Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Knowledge gaps in late-onset neonatal sepsis in preterm neonates: a roadmap for future research

Abstract

Late-onset neonatal sepsis (LONS) remains an important threat to the health of preterm neonates in the neonatal intensive care unit. Strategies to optimize care for preterm neonates with LONS are likely to improve survival and long-term neurocognitive outcomes. However, many important questions on how to improve the prevention, early detection, and therapy for LONS in preterm neonates remain unanswered. This review identifies important knowledge gaps in the management of LONS and describe possible methods and technologies that can be used to resolve these knowledge gaps. The availability of computational medicine and hypothesis-free-omics approaches give way to building bedside feedback tools to guide clinicians in personalized management of LONS. Despite advances in technology, implementation in clinical practice is largely lacking although such tools would help clinicians to optimize many aspects of the management of LONS. We outline which steps are needed to get possible research findings implemented on the neonatal intensive care unit and provide a roadmap for future research initiatives.

Impact

  • This review identifies knowledge gaps in prevention, early detection, antibiotic, and additional therapy of late-onset neonatal sepsis in preterm neonates and provides a roadmap for future research efforts.

  • Research opportunities are addressed, which could provide the means to fill knowledge gaps and the steps that need to be made before possible clinical use.

  • Methods to personalize medicine and technologies feasible for bedside clinical use are described.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Conceptual framework for preterm neonates at risk for LONS—knowledge gaps.
Fig. 2: Schematic representation of the complex interplay of different factors that complicate quantifying treatment effects in preterm neonates with late-onset sepsis.

References

  1. 1.

    Stoll, B. J. & Hansen, N. Infections in VLBW infants: studies from the NICHD Neonatal Research Network. Semin. Perinatol. 27, 293–301 (2003).

    PubMed  Article  Google Scholar 

  2. 2.

    Stoll, B. J. et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 110, 285–291 (2002).

    Article  PubMed  Google Scholar 

  3. 3.

    Lawn, J. E., Wilczynska-Ketende, K. & Cousens, S. N. Estimating the causes of 4 million neonatal deaths in the year 2000. Int. J. Epidemiol. 35, 706–718 (2006).

    PubMed  Article  Google Scholar 

  4. 4.

    Shane, A. L., Sanchez, P. J. & Stoll, B. J. Neonatal sepsis. Lancet 390, 1770–1780 (2017).

    PubMed  Article  Google Scholar 

  5. 5.

    Stoll, B. J. et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 292, 2357–2365 (2004).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Schlapbach, L. J. et al. Impact of sepsis on neurodevelopmental outcome in a Swiss National Cohort of extremely premature infants. Pediatrics 128, e348–e357 (2011).

    PubMed  Article  Google Scholar 

  7. 7.

    Fleiss, N. et al. Evaluation of the neonatal sequential organ failure assessment and mortality risk in preterm infants with late-onset infection. JAMA Netw. Open 4, e2036518 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Molloy, E. J. et al. Neonatal sepsis: need for consensus definition, collaboration and core outcomes. Pediatr. Res. 88, 2–4 (2020).

    PubMed  Article  Google Scholar 

  9. 9.

    Wynn, J. L. et al. Time for a neonatal-specific consensus definition for sepsis. Pediatr. Crit. Care Med. 15, 523–528 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Dong, Y. & Speer, C. P. Late-onset neonatal sepsis: recent developments. Arch. Dis. Child Fetal Neonatal Ed. 100, F257–F263 (2015).

    PubMed  Article  Google Scholar 

  11. 11.

    Morgan, R. L. et al. Probiotics reduce mortality and morbidity in preterm, low-birth-weight infants: a systematic review and network meta-analysis of randomized trials. Gastroenterology 159, 467–480 (2020).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Rao, S. C. et al. Probiotic supplementation and late-onset sepsis in preterm infants: a meta-analysis. Pediatrics 137, e20153684 (2016).

    PubMed  Article  Google Scholar 

  13. 13.

    Chi, C. et al. Effects of probiotics in preterm infants: a network meta-analysis. Pediatrics 147, e20200706 (2021).

  14. 14.

    Schanler, R. J., Shulman, R. J. & Lau, C. Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics 103, 1150–1157 (1999).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    de Silva, A., Jones, P. W. & Spencer, S. A. Does human milk reduce infection rates in preterm infants? A systematic review. Arch. Dis. Child Fetal Neonatal Ed. 89, F509–F513 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Cacho, N. T. & Lawrence, R. M. Innate immunity and breast milk. Front. Immunol. 8, 584 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Underwood, M. A. Human milk for the premature infant. Pediatr. Clin. North Am. 60, 189–207 (2013).

    PubMed  Article  Google Scholar 

  18. 18.

    Cacho, N. T., Parker, L. A. & Neu, J. Necrotizing enterocolitis and human milk feeding: a systematic review. Clin. Perinatol. 44, 49–67 (2017).

    PubMed  Article  Google Scholar 

  19. 19.

    Meier, P., Patel, A. & Esquerra-Zwiers, A. Donor human milk update: evidence, mechanisms, and priorities for research and practice. J. Pediatr. 180, 15–21 (2017).

    PubMed  Article  Google Scholar 

  20. 20.

    Peila, C. et al. The effect of holder pasteurization on nutrients and biologically-active components in donor human milk: a review. Nutrients 8, 477 (2016).

  21. 21.

    Daniels, B. et al. The effect of simulated flash-heat pasteurization on immune components of human milk. Nutrients 9, 178 (2017).

  22. 22.

    Schuller, S. S. et al. Immunomodulation to prevent or treat neonatal sepsis: past, present, and future. Front. Pediatr. 6, 199 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Quigley, M., Embleton, N. D. & McGuire, W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 7, CD002971 (2019).

    PubMed  Google Scholar 

  24. 24.

    Maffei, D. et al. Early oral colostrum administration in preterm infants. J. Perinatol. 40, 284–287 (2020).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Rodriguez, N. A., Meier, P. P., Groer, M. W. & Zeller, J. M. Oropharyngeal administration of colostrum to extremely low birth weight infants: theoretical perspectives. J. Perinatol. 29, 1–7 (2009).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    da Cruz Martins, C. et al. Colostrum oropharyngeal immunotherapy for very low birth weight preterm infants: protocol of an intervention study. BMC Pediatr. 20, 371 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Maertens, K. et al. Breastfeeding after maternal immunisation during pregnancy: providing immunological protection to the newborn: a review. Vaccine 32, 1786–1792 (2014).

    PubMed  Article  Google Scholar 

  28. 28.

    Schlaudecker, E. P. et al. IgA and neutralizing antibodies to influenza a virus in human milk: a randomized trial of antenatal influenza immunization. PLoS ONE 8, e70867 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Cinicola, B. et al. The protective role of maternal immunization in early life. Front. Pediatr. 9, 638871 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Broad, J. et al. The current state of immunization against Gram-negative bacteria in children: a review of the literature. Curr. Opin. Infect. Dis. 33, 517–529 (2020).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Jakaitis, B. M. & Denning, P. W. Human breast milk and the gastrointestinal innate immune system. Clin. Perinatol. 41, 423–435 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Manzoni, P. et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA 302, 1421–1428 (2009).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Pammi, M. & Suresh, G. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 3, CD007137 (2020).

    PubMed  Google Scholar 

  34. 34.

    Patel, M. & Kaufman, D. A. Anti-lipoteichoic acid monoclonal antibody (pagibaximab) studies for the prevention of staphylococcal bloodstream infections in preterm infants. Expert Opin. Biol. Ther. 15, 595–600 (2015).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Weisman, L. E. et al. A randomized study of a monoclonal antibody (pagibaximab) to prevent staphylococcal sepsis. Pediatrics 128, 271–279 (2011).

    PubMed  Article  Google Scholar 

  36. 36.

    Theilacker, C. et al. Protection against Staphylococcus aureus by antibody to the polyglycerolphosphate backbone of heterologous lipoteichoic acid. J. Infect. Dis. 205, 1076–1085 (2012).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Shah, P. S. & Kaufman, D. A. Antistaphylococcal immunoglobulins to prevent staphylococcal infection in very low birth weight infants. Cochrane Database Syst. Rev. CD006449 (2009).

  38. 38.

    Thammavongsa, V., Kim, H. K., Missiakas, D. & Schneewind, O. Staphylococcal manipulation of host immune responses. Nat. Rev. Microbiol 13, 529–543 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Malik, P. R. V. & Edginton, A. N. Physiologically-based pharmacokinetic modeling vs. allometric scaling for the prediction of infliximab pharmacokinetics in pediatric patients. CPT Pharmacomet. Syst. Pharm. 8, 835–844 (2019).

    CAS  Article  Google Scholar 

  40. 40.

    Kumar, A. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 34, 1589–1596 (2006).

    PubMed  Article  Google Scholar 

  41. 41.

    Ng, P. C. Diagnostic markers of infection in neonates. Arch. Dis. Child Fetal Neonatal Ed. 89, F229–F235 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Ng, P. C. et al. Diagnosis of late onset neonatal sepsis with cytokines, adhesion molecule, and C-reactive protein in preterm very low birthweight infants. Arch. Dis. Child Fetal Neonatal Ed. 77, F221–F227 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Chiera, M. et al. Heart rate variability in the perinatal period: a critical and conceptual review. Front. Neurosci. 14, 561186 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Leon, C., Carrault, G., Pladys, P. & Beuchee, A. Early detection of late onset sepsis in premature infants using visibility graph analysis of heart rate variability. IEEE J. Biomed. Health Inf. 25, 1006–1017 (2021).

    Article  Google Scholar 

  45. 45.

    Moorman, J. R. et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J. Pediatr. 159, 900–906 e901 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Fairchild, K. D. et al. Septicemia mortality reduction in neonates in a heart rate characteristics monitoring trial. Pediatr. Res. 74, 570–575 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Coggins, S. A. et al. Heart rate characteristic index monitoring for bloodstream infection in an NICU: a 3-year experience. Arch. Dis. Child Fetal Neonatal Ed. 101, F329–F332 (2016).

    PubMed  Article  Google Scholar 

  48. 48.

    Fairchild, K. D. et al. Vital signs and their cross-correlation in sepsis and NEC: a study of 1,065 very-low-birth-weight infants in two NICUs. Pediatr. Res. 81, 315–321 (2017).

    Article  PubMed  Google Scholar 

  49. 49.

    Mithal, L. B. et al. Vital signs analysis algorithm detects inflammatory response in premature infants with late onset sepsis and necrotizing enterocolitis. Early Hum. Dev. 117, 83–89 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Sullivan, B. A. et al. Clinical and vital sign changes associated with late-onset sepsis in very low birth weight infants at 3 NICUs. J. Neonatal Perinatal Med. https://doi.org/10.3233/NPM-200578 (2021).

  51. 51.

    Joshi, R. et al. Predicting neonatal sepsis using features of heart rate variability, respiratory characteristics, and ECG-derived estimates of infant motion. IEEE J. Biomed. Health Inf. 24, 681–692 (2020).

    Article  Google Scholar 

  52. 52.

    Kumar, N. et al. Continuous vital sign analysis for predicting and preventing neonatal diseases in the twenty-first century: big data to the forefront. Pediatr. Res. 87, 210–220 (2020).

    Article  PubMed  Google Scholar 

  53. 53.

    Beam, A. L. & Kohane, I. S. Big data and machine learning in health care. JAMA 319, 1317–1318 (2018).

    PubMed  Article  Google Scholar 

  54. 54.

    Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358 (2019).

    PubMed  Article  Google Scholar 

  55. 55.

    Masino, A. J. et al. Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS ONE 14, e0212665 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Helguera-Repetto, A. C. et al. Neonatal sepsis diagnosis decision-making based on artificial neural networks. Front. Pediatr. 8, 525 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    van de Sande, D. et al. Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Med. 47, 750–760 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Van Laere, D. et al. Machine learning to support hemodynamic intervention in the neonatal intensive care unit. Clin. Perinatol. 47, 435–448 (2020).

    PubMed  Article  Google Scholar 

  59. 59.

    Bellini, V., Montomoli, J. & Bignami, E. Poor quality data, privacy, lack of certifications: the lethal triad of new technologies in intensive care. Intensive Care Med, https://doi.org/10.1007/s00134-021-06473-4 (2021).

  60. 60.

    Delanghe, J. R. & Speeckaert, M. M. Translational research and biomarkers in neonatal sepsis. Clin. Chim. Acta 451, 46–64 (2015).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Sharma, D., Farahbakhsh, N., Shastri, S. & Sharma, P. Biomarkers for diagnosis of neonatal sepsis: a literature review. J. Matern Fetal Neonatal Med. 31, 1646–1659 (2018).

    PubMed  Article  Google Scholar 

  62. 62.

    Iroh Tam, P. Y. & Bendel, C. M. Diagnostics for neonatal sepsis: current approaches and future directions. Pediatr. Res. 82, 574–583 (2017).

    PubMed  Article  Google Scholar 

  63. 63.

    Kuster, H. et al. Interleukin-1 receptor antagonist and interleukin-6 for early diagnosis of neonatal sepsis 2 days before clinical manifestation. Lancet 352, 1271–1277 (1998).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Arnon, S. et al. Serum amyloid A: an early and accurate marker of neonatal early-onset sepsis. J. Perinatol. 27, 297–302 (2007).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Ho, J. et al. Pathological role and diagnostic value of endogenous host defense peptides in adult and neonatal sepsis: a systematic review. Shock 47, 673–679 (2017).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Bellos, I. et al. The diagnostic accuracy of presepsin in neonatal sepsis: a meta-analysis. Eur. J. Pediatr. 177, 625–632 (2018).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Bhandari, V. Effective biomarkers for diagnosis of neonatal sepsis. J. Pediatr. Infect. Dis. Soc. 3, 234–245 (2014).

    Article  Google Scholar 

  68. 68.

    Ludwig, K. R. & Hummon, A. B. Mass spectrometry for the discovery of biomarkers of sepsis. Mol. Biosyst. 13, 648–664 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Ng, S. et al. Precision medicine for neonatal sepsis. Front. Mol. Biosci. 5, 70 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Cao, Z. & Robinson, R. A. The role of proteomics in understanding biological mechanisms of sepsis. Proteom. Clin. Appl. 8, 35–52 (2014).

    CAS  Article  Google Scholar 

  71. 71.

    Schmerler, D. et al. Targeted metabolomics for discrimination of systemic inflammatory disorders in critically ill patients. J. Lipid Res. 53, 1369–1375 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Stewart, C. J. et al. Metabolomic and proteomic analysis of serum from preterm infants with necrotising entercolitis and late-onset sepsis. Pediatr. Res. 79, 425 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73.

    Kim, D. et al. Pilot application of magnetic nanoparticle-based biosensor for necrotizing enterocolitis. J Proteomics Bioinformatics, Suppl 5:002 (2015).

  74. 74.

    Ng, P. C. et al. Host-response biomarkers for diagnosis of late-onset septicemia and necrotizing enterocolitis in preterm infants. J. Clin. Invest. 120, 2989–3000 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Buhimschi, C. S. et al. Proteomics mapping of cord blood identifies haptoglobin “switch-on” pattern as biomarker of early-onset neonatal sepsis in preterm newborns. PLoS ONE 6, e26111 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Mardegan, V. et al. Untargeted and targeted metabolomic profiling of preterm newborns with early onset sepsis: a case-control study. Metabolites 11, 115 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Dessi, A. et al. Monitoring neonatal fungal infection with metabolomics. J. Matern. Fetal Neonatal Med. 27(Suppl. 2), 34–38 (2014).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Sarafidis, K. et al. Urine metabolomics in neonates with late-onset sepsis in a case-control study. Sci. Rep. 7, 1–9 (2017).

    Article  CAS  Google Scholar 

  79. 79.

    Fanos, V. et al. Urinary 1H-NMR and GC-MS metabolomics predicts early and late onset neonatal sepsis. Early Hum. Dev. 90, S78–S83 (2014).

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Mickiewicz, B., Vogel, H. J., Wong, H. R. & Winston, B. W. Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality. Am. J. Respir. Crit. Care Med. 187, 967–976 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Ou, H. et al. Expression of microRNA-23b in patients with sepsis and its effect on leukocytes and the expression of E-selectin and ICAM-1. Exp. Ther. Med. 16, 4707–4711 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Fatmi, A. et al. miRNA-23b as a biomarker of culture-positive neonatal sepsis. Mol. Med. 26, 94 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. 83.

    Sweeney, T. E. et al. Validation of the sepsis metascore for diagnosis of neonatal sepsis. J. Pediatr. Infect. Dis. Soc. 7, 129–135 (2018).

    Article  Google Scholar 

  84. 84.

    Tebani, A., Afonso, C., Marret, S. & Bekri, S. Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int. J. Mol. Sci. 17, 1555 (2016).

  85. 85.

    Nagana Gowda, G. A. & Raftery, D. Biomarker discovery and translation in metabolomics. Curr. Metabolomics 1, 227–240 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Buchegger, P., Sauer, U., Toth-Szekely, H. & Preininger, C. Miniaturized protein microarray with internal calibration as point-of-care device for diagnosis of neonatal sepsis. Sensors (Basel) 12, 1494–1508 (2012).

    CAS  Article  Google Scholar 

  87. 87.

    Tighe, P. J., Ryder, R. R., Todd, I. & Fairclough, L. C. ELISA in the multiplex era: potentials and pitfalls. Proteomics Clin. Appl. 9, 406–422 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Waelgaard, L., Pharo, A., Tonnessen, T. I. & Mollnes, T. E. Microdialysis for monitoring inflammation: efficient recovery of cytokines and anaphylotoxins provided optimal catheter pore size and fluid velocity conditions. Scand. J. Immunol. 64, 345–352 (2006).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Pammi, M. et al. Microbiome signatures in neonatal central line associated bloodstream infections. PLoS ONE 15, e0227967 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Berkhout, D. J. C. et al. Late-onset sepsis in preterm infants can be detected preclinically by fecal volatile organic compound analysis: a prospective, multicenter cohort study. Clin. Infect. Dis. 68, 70–77 (2019).

    CAS  PubMed  Google Scholar 

  91. 91.

    Gofin, Y. et al. Salivary C-reactive protein—a possible predictor of serum levels in pediatric acute respiratory illness. Eur. J. Pediatr, 180, 2465–2472 (2021).

  92. 92.

    El Manouni El Hassani, S. et al. Profound pathogen-specific alterations in intestinal microbiota composition precede late onset sepsis in preterm infants: a longitudinal multicenter case-control study. Clin. Infect. Dis. 73, e224–e232(2021).

  93. 93.

    van Donge, T., Bielicki, J. A., van den Anker, J. & Pfister, M. Key components for antibiotic dose optimization of sepsis in neonates and infants. Front Pediatr. 6, 325 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Stockmann, C. et al. Considerations in the pharmacologic treatment and prevention of neonatal sepsis. Paediatr. Drugs 16, 67–81 (2014).

    PubMed  Article  Google Scholar 

  95. 95.

    Kuppala, V. S., Meinzen-Derr, J., Morrow, A. L. & Schibler, K. R. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J. Pediatr. 159, 720–725 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Tsai, M. H. et al. Risk factors and outcomes for multidrug-resistant Gram-negative bacteremia in the NICU. Pediatrics 133, e322–e329 (2014).

    PubMed  Article  Google Scholar 

  97. 97.

    Verroken, A. et al. Clinical impact of MALDI-TOF MS identification and rapid susceptibility testing on adequate antimicrobial treatment in sepsis with positive blood cultures. PLoS ONE 11, e0156299 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. 98.

    Connell, T. G. et al. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics 119, 891–896 (2007).

    PubMed  Article  Google Scholar 

  99. 99.

    Jardine, L., Davies, M. W. & Faoagali, J. Incubation time required for neonatal blood cultures to become positive. J. Paediatr. Child Health 42, 797–802 (2006).

    PubMed  Article  Google Scholar 

  100. 100.

    Brodská, H. et al. Significantly higher procalcitonin levels could differentiate Gram-negative sepsis from Gram-positive and fungal sepsis. Clin. Exp. Med. 13, 165–170 (2013).

    PubMed  Article  CAS  Google Scholar 

  101. 101.

    Thomas-Rüddel, D. O. et al. Influence of pathogen and focus of infection on procalcitonin values in sepsis patients with bacteremia or candidemia. Crit. Care 22, 128 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Bassetti, M. et al. Role of procalcitonin in bacteremic patients and its potential use in predicting infection etiology. Expert Rev. Anti Infective Ther. 17, 99–105 (2019).

    CAS  Article  Google Scholar 

  103. 103.

    Nakajima, A. et al. Clinical utility of procalcitonin as a marker of sepsis: a potential predictor of causative pathogens. Intern. Med. 53, 1497–1503 (2014).

    PubMed  Article  Google Scholar 

  104. 104.

    Clish, C. B. Metabolomics: an emerging but powerful tool for precision medicine. Mol. Case Stud. 1, a000588 (2015).

    Article  Google Scholar 

  105. 105.

    Dessì, A. et al. New diagnostic possibilities in systemic neonatal infections: metabolomics. Early Hum. Dev. 90, S19–S21 (2014).

    PubMed  Article  Google Scholar 

  106. 106.

    Eckerle, M. et al. Metabolomics as a driver in advancing precision medicine in sepsis. Pharmacotherapy 37, 1023–1032 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    McShane, L. M. et al. Criteria for the use of omics-based predictors in clinical trials. Nature 502, 317–320 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Laughon, M. M. et al. Innovative clinical trial design for pediatric therapeutics. Expert Rev. Clin. Pharmacol. 4, 643–652 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Rivera-Chaparro, N. D., Cohen-Wolkowiez, M. & Greenberg, R. G. Dosing antibiotics in neonates: review of the pharmacokinetic data. Future Microbiol. 12, 1001–1016 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Flint, R. B. et al. Large differences in neonatal drug use between NICUs are common practice: time for consensus? Br. J. Clin. Pharmacol. 84, 1313–1323 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Blot, S. I., Pea, F. & Lipman, J. The effect of pathophysiology on pharmacokinetics in the critically ill patient—concepts appraised by the example of antimicrobial agents. Adv. Drug Deliv. Rev. 77, 3–11 (2014).

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Tremoulet, A. et al. Characterization of the population pharmacokinetics of ampicillin in neonates using an opportunistic study design. Antimicrob. Agents Chemother. 58, 3013–3020 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. 113.

    Allegaert, K., Mian, P. & van den Anker, J. N. Developmental pharmacokinetics in neonates: maturational changes and beyond. Curr. Pharmacol. Des. 23, 5769–5778 (2017).

    CAS  Article  Google Scholar 

  114. 114.

    Voller, S. et al. Model-based clinical dose optimization for phenobarbital in neonates: an illustration of the importance of data sharing and external validation. Eur. J. Pharmacol. Sci. 109S, S90–S97 (2017).

    Article  CAS  Google Scholar 

  115. 115.

    Mould, D. R. Model-based meta-analysis: an important tool for making quantitative decisions during drug development. Clin. Pharmacol. Ther. 92, 283–286 (2012).

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Holford, N. H., Kimko, H. C., Monteleone, J. P. & Peck, C. C. Simulation of clinical trials. Annu. Rev. Pharmacol. Toxicol. 40, 209–234 (2000).

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Mueller, M., de la Pena, A. & Derendorf, H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob. Agents Chemother. 48, 369–377 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Nielsen, L. E. et al. One size fits all? Application of susceptible-dose-dependent breakpoints to pediatric patients and laboratory reporting. J. Clin. Microbiol. 58, e01446–19 (2019).

  119. 119.

    Kearns, G. L. et al. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N. Engl. J. Med. 349, 1157–1167 (2003).

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Liu, C. et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin. Infect. Dis. 52, 285–292 (2011).

    PubMed  Article  Google Scholar 

  121. 121.

    Stockmann, C. et al. Predictive performance of a vancomycin population pharmacokinetic model in neonates. Infect. Dis. Ther. 4, 187–198 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Allegaert, K., Flint, R. & Smits, A. Pharmacokinetic modelling and Bayesian estimation-assisted decision tools to optimize vancomycin dosage in neonates: only one piece of the puzzle. Expert Opin. Drug Metab. Toxicol. 15, 735–749 (2019).

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Abdulla, A. et al. Model-informed precision dosing of antibiotics in pediatric patients: a narrative review. Front Pediatr. 9, 624639 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Mian, P. et al. Therapeutic drug monitoring in neonates: what makes them unique? Curr. Pharmacol. Des. 23, 5790–5800 (2017).

    CAS  Article  Google Scholar 

  125. 125.

    Jansen, S. J. et al. Benzylpenicillin serum concentrations in neonates with group B Streptococci sepsis or meningitis: a descriptive cohort study. Pediatr. Infect. Dis. J. 40, 434–439 (2021).

    PubMed  Article  Google Scholar 

  126. 126.

    Ng, P. C., Ma, T. P. & Lam, H. S. The use of laboratory biomarkers for surveillance, diagnosis and prediction of clinical outcomes in neonatal sepsis and necrotising enterocolitis. Arch. Dis. Child Fetal Neonatal Ed. 100, F448–F452 (2015).

    PubMed  Article  Google Scholar 

  127. 127.

    de Boode, W.-P. Clinical monitoring of systemic hemodynamics in critically ill newborns. Early Hum. Dev. 86, 137–141 (2010).

    PubMed  Article  Google Scholar 

  128. 128.

    Tibby, S. M., Hatherill, M., Marsh, M. J. & Murdoch, I. A. Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch. Dis. Child. 77, 516–518 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    de Boode, W. P. et al. The role of neonatologist performed echocardiography in the assessment and management of neonatal shock. Pediatr. Res. 84, 57–67 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    De Boode, W. P. et al. Recommendations for neonatologist performed echocardiography in Europe: consensus statement endorsed by European Society for Paediatric Research (ESPR) and European Society for Neonatology (ESN). Pediatr. Res. 80, 465–471 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    da Costa, C. S., Greisen, G. & Austin, T. Is near-infrared spectroscopy clinically useful in the preterm infant? Arch. Dis. Child.-Fetal Neonatal Ed. 100, F558–F561 (2015).

    PubMed  Article  Google Scholar 

  132. 132.

    Liem, K. D. & Greisen, G. Monitoring of cerebral haemodynamics in newborn infants. Early Hum. Dev. 86, 155–158 (2010).

    PubMed  Article  Google Scholar 

  133. 133.

    Sood, B. G., McLaughlin, K. & Cortez, J. Near-infrared spectroscopy: applications in neonates. Semin. Fetal Neonatal Med. 164–172 (2015).

  134. 134.

    van der Laan, M. E. et al. Multisite tissue oxygenation monitoring indicates organ-specific flow distribution and oxygen delivery related to low cardiac output in preterm infants with clinical sepsis. Pediatr. Crit. Care Med. 17, 764–771 (2016).

    PubMed  Article  Google Scholar 

  135. 135.

    Wynn, J. L., Neu, J., Moldawer, L. L. & Levy, O. Potential of immunomodulatory agents for prevention and treatment of neonatal sepsis. J. Perinatol. 29, 79–88 (2009).

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Dowling, D. J. & Levy, O. Ontogeny of early life immunity. Trends Immunol. 35, 299–310 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 1277–1292 e1214 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Melville, J. M. & Moss, T. J. The immune consequences of preterm birth. Front. Neurosci. 7, 79 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  139. 139.

    Kollmann, T. R., Levy, O., Montgomery, R. R. & Goriely, S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity 37, 771–783 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Basha, S., Surendran, N. & Pichichero, M. Immune responses in neonates. Expert Rev. Clin. Immunol. 10, 1171–1184 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Hibbert, J. E., Currie, A. & Strunk, T. Sepsis-induced immunosuppression in neonates. Front. Pediatr. 6, 357 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Karlsson, H., Hessle, C. & Rudin, A. Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect. Immun. 70, 6688–6696 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Aulin, L. B. S. et al. Biomarker-guided individualization of antibiotic therapy. Clin. Pharmacol. Ther. 110, 346–360 (2021).

  144. 144.

    Keij, F. M. et al. Zebrafish larvae as experimental model to expedite the search for new biomarkers and treatments for neonatal sepsis. J. Clin. Transl. Sci. 18, e140 (2021).

  145. 145.

    Buras, J. A., Holzmann, B. & Sitkovsky, M. Animal models of sepsis: setting the stage. Nat. Rev. Drug Discov. 4, 854–865 (2005).

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Meeker, N. D. & Trede, N. S. Immunology and zebrafish: spawning new models of human disease. Dev. Comp. Immunol. 32, 745–757 (2008).

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Bauer, M. et al. A transcriptomic biomarker to quantify systemic inflammation in sepsis—a prospective multicenter phase II diagnostic study. EBioMedicine 6, 114–125 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Kurul, S. et al. Association of inflammatory biomarkers with subsequent clinical course in suspected late onset sepsis in preterm neonates. Crit. Care 25, 12 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Pammi, M. & Weisman, L. E. Late-onset sepsis in preterm infants: update on strategies for therapy and prevention. Expert Rev. Anti Infect. Ther. 13, 487–504 (2015).

    CAS  PubMed  Google Scholar 

  150. 150.

    Ohlsson, A. & Lacy, J. B. Intravenous immunoglobulin for suspected or proven infection in neonates. Cochrane Database Syst. Rev. 1, CD001239 (2020).

    PubMed  Google Scholar 

  151. 151.

    Haque, K. N., Remo, C. & Bahakim, H. Comparison of two types of intravenous immunoglobulins in the treatment of neonatal sepsis. Clin. Exp. Immunol. 101, 328–333 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Carr, R., Modi, N. & Dore, C. G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst. Rev. CD003066 (2003).

  153. 153.

    Castagnola, E. & Dufour, C. Role of G-CSF GM-CSF in the management of infections in preterm newborns: an update. Early Hum. Dev. 90(Suppl 2), S15–S17 (2014).

    PubMed  Article  Google Scholar 

  154. 154.

    Opal, S. M. New perspectives on immunomodulatory therapy for bacteraemia and sepsis. Int J. Antimicrob. Agents 36(Suppl. 2), S70–S73 (2010).

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Ward, A. & Clissold, S. P. Pentoxifylline. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs 34, 50–97 (1987).

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Neuner, P. et al. Pentoxifylline in vivo down-regulates the release of IL-1 beta, IL-6, IL-8 and tumour necrosis factor-alpha by human peripheral blood mononuclear cells. Immunology 83, 262–267 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Lauterbach, R. & Zembala, M. Pentoxifylline reduces plasma tumour necrosis factor-alpha concentration in premature infants with sepsis. Eur. J. Pediatr. 155, 404–409 (1996).

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Szymura-Oleksiak, J., Bury, J., Lauterbach, R. & Pawloski, M. Serum concentrations of pentoxifylline and its metabolites in premature infants with sepsis when administered by continuous intravenous infusion. Pharmaceut. Sci. 3, 367–371 (1997).

  159. 159.

    Mandell, G. L. Cytokines, phagocytes, and pentoxifylline. J. Cardiovasc. Pharmacol. 25(Suppl 2), S20–S22 (1995).

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Windmeier, C. & Gressner, A. M. Pharmacological aspects of pentoxifylline with emphasis on its inhibitory actions on hepatic fibrogenesis. Gen. Pharmacol. 29, 181–196 (1997).

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Schroer, R. H. Antithrombotic potential of pentoxifylline. A hemorheologically active drug. Angiology 36, 387–398 (1985).

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Yang, S. et al. Gut-derived norepinephrine plays a critical role in producing hepatocellular dysfunction during early sepsis. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G1274–G1281 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    Danjo, W., Fujimura, N. & Ujike, Y. Effect of pentoxifylline on diaphragmatic contractility in septic rats. Acta Med Okayama 62, 101–107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Pammi, M. & Haque, K. N. Pentoxifylline for treatment of sepsis and necrotizing enterocolitis in neonates. Cochrane Database Syst. Rev. CD004205 (2015).

  165. 165.

    Salman, S. et al. Effects of maturation and size on population pharmacokinetics of pentoxifylline and its metabolites in very preterm infants with suspected late-onset sepsis or necrotizing enterocolitis: a pilot study incorporating clinical outcomes. Br. J. Clin. Pharmacol. 85, 147–159 (2019).

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Lalu, M. M. et al. Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. Elife 5, e17850 (2016).

  167. 167.

    Johnson, C. L., Soeder, Y. & Dahlke, M. H. Concise review: mesenchymal stromal cell-based approaches for the treatment of acute respiratory distress and sepsis syndromes. Stem Cells Transl. Med. 6, 1141–1151 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  168. 168.

    Laroye, C., Gibot, S., Reppel, L. & Bensoussan, D. Concise review: mesenchymal stromal/stem cells: a new treatment for sepsis and septic shock? Stem Cells 35, 2331–2339 (2017).

    PubMed  Article  Google Scholar 

  169. 169.

    Liau, L. L. et al. The potential of mesenchymal stromal cell as therapy in neonatal diseases. Front Pediatr. 8, 591693 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  170. 170.

    McIntyre, L. A. et al. Cellular immunotherapy for septic shock. A phase I clinical trial. Am. J. Respir. Crit. Care Med. 197, 337–347 (2018).

    CAS  PubMed  Article  Google Scholar 

  171. 171.

    Sato, Y. et al. Prophylactic therapy with human amniotic fluid stem cells improved survival in a rat model of lipopolysaccharide-induced neonatal sepsis through immunomodulation via aggregates with peritoneal macrophages. Stem Cell Res. Ther. 11, 300 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172.

    Hotchkiss, R. S. & Karl, I. E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348, 138–150 (2003).

    CAS  PubMed  Article  Google Scholar 

  173. 173.

    Zhao, J. et al. Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc. Natl Acad. Sci. USA 105, 7528–7533 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  174. 174.

    Wynn, J. L. et al. The influence of developmental age on the early transcriptomic response of children with septic shock. Mol. Med. 17, 1146–1156 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Wynn, J. L. et al. Postnatal age is a critical determinant of the neonatal host response to sepsis. Mol. Med. 21, 496–504 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176.

    Schüller, S. S. et al. Immunomodulation to prevent or treat neonatal sepsis: past, present, and future. Front. Pediatr. 6, 199 (2018).

  177. 177.

    Ridings, P. C. et al. Beneficial cardiopulmonary effects of pentoxifylline in experimental sepsis are lost once septic shock is established. Arch. Surg. 129, 1144–1152 (1994).

    CAS  PubMed  Article  Google Scholar 

  178. 178.

    Itenov, T. S., Murray, D. D. & Jensen, J. U. S. Sepsis: personalized medicine utilizing ‘omic’ technologies—a paradigm shift? Healthcare (Basel) 6, 111 (2018).

  179. 179.

    van Karnebeek, C. D. M. et al. The role of the clinician in the multi-omics era: are you ready? J. Inherit. Metab. Dis. 41, 571–582 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Agakidou, E., Agakidis, C., Gika, H. & Sarafidis, K. Emerging biomarkers for prediction and early diagnosis of necrotizing enterocolitis in the era of metabolomics and proteomics. Front. Pediatr. 8, 602255 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

H.R.T. and S.V. designed and directed the manuscript. H.T., S.V., S.K., K.F. and R.F. performed literature searches and drafted the document. I.K.M.R., S. H.P.S. and H.K. reviewed and revised it critically for important intellectual content. All authors approved the final version of the manuscript and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to H. Rob Taal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent statement

No patient consent was required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurul, S., Fiebig, K., Flint, R.B. et al. Knowledge gaps in late-onset neonatal sepsis in preterm neonates: a roadmap for future research. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01721-1

Download citation

Search

Quick links