded by National Institutes of Health
(NIH-R01 HD014122).19 From 1991 to 1996, a total of 1792 infants were
recruited at community clinics in lower-/middle-class neighborhoods in
Santiago, Chile. Inclusion criteria for the infancy study were term singleton
birth, vaginal delivery, birth weight ≥3 kg, and absence of major perinatal
health problems.19 Follow-up studies occurred at 5, 10, and 16 years and
included anthropometric measurement, psychosocial data, and develop-
mental assessments.20,21 At 16 years, 679 adolescents completed a study of
risk for obesity and CMD that targeted participants with the most

comprehensive data in childhood. Data collected included anthropometric
measures, cardiovascular risk, and metabolic biomarkers from fasting blood
samples and self-reported health-related behaviors. Complete phenotype
and genotype data were available for 543 (80%) of these participants. The
study was reviewed and approved or found to be exempt by Institutional
Review Boards of the University of California at San Diego, University of
Michigan, University of North Carolina at Chapel Hill, and the Institute of
Nutrition and Food Technology, University of Chile.

Genetic data and quality control
Participants were genotyped on the Illumina Multiethnic Genotyping Array
with imputation to the 1000 Genomes Phase III AMR reference panel.
Quality control included individual call rate of >90%, assessment of sex
mismatch, relatedness, and ancestry outliers. Single-nucleotide poly-
morphisms (SNPs) with effect allele frequency <0.05, indels, and
imputation quality score <0.5 were excluded, resulting in ~6 million SNPs
that were assessed for their association with the biomarkers.

Measurement
Metabolic biomarkers. Fasting blood samples were obtained, stored at
−80 °C, and analyzed. Enzyme-linked immunosorbent assay was used to
measure adiponectin and leptin levels (R&D Systems, Minneapolis, MN and
DRG International, Inc., New Jersey, NJ, respectively). The radioimmunoas-
say (RIA) technique was utilized to quantify ghrelin and orexin-A levels
(Phoenix Pharmaceuticals, Inc., Burlingame CA).

BF%. Dual energy x-ray absorptiometry scan was used to measure body
fat mass (Lunar Prodigy Corp. Software: Lunar iDXA ENCORE 2011, Version
13.60.033, Madison, WI). BF% was calculated as [100 (%) × fat mass (kg)/
total body mass (kg)].

Glycemic traits. From overnight fasting blood, glucose and insulin levels
were quantified with an enzymatic colorimetric assay (QCA S.A., Amposta,
Spain) and RIA (RIA DCP Diagnostic Products Corporation, LA), respectively.
In addition, IR was assessed based on continuous measure of homeostatic
model assessment of insulin resistance (HOMA-IR; calculated as [(glucose
(mg/dL) × insulin (μUI/dL))/405]; a value of HOMA-IR ≥ 2.6 can be
diagnosed as IR).22

Analytical approach
Genome-wide association tests. We regressed four metabolic biomarkers
on SNPs using SUGEN,23 assuming an additive genetic model and
adjusting for sex and population substructure using the first five principal
components (PCs). PCs were constructed by EIGENSTRAT24 using genetic
information of the participants. Serum adiponectin, ghrelin, and orexin
levels were natural log-transformed before regression analyses. Due to a
detection limit issue in measuring leptin levels, rank-based normalized
residuals of a Tobit regression model adjusting for sex were used in the
genome-wide association analyses for leptin levels. To correct for multiple
testing, we considered SNPs with p value <5 × 10−8 as demonstrating
genome-wide significance and those with a p value <5 × 10−6 as
demonstrating suggestive significance. We identified putative novel loci
and reported the lead SNP from all 1 MB regions of the genome-wide
significant and/or suggestive significant associations where no previous
GWAS signal had been reported.

Validation of the genome-wide association study (GWAS) findings. For
adiponectin and leptin levels, we investigated whether the SNPs identified
from SLS demonstrated similar associations in a separate Mexican
American validation data set (see Supplementary Material for more
information). We considered a signal to be validated if the same SNP was
associated with the metabolic biomarker level at a Bonferroni-corrected
significance level (p < 0.05/the number of SNPs tested for validation for
each biomarker) with directional consistency.

Functional interrogation of putative novel signals. Among the validated
SNPs, we interrogated the potential candidate genes in each locus,
selected based on (1) the evidence of functional link to a genetic locus
(SNP) and (2) the previous reports on plausible gene functions. To examine
the functional connection between a SNP and a gene, we queried
the expression quantitative trait loci (eQTLs) from NIH Genotype-Tissue
Expression (GTEx) project25 and biologically plausible gene functions using
databases such as PubMed (https://pubmed.ncbi.nlm.nih.gov/), Online
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Mendelian Inheritance in Man (https://www.ncbi.nlm.nih.gov/omim), and
GeneCards (https://www.genecards.org/).

Transferability of known associations. We described the transferability of
known associations for adiponectin and leptin in SLS, defined when the
association was reported with the exact SNP at nominal statistical
significance (p < 0.05) and directional consistency. As of 15 December
2020, there were 48 and 15 previously reported SNPs associated with
adiponectin and leptin, respectively, at the genome-wide significance
level. There were no previously reported SNPs associated with ghrelin or
orexin levels at genome-wide significance.

Constructing PRS of adiponectin and leptin based on known and putative
novel loci. Given our small sample size and our desire to assess the
evidence of mediated effects of genetic variants for these biomarkers on
obesity and glycemic traits, we assessed the aggregated effects of
previously reported genetic loci for adiponectin and leptin levels by
constructing PRS. Since the previously reported SNPs were tag
SNPs primarily identified in the studies of Europeans, we considered
three different approaches to PRS construction: (1) PRS constructed only
by the previously reported SNPs (PRSReported), (2) PRS constructed by the
SLS-specific tagging SNPs of the known loci (i.e., the lowest p value within
+/−500 kb of the previously reported SNPs) (PRSSLS), and (3) PRS
constructed by both SLS-specific previous signals and putatively novel
signals from the current study (PRSSLS+ Novel). PRSReported was calculated by
summing the number of biomarker-increasing alleles of the previously
reported SNPs. If there were more than two SNPs in linkage disequilibrium
(LD) (AMR r2 > 0.2), we only included one tag SNP that was directionally
consistent and had the lowest p value among directionally consistent
SNPs. If any of them were not directionally consistent, we included the SNP
with the lowest p value. PRSSLS was defined as the number of biomarker-
increasing alleles of the SLS-specific SNPs with the lowest p values from the
current study among variants within +/−500 kb of the known SNPs. When
we observed correlated SLS-specific SNPs (AMR r2 > 0.2), we only included
the SNP with the lower p value for the association with the biomarker.
PRSSLS+ Novel was derived by summing up the PRSSLS and the number of
biomarker-increasing alleles of the SNPs with genome-wide significance or
suggestive significance from the current study.

Investigating the associations between the adiponectin and leptin levels and
the constructed PRS for the biomarker in the H/L population. We evaluated
the aggregated genetic effects on adiponectin and leptin levels among SLS
by regressing each biomarker (for adiponectin, ghrelin, and orexin, natural
log-transformed values; for leptin, rank-based inverse normalized residuals
of a Tobit regression adjusting for sex) on each PRS assuming a linear
relationship and assessing prediction model by comparing R2 (or adjusted
R2 for the models with covariates). Specifically, we compared four separate
models for each biomarker as follows: a model only including PRS of
the biomarker (Model 1), a model additionally including sex as a covariate
(Model 2), a model additionally including the first five PCs as covariates
(Model 3), and a model additionally including the body mass index (BMI)
Z-score (Model 4).

Investigating the relationship between the aggregated effects of biomarker-
influencing genetic factors on BF% and glycemic traits. Adjusting for sex
and the first five PCs, we estimated the total effect of the metabolic
biomarker PRS on BF% and glycemic traits (fasting blood glucose (FBG),
fasting blood insulin (FBI), and IR) and the percent mediated through the
biomarker levels using causal mediation analysis (PROC CAUSALMED) in
SAS 9.4 (SAS Institute Inc., Cary, NC).26,27 The proposed pathways, both
direct and indirect, from PRS to BF% and glycemic traits are shown in
Fig. S2. For adiponectin and leptin levels, all three types of PRS were
investigated; for ghrelin and orexin levels, only those suggestive signals
identified in the GWAS herein were used. All pathways, including those to
the biomarker and those to the cardiometabolic trait, were adjusted for sex
and the first five PCs. To further account for the potential heterogeneities
by sex, sex-stratified sensitivity analyses were conducted. In each stratified
analysis, age and the first five PCs were included as covariates. For leptin,
rank-based inverse normalized residuals of leptin from a Tobit regression
adjusting for age were included as mediator. And for the other biomarkers,
natural log-transformed biomarker levels were used as mediators.
Statistical significance was determined using Bonferroni-corrected p
values. The results of sex-stratified analyses were presented in
Tables S12–15.

RESULTS
Descriptive statistics
Table 1 reports the descriptive statistics from the 543 SLS
participants (259 females) included in the current analyses. The
average levels of adiponectin, leptin, ghrelin, and orexin were
11.3 μg/mL (SD: 5.3), 11.7 ng/mL (SD:13.5), 239.6 pg/mL (SD: 151.0),
and 16.7 pg/mL (SD: 4.2), respectively. The descriptive character-
istics of the validation sample are shown in Table S1.

Identification of novel signals
No SNP–metabolic biomarker associations displayed genome-
wide statistically significant evidence of association. However, 8, 5,
13, and 8 loci displayed suggestive associations with adiponectin,
leptin, ghrelin, and orexin, respectively. The lead SNPs, nearest
genes, and corresponding p values for adiponectin, leptin, ghrelin,
and orexin are reported in Table 2.

Validation of putative novel signals
Ten of the 13 adiponectin- or leptin-associated SNPs were
available in the validation set. Of the examined genetic markers
for validation (6 for adiponectin and 4 for leptin), only the marker
rs12066716 was found to be significantly associated (Bonferroni-
corrected p < 0.00625 (=0.05/8)) with adiponectin with directional
consistency [β(±SE) in the discovery set: −0.181 ± 0.039, β(±SE) in
the validation set: −0.191 ± 0.065]. Seven signals for adiponectin
and leptin levels were directionally consistent but not statistically
significant (Table S2).

Functional interrogation of putative novel signals
For our validated adiponectin-associated SNP (rs12066716), we
identified a candidate gene demonstrating both functional links to
an index SNP and plausible biological functions in determining
adiponectin level. The index SNP (rs12066716) is an eQTL for
C1QTNF12 (C1q/TNF-related protein 12, CTRP12) in visceral adipose
tissue (p for eQTL= 8.1 × 10−5) (https://www.gtexportal.org/

Table 1. Distributions of variables among 16-year follow-up of the
Santiago Longitudinal Study (SLS).

Variable Total
(N= 543)a

Mean SD

Age (years) 16.8 0.3

Anthropometric variables

Body Mass Index (BMI) (kg/m2) 23.8 4.6

BMI Z-scores 0.5 1.0

Metabolic biomarkers

Adiponectin (μg/mL) 11.3 5.3

Leptin (ng/mL)b 11.7 13.5

Ghrelin (pg/mL) 239.6 151.0

(N= 542; 1 missing female) Orexin (pg/mL) 16.7 4.2

Glycemic traits

Fasting blood glucose (mg/dL) 88.4 9.8

Fasting blood insulin (μUI/dL) 8.1 5.6

Insulin resistance [HOMA-IR (glucose × insulin/
405)]

1.8 1.3

Body fat percent (%) (N= 537; 5 missing females
and 1 missing male)

28.9 10.7

HOMA-IR homeostatic model assessment of insulin resistance.
a259 females (47.7%) and 284 males (52.3%).
bLeptin levels in females: 18.8 ng/mL (SD: 14.7); leptin levels in males:
5.2 ng/mL (SD: 8.0).
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home/snp/rs12066716). CTRPs, including CTRP12 (the product of
C1QTNF12), are a family of adiponectin paralogs,28–30 thus the
association between the gene and adiponectin is highly feasible.

Transferability of known associations
For adiponectin, a total of 48 different SNPs have been reported
for association with adiponectin from 11 studies,31–41 44 of which
were available in the current study (Table S3). Thirty-five of these
44 SNPs displayed directionally consistent associations with
adiponectin levels, 8 of which displayed nominal statistical
significance (p < 0.05). Fifteen variants have been associated with
leptin levels with genome-wide significance from 3 studies42–44;
13 of these variants were available in the current study (Table S4).
Six of these 13 associations were directionally consistent, but none
were nominally significant (p < 0.05).

Aggregated genetic influence on adiponectin and leptin levels
Adiponectin. As some of the 44 available known SNPs are in LD
with one another, we selected 29 independent SNPs (AMR LD r2 <
0.2) and constructed PRSReported for adiponectin (Table S5). We
also identified 24 independent SLS-specific tagging SNPs in the
known loci by selecting the SNPs with lowest p value for the
association with adiponectin levels within +/−500 kb of the
reported SNPs (Table S7). All the 24 SLS-specific tagging SNPs
were independent of each known SNP (AMR LD r2 < 0.2). Using
these 24 SLS-specific tagging SNPs for the known loci, we
generated PRSSLS. Lastly, we additionally summed up the number
of adiponectin-increasing alleles of the eight putative novel
variants from the PRSSLS and generated adiponectin PRSSLS+ Novel.
The prediction results of the natural log-transformed adiponectin
levels by PRS are reported in Table 3. While the proportion of

Table 2. Lead SNPs with suggestive significance (p < 5.00E−06) associated with four appetite/metabolic biomarkers from the GWA analyses in
participants of SLS.

GWAS traits Nearest gene Lead SNP CHR BP EA/OA EAF BETA SE p value

Adiponectin TTLL10 rs12066716a 1 1,123,434 A/T 0.17 −0.181 0.039 3.04E−06

AK5 rs59559185 1 77,825,925 A/G 0.18 0.182 0.039 2.55E−06

LRRC8C rs17130858 1 90,167,923 G/A 0.25 0.158 0.033 1.38E−06

C3orf31 rs407484 3 11,944,316 A/T 0.10 −0.271 0.053 4.00E−07

VCAN rs33601 5 82,773,175 A/G 0.66 0.144 0.031 4.94E−06

CLDN10 rs2992893 13 96,044,769 C/T 0.52 −0.148 0.030 7.02E−07

FLJ22447 rs17098985 14 62,092,745 T/C 0.13 −0.236 0.045 1.29E−07

PNMAL1 rs11083829 19 46,967,169 C/A 0.74 −0.174 0.036 1.48E−06

Leptin ZNF804B rs34056816 7 89,190,522 C/T 0.06 0.748 0.161 3.47E−06

SQRDL (SQOR) rs8026541 15 46,695,491 T/C 0.72 0.367 0.069 1.14E−07

CDH5 rs233521 16 66,282,923 A/G 0.80 0.350 0.076 4.29E−06

LOC100506172 rs77137714 16 73,378,933 T/C 0.14 0.409 0.088 3.70E−06

MIR4739 rs62063332 17 77,635,587 G/A 0.09 −0.567 0.124 4.64E−06

Ghrelin LOC100129138 rs12144587 1 106,005,238 G/T 0.56 −0.154 0.033 4.07E−06

ADAM30 rs76491617 1 120,434,349 C/T 0.15 −0.239 0.051 2.80E−06

PSEN2 rs67899970 1 227,092,656 T/C 0.14 0.228 0.049 4.05E−06

CNTNAP5 rs181846169 2 124,237,624 T/C 0.05 0.419 0.087 1.24E−06

KCNH8 rs4535245 3 19,541,306 A/G 0.14 −0.222 0.048 3.86E−06

NXPH1 rs6966968 7 8,840,378 G/A 0.10 0.295 0.059 5.28E−07

RAB11FIP2 rs34988394 10 119,738,984 T/C 0.16 0.234 0.050 2.83E−06

CADM1 rs4938201 11 115,218,713 G/A 0.39 −0.162 0.035 3.31E−06

RPSAP52 rs11175889 12 66,117,678 G/T 0.32 0.173 0.036 1.86E−06

CDH11 rs17385192 16 63,892,792 G/T 0.24 0.184 0.039 2.05E−06

FERMT1 rs6076964 20 6,210,743 T/C 0.06 0.341 0.075 4.65E−06

CRYAA rs11701620 21 44,601,373 G/C 0.06 0.346 0.073 1.84E−06

LOC100271722 rs12159453 22 46,433,442 A/G 0.08 −0.305 0.064 1.58E−06

Orexin PPAP2B rs944844 1 56,891,592 G/A 0.16 −0.099 0.021 2.30E−06

SLC4A5 rs3771728 2 74,503,190 C/T 0.08 −0.126 0.027 3.62E−06

ABCA11P rs60941356 4 407,189 T/C 0.08 −0.132 0.029 4.22E−06

GABRB3 rs8036016 15 26,977,581 T/C 0.17 0.108 0.020 6.83E−08

FLJ45079 rs56201168 17 75,734,152 C/T 0.06 −0.162 0.033 7.10E−07

RNF152 rs34264102 18 59,468,629 G/A 0.07 0.148 0.031 2.46E−06

SIK1 rs11702068 21 44,768,217 T/C 0.19 −0.093 0.020 2.27E−06

MIAT rs9608521 22 27,199,237 T/C 0.18 −0.089 0.019 3.18E−06

SLS Santiago Longitudinal Study, CHR chromosome, BP base pair, EA effect allele, OA other allele, EAF effect allele frequency, SE standard error.
aValidated signal (in the validation set: β=−0.191 ± 0.065, p= 0.003, EA= A, and EAF= 9%).

D. Kim et al.

566

Pediatric Research (2022) 92:563 – 571

https://www.gtexportal.org/home/snp/rs12066716


variance explained by PRSReported was 0.035, the proportion of
variance explained by PRSSLS was 0.253 (Table 3). We further
estimated the proportion of variance explained by PRSSLS+ Novel

from the current study as 0.367. While the estimated variance
explained is likely to be biased upward because of winner’s curse,
it is obvious that the SLS-specific tagging SNPs better character-
ized the genetic effects of these loci on this biomarker (also below
for leptin) for our SLS population.45

Leptin. Among the 13 available known SNPs, we selected 7
independent SNPs (AMR LD r2 < 0.2) and constructed PRSReported
for leptin levels (Table S6). We also identified 8 SLS-specific
tagging SNPs of the known loci—i.e., SNPs with the lowest
p values within +/−500 kb of the known variant—and con-
structed PRSSLS for leptin levels (Table S8). All the 8 SLS-specific
tagging SNPs are independent of the known SNPs (AMR LD
r2 < 0.2). Then we summed up the number of leptin-increasing alleles
of the five putative novel variants from the PRSSLS and calculated
PRSSLS+Novel. We predicted the rank-based normalized residuals of
Tobit regressed leptin level (sex as an explanatory variable) by using
the three PRS (Table 3). Whereas the variance explained by
PRSReported was 0.001 (and the regression coefficient was not
significant with a significance level of 0.05), the variance explained
by PRSSLS was 0.082 and by PRSSLS+Novel was 0.206 (Table 3). It is
possible that the R2 for leptin was lower than for adiponectin partly
due to fewer previous GWAS of leptin than of adiponectin.

Effects of the biomarker-associated genetic determinants on
downstream BF% and glycemic traits
Adiponectin. FBI (p= 0.0037), IR (p= 0.0064) and BF% (p < 0.0001)
were significantly associated with PRSSLS+Novel (Table 4). For FBI
and IR, significant indirect effects (i.e., mediated through adipo-
nectin levels) were noted. The mediated effects of adiponectin
PRSSLS+Novel on FBI and IR accounted for 79.0% (95% confidence
limit (CL): 2.4, 155.5; p= 0.04) and 83.2% (95% CL: −0.5, 166.8; p=
0.05) of the overall effects, respectively. For BF%, we also found
evidence of mediation, but the proportion of mediated effects over
the total effects was only 46.7% (95% CL: 2.4, 90.9; p= 0.04). Given
the wide confidence interval (CI) of these estimates, point estimate
should be interpreted with caution. In terms of direction of effects,
both directly and indirectly the adiponectin-increasing effects
appeared to be metabolically protective (decrease in FBI, IR, and BF
%). For PRSSLS, the total effects on FBI and BF% were estimated as
being significant as for PRSSLS+ Novel, but for PRSReported, none of
them was significantly affected by the PRS (Table S9).

Leptin. FBI (p= 0.0014), IR (p= 0.0043), and BF% (p < 0.0001)
were significantly affected by the leptin PRSSLS+ Novel (Table 4).
The total effect of leptin-increasing PRS was associated with
poorer metabolic outcomes (i.e., increase in FBI, IR, and BF%). For
FBI and IR, the estimate of the direct effect of PRS on leptin was
negative and the estimate of the indirect effect of PRS on the CMD
health outcome through leptin was positive. Therefore, the
indirect pathway through leptin accounted for most of this
association between FBI and IR. For BF%, where both direct and
indirect associations were positive, the proportion of mediated
effects was 96.9% (95% CL: 65.2, 128.5; p < 0.01). For PRSSLS, only
the total effect on BF% was significant (also associated with worse
metabolic outcomes); none of the hypothetical downstream BF%
and glycemic traits were significantly associated with PRSReported
(Table S10). According to the results from sex-stratified analyses,
the total effects of leptin PRSSLS+ Novel on FBI and IR are largely
driven by females; however, the indirect effects mediated through
leptin are comparable—in terms of direction, magnitude, and
significance—among females and males (Table S13).

Ghrelin. FBI (p < 0.0001) and IR (p < 0.0001) were significantly
affected by the ghrelin PRS based on the putative novel variantsTa
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from the current study (Table 4) with ghrelin-increasing PRS
associated with overall decreases in IR. As with leptin, we found
differences in the direction of the association between direct and
indirect effects. Higher PRS were indirectly related with lower FBG
(−0.223 [95% CI: (−0.286, −0.161)]) and IR (−0.232 [95% CI:
(−0.295, −0.169)]), and the total association was similar in
magnitude even after accounting for the direct effects.

Orexin. None of the cardiometabolic traits were affected by the
orexin-increasing PRS (Table 4).

DISCUSSION
The identification of genetic mechanisms influencing metabolic
biomarkers has the potential to identify important pathways for
obesity and its downstream consequences. Yet, the bulk of obesity
research has focused on how genes relate to BMI and waist
circumference, instead of on relationships with eating behaviors

and/or mechanistic biomarkers, which may have early influences
on the development of obesity, through appetite for example.
Further still, most extant data have primarily focused on
homogeneous middle-aged adults, with very few genetic studies
on culturally and ancestrally diverse adolescents. The current
study identified 34 suggestive novel genetic signals associated
with 4 metabolic biomarkers and validated 1 novel signal
associated with adiponectin level. In addition, we revealed that
associations between biomarkers and aggregated genetic effects
based on known variants were improved when study-specific tag
SNPs for known loci and novel variants were included in the PRS.
This implicates the need for ancestry-specific studies to validly
capture aggregated genetic effects across populations. Lastly, we
demonstrated that metabolic biomarker-influencing genetic
factors were also associated with some CMD risk factors, especially
with FBI and IR (for adiponectin, leptin, and ghrelin) and BF% (for
adiponectin and leptin), implicating causal roles of these
biomarkers in obesity and IR as early as adolescence.

Table 4. The effects of biomarker PRS on downstream body fat percent (BF%) and glycemic traits (fasting blood glucose (FBG), fasting blood insulin
(FBI), and insulin resistance (IR)) in SLS participants.

Total effecta Direct effecta Indirect effecta

Beta 95% CL p Beta 95% CL Beta 95% CL

Adiponectin PRS

Glycemic traits

FBG 0.001 −0.081 0.082 0.9831 0.026 −0.080 0.131 −0.025 −0.092 0.042

FBI −0.124 −0.208 −0.040 0.0037b −0.026 −0.134 0.082 −0.098 −0.167 −0.029

HOMA-IR −0.117 −0.201 −0.033 0.0064b −0.020 −0.128 0.088 −0.097 −0.167 −0.028

BF% −0.135 −0.198 −0.071 <0.0001b −0.072 −0.153 0.010 −0.063 −0.115 −0.011

Leptin PRS

Glycemic traits

FBG −0.032 −0.114 0.050 0.4406 −0.064 −0.154 0.027 0.032 −0.008 0.071

FBI 0.137 0.053 0.221 0.0014b −0.009 −0.098 0.079 0.146 0.100 0.192

HOMA-IR 0.123 0.039 0.207 0.0043b −0.021 −0.110 0.068 0.144 0.098 0.190

BF% 0.185 0.123 0.248 <0.0001b 0.006 −0.054 0.066 0.180 0.139 0.221

Ghrelin PRS

Glycemic traits

FBG −0.061 −0.142 0.020 0.1381 0.057 −0.042 0.156 −0.118 −0.178 −0.058

FBI −0.217 −0.299 −0.134 <0.0001b 0.007 −0.089 0.103 −0.223 −0.286 −0.161

HOMA-IR −0.215 −0.298 −0.133 <0.0001b 0.017 −0.080 0.113 −0.232 −0.295 −0.169

BF% −0.064 −0.127 0.000 0.0499 0.029 −0.049 0.106 −0.092 −0.139 −0.046

Orexin PRS

Glycemic traits

FBG −0.069 −0.150 0.012 0.0939 −0.059 −0.145 0.026 −0.010 −0.038 0.018

FBI −0.001 −0.085 0.083 0.9872 0.032 −0.056 0.121 −0.033 −0.063 −0.003

HOMA-IR −0.013 −0.097 0.071 0.7588 0.019 −0.069 0.108 −0.033 −0.063 −0.003

BF% 0.011 −0.053 0.075 0.7320 0.031 −0.037 0.099 −0.020 −0.042 0.003

HOMA-IR homeostatic model assessment of insulin resistance, 95% CL Wald 95% confidence limits.
aTotal effect: the overall effects of the biomarker PRS (constructed by putative novel SNPs in addition to SLS-specific tagging SNPs) on BF% or glycemic traits;
direct effect: the effect of the biomarker PRS on BF% or glycemic traits after adjusting for the biomarker levels; indirect effect: the effect of the biomarker PRS
on BF% or glycemic traits mediated through biomarker levels. All effects were estimated after adjusting for sex and five principal components of participants’
genetic composition. Adiponectin levels, ghrelin levels, orexin levels, FBG, FBI, and HOMA-IR were natural log-transformed. For leptin, rank-based inverse
normalized residuals of a Tobit regression model adjusting for sex were used to account for the limit of detection issue. All the exposures, mediators, and
outcomes were standardized.
Model: standardized natural log transformed glycemic traits or BF% ~ standardized biomarker− PRS+ standardized natural log-transformed biomarker levels
(or rank-based normalized values of residuals from Tobit model (sex-adjusted) for leptin levels)+ Sex+ PC1+ PC2+ PC3+ PC4+ PC5.
Mediator: standardized natural log-transformed biomarker levels (or rank-based normalized values of residuals from Tobit model (sex-adjusted) for leptin
levels).
Covariates: sex, PC1, PC2, PC3, PC4, PC5.
bSignificant total effects of biomarker PRS on downstream BF% and glycemic traits (after correction for multiple testing p < 0.0125 (=0.05/4).
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Although our study did not demonstrate novel genome-wide
significant signals for appetite markers, likely due to insufficient
power, 34 putative novel signals with suggestive evidence for
association with metabolic biomarkers were mapped, with the
rs12066716 adiponectin association validated in a H/L adult
population (p < 0.00625) despite the age differences between the
two study populations. While the SNP is intronic to TTL10, it is
associated with gene expression in several other nearby genes in
adipose tissue. Notably, rs12066716 is an eQTL for C1QTNF12,
which encodes CTRP12 (also called adipolin), a member of the
family of adiponectin paralogs.28,30,46,47 CTRP12 improves insulin
sensitivity29 and has been shown to correlate with adiponectin
levels (r= 0.34).48 In addition, CTRP12 levels are currently being
evaluated as a diagnostic biomarker for T2D.49 Finally, other
studies have demonstrated that CTRP12 levels were lower among
patients with coronary artery disease.48

We found that little to none of the variance in adiponectin
and leptin levels were explained by PRS based on the exact
reported SNPs from the literature, likely due to the ancestral
difference between our population (i.e., mainly European vs. H/
L) and published studies. Once we substituted SLS-specific
tagging SNPs of the known loci for the reported SNPs, the
prediction performance of the PRS improved substantially (R2

from 0.035 to 0.253 for adiponectin and from 0.001 to 0.082 for
leptin). We conducted permutation testing to place our
adiponectin PRSSLS findings in context. We randomly selected
24 SNPs among all SNPs that displayed significant association (p
< 0.05) with adiponectin in our GWAS. We then constructed the
PRS (the number of risk alleles) from each these SNPs and
calculated the R-square values from each model. Repeating this
simulation 1000 times, we observed the distribution of R-square
values (maximum: 0.220; range: 0.125–0.220; Fig. S4). All R-
square values were of smaller magnitude than our adiponectin
PRSSLS estimate (0.253). Thus, our results demonstrate that the
proportion of variation explained by adiponectin PRSSLS was
greater than chance, likely an overestimation as well. This
finding demonstrates the need for valid ancestry-specific
tagging SNPs for PRS. Furthermore, since we identified
additional improvement of PRS’ performance after incorporating
the putative novel signals, large-scale studies for diverse
populations to discover additional genetic loci associated with
metabolic biomarker are warranted. However, it should be noted
that the predictions by PRSSLS and PRSSLS+ Novel were likely to be
overestimated because of the overlap between the discovery set
of the associations and the validation set for the association.
Nonetheless, as illustrated in our previous study,45 the current
findings also underscore the importance of considering genetic
diversity across different cohorts and the influence of this
diversity on unique underpinnings to disease in future applica-
tion of PRS to diverse ethnic groups.50

For adiponectin, leptin, and ghrelin, PRS of biomarkers were
simultaneously associated with FBI, IR, and BF% (except for
ghrelin) among H/L adolescents. These common associations
may suggest shared genetic pathways, at least to a certain
degree, between metabolic biomarkers and CMD as early as
adolescence. Many of the significant overall effects included
significant mediated effect by metabolic biomarkers (FBI, IR, and
BF% for leptin and adiponectin, and FBI and IR for ghrelin), and
this implies that each metabolic biomarker might be somewhere
on the causal pathways from the biomarker-determining genetic
factors to the CMD risk factors—i.e., the metabolic biomarkers
are causally associated with the CMD risk factors—if our
assumption on the hypothetical causal relationship (see Fig. S2)
is valid. Notably, FBI and IR are closely associated with PRS for
adiponectin, leptin, and ghrelin through indirect effects. Since IR
is considered a root cause of various CMD,51 it is crucial to
elucidate the roles of these metabolic biomarkers in developing
IR. For the significant mediated effects on BF% for adiponectin

and leptin, our findings also suggest an early causal effect of
adiponectin and leptin on body fat, suggesting an importance of
these biomarkers for the development of obesity at a very
young age. Such findings may have relevance for the timing of
planning interventions.
The observed significant indirect effects on FBI, IR, and BF%

support the protective roles of adiponectin in cardiometabolic
health. While inverse associations of plasma adiponectin with IR
and adiposity have been well established,52,53 the findings from
Mendelian randomization studies to assess the causal relation-
ships between adiponectin and IR (or insulin sensitivity) and
between adiponectin and BMI have been contradictory54–57 or
unsupported.58. Although our analysis has not formally assessed
causal relationships between these biomarkers, our data support a
potential influence of adiponectin on FBI, IR, and BF% by the
presence of significant indirect effects of adiponectin-associated
genetic factors mediated by adiponectin levels. In addition, for
BF%, the effect sizes of the direct (β=−0.072 despite not meeting
the significance criteria; p= 0.084) and indirect effect (β=−0.063,
p= 0.018) were comparable. This implies the presence of other
pathways from the adiponectin-associated genes to BF% inde-
pendent of adiponectin. Further studies investigating potential
common pathways shared between BF% and adiponectin levels
are needed.
For the downstream effect of leptin-influencing genetic

variants on adiposity, a previous study reported that a leptin-
decreasing allele (rs17151919-A) was associated with higher BMI
during early childhood (under 8 years).44 However, our results
demonstrated that leptin-increasing PRS were associated with
higher BF%. Such results may be understood in the context of
distinct leptin effects across the life course and in the context of
poor cardiometabolic health. Although leptin typically inhibits
appetite and increases energy expenditure,59 individuals with
poor cardiometabolic health tend to have higher circulating
leptin levels due to low leptin sensitivity60—i.e., leptin resis-
tance. Since the previous study and our results focused on early
childhood and late adolescence, respectively, the opposite
direction of the association between leptin-influencing genetic
variants and adiposity might have been driven by the
development of leptin resistance.
For ghrelin, similar patterns with adiponectin were demon-

strated except for BF%. This implicates the potential protective
roles of circulating ghrelin in cardiometabolic traits especially for
insulin biology. In line with this finding, many previous studies
including a meta-analysis61 on the association between ghrelin
and IR in obesity reported the negative correlation among people
with obesity. Thus, our study adds to the body of literature that
supports ghrelin’s role in glucose metabolism, but the mechan-
isms by which circulating ghrelin levels play roles in regulating
insulin sensitivity need to be further studied.
Overall, as previously reported,18 our results contribute to the

mechanistic evidence that obesity-associated genetic determi-
nants can affect adiposity through appetite-related homeostasis
systems. Together with the evidence of the longitudinal relation-
ship between impaired satiety regulations and subsequent weight
gain,62–64 the current findings also imply the importance of
individuals’ genetic susceptibility to appetite-related metabolic
homeostasis in risk of obesity in the current obesogenic
environment, as previously suggested.18

The major strength of this study is the availability of four
metabolic biomarkers in an adolescent H/L population at high
risk for obesity and downstream CMD. In particular, genome-
wide studies of ghrelin and orexin are rare. For adiponectin and
leptin, we also leveraged the known information from the
previous studies to assess the aggregated genetic effects. Lastly,
we extensively investigated cross-trait associations of
biomarker-influencing genetic loci with other CMD risk factors.
There are notable limitations to our study, including the modest
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sample size and the lack of availability of studies to replicate our
findings. Nine out of 10 putative novel signals for adiponectin
and leptin level were not replicated from the validation data set,
which could be related to the distinct admixture patterns across
Mexican Americans and Chileans, the differences in age across
the data sets, or small sample sizes. In addition, PRSSLS and
PRSSLS+ Novel may have overestimated the aggregated genetic
effects and cross-trait associations with BF%, FBI, and IR.
Furthermore, as analyses were conducted cross-sectionally, it
is difficult to determine temporality among traits, e.g., metabolic
biomarkers and cardiometabolic traits, and the possibilities of
reverse causation between biomarker level and cardiometabolic
traits.
In conclusion, our study identified several putatively novel

genetic variants associated with the metabolic biomarkers with
substantial phenotypic variance explained by SLS-specific PRS. We
also demonstrated that some of the aggregated genetic factors
may be directly linked to BF%, FBI, and IR or mediated through
metabolic biomarkers. Our findings reinforce a need for long-
itudinal analyses to confirm the genetic determinants regulating
metabolic homeostasis and their further influence on cardiometa-
bolic disorder development. From a public health standpoint, such
findings are critical, as once cardiometabolic health is established
in adolescence, it is very difficult to reverse. Thus, findings from
this study yielded important information on biological mechan-
isms and candidates for prevention efforts, especially relevant in
this high-risk ancestrally diverse population.
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