Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vital signs as physiomarkers of neonatal sepsis

Abstract

Neonatal sepsis accounts for significant morbidity and mortality, particularly among premature infants in the Neonatal Intensive Care Unit. Abnormal vital sign patterns serve as physiomarkers of sepsis and provide early warning of illness before overt clinical decompensation. The systemic inflammatory response to pathogens signals the autonomic nervous system, leading to changes in temperature, respiratory rate, heart rate, and blood pressure. In infants with comorbidities of prematurity, vital sign abnormalities often occur in the absence of infection, which confounds sepsis diagnosis. This review will cover the mechanisms of vital sign changes in neonatal sepsis, including the cholinergic anti-inflammatory pathway mediated by the vagus nerve, which is critical to the host response to infectious and inflammatory insults. We will also review the clinical implications of vital sign changes in neonatal sepsis, including their use in early warning scores and systems to direct clinicians to the bedside of infants with physiologic changes that might be due to sepsis.

Impact

  • This manuscript summarizes and reviews the relevant literature on the physiological manifestations of neonatal sepsis and how we monitor and analyze these through vital signs and advanced analytics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Heart rate (HR) and oxygen saturation (SpO2) before sepsis diagnosis.
Fig. 2: Vital sign analytics around sepsis and NEC.

References

  1. 1.

    Sullivan, B. et al. Clinical and vital sign changes associated with late-onset sepsis in very low birth weight infants at 3 NICUs. J. Neonatal Perinatal Med. 1–9 (2021).

  2. 2.

    Griffin, M. P., Lake, D. E., O’Shea, T. M. & Moorman, J. R. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr. Res. 61, 222–227 (2007).

    PubMed  Article  Google Scholar 

  3. 3.

    Mayampurath, A., Jani, P., Dai, Y., Gibbons, R., Edelson, D. & Churpek, M. A vital sign-based model to predict clinical deterioration in hospitalized children. Pediatr. Crit. Care Med. 21, 820–826 (2020).

  4. 4.

    Kaukonen, K.-M., Bailey, M., Pilcher, D., Cooper, D. J. & Bellomo, R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N. Engl. J. Med. 372, 1629–1638 (2015).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Coggins, S., Harris, M. C., Grundmeier, R., Kalb, E., Nawab, U. & Srinivasan, L. Performance of pediatric systemic inflammatory response syndrome and organ dysfunction criteria in late-onset sepsis in a quaternary neonatal intensive care unit: a case-control study. J. Pediatr. 219, 133–139.e1 (2020).

    PubMed  Article  Google Scholar 

  6. 6.

    Tracey, K. J. Reflex control of immunity. Nat. Rev. Immunol. 9, 418–428 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Tracey, K. J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 117, 289–296 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Moorman, J. R., Lake, D. E. & Ivanov, P. C. Early detection of sepsis–a role for network physiology? Crit. Care Med. 44, e312–e313 (2016).

    PubMed  Article  Google Scholar 

  9. 9.

    Bartsch, R. P., Liu, K. K. L., Bashan, A. & Ivanov, P. C. Network physiology: how organ systems dynamically interact. PLoS ONE 10, e0142143 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Eckberg, D. L. Human sinus arrhythmia as an index of vagal cardiac outflow. J. Appl Physiol. 54, 961–966 (1983).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Clark, M. T. et al. Breath-by-breath analysis of cardiorespiratory interaction for quantifying developmental maturity in premature infants. J. Appl Physiol. 112, 859–867 (2012).

    PubMed  Article  Google Scholar 

  12. 12.

    Mulkey, S. B. et al. Autonomic nervous system maturation in the premature extrauterine milieu. Pediatr. Res. 89, 863–868 (2021).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Schlatterer, S. D. et al. Autonomic development in preterm infants is associated with morbidity of prematurity. Pediatr. Res. (2021).

  14. 14.

    Sullivan, B. A. & Fairchild, K. D. Predictive monitoring for sepsis and necrotizing enterocolitis to prevent shock. Semin. Fetal Neonatal Med. 20, 255–261 (2015).

    PubMed  Article  Google Scholar 

  15. 15.

    Wynn, J. L. & Polin, R. A. Progress in the management of neonatal sepsis: the importance of a consensus definition. Pediatr. Res. 83, 13–15 (2018).

    PubMed  Article  Google Scholar 

  16. 16.

    Goldstein, B., Giroir, B. & Randolph, A. International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 6, 2–8 (2005).

    PubMed  Article  Google Scholar 

  17. 17.

    Hofer, N., Zacharias, E., Müller, W. & Resch, B. Performance of the definitions of the systemic inflammatory response syndrome and sepsis in neonates. J. Perinat. Med. 40, 587–590 (2012).

    PubMed  Article  Google Scholar 

  18. 18.

    Singer, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315, 801–810 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Wynn, J. L. et al. Postnatal age is a critical determinant of the neonatal host response to sepsis. Mol. Med. 21, 496–504 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Esposito, S. et al. Genetic polymorphisms and sepsis in premature neonates. PLoS ONE 9, e101248 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Hotchkiss, R. S., Moldawer, L. L., Opal, S. M., Reinhart, K., Turnbull, I. R. & Vincent, J.-L. Sepsis and septic shock. Nat. Rev. Dis. Prim. 2, 16045 (2016).

    PubMed  Article  Google Scholar 

  22. 22.

    Casadevall, A. & Pirofski, L. Host-pathogen interactions: the attributes of virulence. J. Infect. Dis. 184, 337–344 (2001).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Wynn, J., Cornell, T. T., Wong, H. R., Shanley, T. P. & Wheeler, D. S. The host response to sepsis and developmental impact. Pediatrics 125, 1031–1041 (2010).

    PubMed  Article  Google Scholar 

  24. 24.

    Alonzo, C. J., Nagraj, V. P., Zschaebitz, J. V., Lake, D. E., Moorman, J. R. & Spaeder, M. C. Heart rate ranges in premature neonates using high resolution physiologic data. J. Perinatol. 38, 1242–1245 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Hegyi, T. et al. Blood pressure ranges in premature infants. I. The first hours of life. J. Pediatr. 124, 627–633 (1994).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Hegyi, T. et al. Blood pressure ranges in premature infants: II. The first week of life. Pediatrics 97, 336–342 (1996).

    CAS  PubMed  Google Scholar 

  27. 27.

    Fairchild, K. et al. Clinical associations of immature breathing in preterm infants: part 1-central apnea. Pediatr. Res. 80, 21–27 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Alonzo, C. J. & Fairchild, K. D. Dexamethasone effect on heart rate variability in preterm infants on mechanical ventilation. J. Neonatal Perinat. Med. 10, 425–430 (2017).

    Article  Google Scholar 

  29. 29.

    Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E. & Valley, T. S. Racial bias in pulse oximetry measurement. N. Engl. J. Med. 383, 2477–2478 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Khera, A. et al. Race and gender differences in C-reactive protein levels. J. Am. Coll. Cardiol. 46, 464–469 (2005).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Koenig, J. & Thayer, J. F. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci. Biobehav. Rev. 64, 288–310 (2016).

    PubMed  Article  Google Scholar 

  33. 33.

    Sampath, V. et al. Toll-like receptor genetic variants are associated with Gram-negative infections in VLBW infants. J. Perinatol. 33, 772–777 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Abu-Maziad, A. et al. Role of polymorphic variants as genetic modulators of infection in neonatal sepsis. Pediatr. Res. 68, 323–329 (2010).

    PubMed  Article  Google Scholar 

  35. 35.

    Schelonka, R. L. et al. T cell cytokines and the risk of blood stream infection in extremely low birth weight infants. Cytokine 53, 249–255 (2011).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Wynn, J. L. & Wong, H. R. Pathophysiology and treatment of septic shock in neonates. Clin. Perinatol. 37, 439–479 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Craft, A. & Finer, N. Nosocomial coagulase negative staphylococcal (CoNS) catheter-related sepsis in preterm infants: definition, diagnosis, prophylaxis, and prevention. J. Perinatol. 21, 186–192 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Cantey, J. B., Anderson, K. R., Kalagiri, R. R. & Mallett, L. H. Morbidity and mortality of coagulase-negative staphylococcal sepsis in very-low-birth-weight infants. World J. Pediatr. 14, 269–273 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Raynor, L. L., Saucerman, J. J., Akinola, M. O., Lake, D. E., Moorman, J. R. & Fairchild, K. D. Cytokine screening identifies NICU patients with Gram-negative bacteremia. Pediatr. Res. 71, 261–266 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Rønnestad, A., Abrahamsen, T. G., Gaustad, P. & Finne, P. H. C-reactive protein (CRP) response patterns in neonatal septicaemia. APMIS 107, 593–600 (1999).

    PubMed  Article  Google Scholar 

  41. 41.

    Coggins, S. A. et al. Use of a computerized C-reactive protein (CRP) based sepsis evaluation in very low birth weight (VLBW) infants: a five-year experience. PLoS ONE 8, e78602 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Brown, J. V. E., Meader, N., Cleminson, J. & McGuire, W. C-reactive protein for diagnosing late-onset infection in newborn infants. Cochrane Database Syst. Rev. 1, CD012126 (2019).

    PubMed  Google Scholar 

  43. 43.

    Stoll, B. J. et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 110, 285–291 (2002).

    PubMed  Article  Google Scholar 

  44. 44.

    Parlato, M. & Cavaillon, J.-M. Host response biomarkers in the diagnosis of sepsis: a general overview. Methods Mol. Biol. 1237, 149–211 (2015).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Dickson, K. & Lehmann, C. Inflammatory response to different toxins in experimental sepsis models. Int. J. Mol. Sci. 20, 4341 (2019).

  46. 46.

    Kidszun, A. et al. Viral infections in neonates with suspected late-onset bacterial sepsis—a prospective cohort study. Am. J. Perinatol. 34, 1–7 (2017).

    PubMed  Google Scholar 

  47. 47.

    Ng, P. C. et al. Proinflammatory and anti-inflammatory cytokine responses in preterm infants with systemic infections. Arch. Dis. Child Fetal Neonatal Ed. 88, F209–F213 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Idborg, H. et al. Evaluation of urinary prostaglandin E2 metabolite as a biomarker in infants with fever due to viral infection. Prostaglandins Leukot. Ess. Fat. Acids 91, 269–275 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Carrara, M., Ferrario, M., Bollen Pinto, B. & Herpain, A. The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Ann. Intensive Care. 11, 80 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Marijianowski, M. M., van der Loos, C. M., Mohrschladt, M. F. & Becker, A. E. The neonatal heart has a relatively high content of total collagen and type I collagen, a condition that may explain the less compliant state. J. Am. Coll. Cardiol. 23, 1204–1208 (1994).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Habimana, R., Choi, I., Cho, H. J., Kim, D., Lee, K. & Jeong, I. Sepsis-induced cardiac dysfunction: a review of pathophysiology. Acute Crit. Care. 35, 57–66 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Fairchild, K. D., Srinivasan, V., Moorman, J. R., Gaykema, R. P. A. & Goehler, L. E. Pathogen-induced heart rate changes associated with cholinergic nervous system activation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R330–R339 (2011).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Herlenius, E. An inflammatory pathway to apnea and autonomic dysregulation. Respir. Physiol. Neurobiol. 178, 449–457 (2011).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Hofstetter, A. O., Saha, S., Siljehav, V., Jakobsson, P.-J. & Herlenius, E. The induced prostaglandin E2 pathway is a key regulator of the respiratory response to infection and hypoxia in neonates. Proc. Natl Acad. Sci. USA 104, 9894–9899 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Wee, B. Y. H., Lee, J. H., Mok, Y. H. & Chong, S.-L. A narrative review of heart rate and variability in sepsis. Ann. Transl. Med. 8, 768 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Ahmad, S., Tejuja, A., Newman, K. D., Zarychanski, R. & Seely, A. J. Clinical review: a review and analysis of heart rate variability and the diagnosis and prognosis of infection. Crit. Care. 13, 232 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Taylor, J. A. & Eckberg, D. L. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation 93, 1527–1532 (1996).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Thompson, C. R., Brown, J. S., Gee, H. & Taylor, E. W. Heart rate variability in healthy term newborns: the contribution of respiratory sinus arrhythmia. Early Hum. Dev. 31, 217–228 (1993).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Hathorn, M. K. Respiratory sinus arrhythmia in new-born infants. J. Physiol. 385, 1–12 (1987).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Ori, Z., Monir, G., Weiss, J., Sayhouni, X. & Singer, D. H. Heart rate variability: frequency domain analysis. Cardiol. Clin. 10, 499–533 (1992).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Chang, K. L., Monahan, K. J., Griffin, M. P., Lake, D. & Moorman, J. R. Comparison and clinical application of frequency domain methods in analysis of neonatal heart rate time series. Ann. Biomed. Eng. 29, 764–774 (2001).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Ikeda, T. et al. Fetal heart rate patterns in postasphyxiated fetal lambs with brain damage. Am. J. Obstet. Gynecol. 179, 1329–1337 (1998).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Chung, D. Y., Sim, Y. B., Park, K. T., Yi, S. H., Shin, J. C. & Kim, S. P. Spectral analysis of fetal heart rate variability as a predictor of intrapartum fetal distress. Int J. Gynaecol. Obstet. 73, 109–116 (2001).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Salafia, C. M., Mangam, H. E., Weigl, C. A., Foye, G. J. & Silberman, L. Abnormal fetal heart rate patterns and placental inflammation. Am. J. Obstet. Gynecol. 160, 140–147 (1989).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Fairchild, K. D. et al. Abnormal heart rate characteristics are associated with abnormal neuroimaging and outcomes in extremely low birth weight infants. J. Perinatol. 34, 375–379 (2014).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Vergales, B. D. et al. Depressed heart rate variability is associated with abnormal EEG, MRI, and death in neonates with hypoxic ischemic encephalopathy. Am. J. Perinatol. 31, 855–862 (2014).

    PubMed  Article  Google Scholar 

  69. 69.

    Thiriez, G. et al. Altered autonomic control in preterm newborns with impaired neurological outcomes. Clin. Auton. Res. 25, 233–242 (2015).

    PubMed  Article  Google Scholar 

  70. 70.

    Sullivan, B. A., Grice, S. M., Lake, D. E., Moorman, J. R. & Fairchild, K. D. Infection and other clinical correlates of abnormal heart rate characteristics in preterm infants. J. Pediatr. 164, 775–780 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Griffin, M. P., Lake, D. E., Bissonette, E. A., Harrell, F. E., O’Shea, T. M. & Moorman, J. R. Heart rate characteristics: novel physiomarkers to predict neonatal infection and death. Pediatrics 116, 1070–1074 (2005).

    PubMed  Article  Google Scholar 

  72. 72.

    Stone, M. L. et al. Abnormal heart rate characteristics before clinical diagnosis of necrotizing enterocolitis. J. Perinatol. 33, 847–850 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Doheny, K. K. et al. Diminished vagal tone is a predictive biomarker of necrotizing enterocolitis-risk in preterm infants. Neurogastroenterol. Motil. 26, 832–840 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Weitkamp, J.-H. et al. Meningitis, urinary tract, and bloodstream infections in very low birth weight infants enrolled in a heart rate characteristics monitoring trial. Pediatr. Res. 87, 1226–1230 (2020).

    PubMed  Article  Google Scholar 

  75. 75.

    Griffin, M. P., Scollan, D. F. & Moorman, J. R. The dynamic range of neonatal heart rate variability. J. Cardiovasc. Electrophysiol. 5, 112–124 (1994).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Huston, J. M. & Tracey, K. J. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J. Intern Med. 269, 45–53 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Fairchild, K. D. et al. Endotoxin depresses heart rate variability in mice: cytokine and steroid effects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1019–R1027 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Griffin, M. P., O’Shea, T. M., Bissonette, E. A., Harrell, F. E., Lake, D. E. & Moorman, J. R. Abnormal heart rate characteristics preceding neonatal sepsis and sepsis-like illness. Pediatr. Res. 53, 920–926 (2003).

    PubMed  Article  Google Scholar 

  79. 79.

    Fairchild, K. D. & O’Shea, T. M. Heart rate characteristics: physiomarkers for detection of late-onset neonatal sepsis. Clin. Perinatol. 37, 581–598 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Aviles-Otero, N. et al. Urinary tract infections in very low birthweight infants: A two-center analysis of microbiology, imaging and heart rate characteristics. J. Neonatal Perinatal. Med. 14, 269–276 (2020).

  81. 81.

    Andriessen, P., Janssen, B. J. A., Berendsen, R. C. M., Oetomo, S. B., Wijn, P. F. F. & Blanco, C. E. Cardiovascular autonomic regulation in preterm infants: the effect of atropine. Pediatr. Res. 56, 939–946 (2004).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Bressan, N., McGregor, C., Smith, K., Lecce, L. & James, A. Heart rate variability as an indicator for morphine pharmacokinetics and pharmacodynamics in critically ill newborn infants. Conf. Proc. IEEE Eng. Med Biol. Soc. 2014, 5719–5722 (2014).

    Google Scholar 

  83. 83.

    Faye, P. M. et al. Newborn infant pain assessment using heart rate variability analysis. Clin. J. Pain. 26, 777–782 (2010).

    PubMed  Article  Google Scholar 

  84. 84.

    Cong, X., Ludington-Hoe, S. M., McCain, G. & Fu, P. Kangaroo care modifies preterm infant heart rate variability in response to heel stick pain: pilot study. Early Hum. Dev. 85, 561–567 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Sirsi, D., Nadiminti, L., Packard, M. A., Engel, M. & Solomon, G. E. Apneic seizures: a sign of temporal lobe hemorrhage in full-term neonates. Pediatr. Neurol. 37, 366–370 (2007).

    PubMed  Article  Google Scholar 

  86. 86.

    Patrinos, M. E. & Martin, R. J. Apnea in the term infant. Semin Fetal Neonatal Med. 22, 240–244 (2017).

    PubMed  Article  Google Scholar 

  87. 87.

    Ralston, S. & Hill, V. Incidence of apnea in infants hospitalized with respiratory syncytial virus bronchiolitis: a systematic review. J. Pediatr. 155, 728–733 (2009).

    PubMed  Article  Google Scholar 

  88. 88.

    Tripp, R. A., Dakhama, A., Jones, L. P., Barskey, A., Gelfand, E. W. & Anderson, L. J. The G glycoprotein of respiratory syncytial virus depresses respiratory rates through the CX3C motif and substance P. J. Virol. 77, 6580–6584 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Siljehav, V., Hofstetter, A. M., Leifsdottir, K. & Herlenius, E. Prostaglandin E2 mediates cardiorespiratory disturbances during infection in neonates. J. Pediatr. 167, 1207–13.e3 (2015).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Hamrin, J. et al. Urinary PGE2 metabolite levels in hospitalised infants with infections compared to age-matched controls. Acta Paediatr. 108, 1879–1886 (2019).

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Balan, K. V., Kc, P., Hoxha, Z., Mayer, C. A., Wilson, C. G. & Martin, R. J. Vagal afferents modulate cytokine-mediated respiratory control at the neonatal medulla oblongata. Respir. Physiol. Neurobiol. 178, 458–464 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Abu-Shaweesh, J. M. & Martin, R. J. Neonatal apnea: what’s new? Pediatr. Pulmonol. 43, 937–944 (2008).

    PubMed  Article  Google Scholar 

  93. 93.

    Di Fiore, J. M. & Vento, M. Intermittent hypoxemia and oxidative stress in preterm infants. Respir. Physiol. Neurobiol. 266, 121–129 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. 94.

    Curtis, J., Kim, G., Wehr, N. B. & Levine, R. L. Group B streptococcal phospholipid causes pulmonary hypertension. Proc. Natl Acad. Sci. USA 100, 5087–5090 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Vergales, B. D. et al. Accurate automated apnea analysis in preterm infants. Am. J. Perinatol. 31, 157–162 (2014).

    PubMed  Google Scholar 

  96. 96.

    Lee, H. et al. A new algorithm for detecting central apnea in neonates. Physiol. Meas. 33, 1–17 (2012).

    PubMed  Article  Google Scholar 

  97. 97.

    Patel, M. et al. Clinical associations with immature breathing in preterm infants: part 2-periodic breathing. Pediatr. Res. 80, 28–34 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Fairchild, K. D. et al. Vital signs and their cross-correlation in sepsis and NEC: a study of 1,065 very-low-birth-weight infants in two NICUs. Pediatr. Res. 81, 315–321 (2017).

    PubMed  Article  Google Scholar 

  99. 99.

    Fairchild, K. D. & Lake, D. E. Cross-correlation of heart rate and oxygen saturation in very low birthweight infants: association with apnea and adverse events. Am. J. Perinatol. 35, 463–469 (2018).

    PubMed  Article  Google Scholar 

  100. 100.

    Warburton, A., Monga, R., Sampath, V. & Kumar, N. Continuous pulse oximetry and respiratory rate trends predict short-term respiratory and growth outcomes in premature infants. Pediatr. Res. 85, 494–501 (2019).

    PubMed  Article  Google Scholar 

  101. 101.

    Zagol, K. et al. Anemia, apnea of prematurity, and blood transfusions. J. Pediatr. 161, 417–421.e1 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Hofmann, U. et al. The proinflammatory cytokines TNF-alpha and IL-1 beta impair economy of contraction in human myocardium. Cytokine 39, 157–162 (2007).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Seehase, M. et al. Myocardial response in preterm fetal sheep exposed to systemic endotoxinaemia. Pediatr. Res. 70, 242–246 (2011).

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Wefers, B., Cunningham, S., Stephen, R. & McIntosh, N. Neonatal blood pressure waves are associated with surges of systemic noradrenaline. Arch. Dis. Child Fetal Neonatal Ed. 94, F149–F151 (2009).

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Vesoulis, Z. A., Hao, J., McPherson, C., El Ters, N. M. & Mathur, A. M. Low-frequency blood pressure oscillations and inotrope treatment failure in premature infants. J. Appl Physiol. 123, 55–61 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Bidegain, M., Greenberg, R., Simmons, C., Dang, C., Cotten, C. M. & Smith, P. B. Vasopressin for refractory hypotension in extremely low birth weight infants. J. Pediatr. 157, 502–504 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Shivanna, B., Rios, D., Rossano, J., Fernandes, C. J. & Pammi, M. Vasopressin and its analogues for the treatment of refractory hypotension in neonates. Cochrane Database Syst. Rev. 3, CD009171 (2013).

  108. 108.

    Meyer, S., Löffler, G., Polcher, T., Gottschling, S. & Gortner, L. Vasopressin in catecholamine-resistant septic and cardiogenic shock in very-low-birthweight infants. Acta Paediatr. 95, 1309–1312 (2006).

    PubMed  Article  Google Scholar 

  109. 109.

    Ng, P. C. et al. A double-blind, randomized, controlled study of a “stress dose” of hydrocortisone for rescue treatment of refractory hypotension in preterm infants. Pediatrics 117, 367–375 (2006).

    PubMed  Article  Google Scholar 

  110. 110.

    Peeples, E. S. An evaluation of hydrocortisone dosing for neonatal refractory hypotension. J. Perinatol. 37, 943–946 (2017).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Vesoulis, Z. A., Mintzer, J. P. & Chock, V. Y. Neonatal NIRS monitoring: recommendations for data capture and review of analytics. J. Perinatol. 41, 675–688 (2021).

    PubMed  Article  Google Scholar 

  112. 112.

    Zonnenberg, I. A., Dijk, J., van, Dungen, F. A. M., van den, Vermeulen, R. J. & Weissenbruch, M. Mvan The prognostic value of NIRS in preterm infants with (suspected) late-onset sepsis in relation to long term outcome: a pilot study. PLoS ONE 14, e0220044 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Martini, S. & Corvaglia, L. Splanchnic NIRS monitoring in neonatal care: rationale, current applications and future perspectives. J. Perinatol. 38, 431–443 (2018).

    PubMed  Article  Google Scholar 

  114. 114.

    Spaeder, M. C., Klugman, D., Skurow-Todd, K., Glass, P., Jonas, R. A. & Donofrio, M. T. Perioperative near-infrared spectroscopy monitoring in neonates with congenital heart disease: relationship of cerebral tissue oxygenation index variability with neurodevelopmental outcome. Pediatr. Crit. Care Med. 18, 213–218 (2017).

    PubMed  Article  Google Scholar 

  115. 115.

    Wong, F. Y. et al. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics 121, e604–e611 (2008).

    PubMed  Article  Google Scholar 

  116. 116.

    Ahmad, M. S., Ali, N., Mehboob, N., Mehmood, R., Ahmad, M. & Wahid, A. Temperature on admission among cases of neonatal sepsis and its association with mortality. J. Pak. Med Assoc. 66, 1303–1306 (2016).

    PubMed  Google Scholar 

  117. 117.

    Hofer, N., Müller, W. & Resch, B. Neonates presenting with temperature symptoms: role in the diagnosis of early onset sepsis. Pediatr. Int. 54, 486–490 (2012).

    PubMed  Article  Google Scholar 

  118. 118.

    Pittman, Q. J., Chen, X., Mouihate, A., Hirasawa, M. & Martin, S. Arginine vasopressin, fever and temperature regulation. Prog. Brain Res. 119, 383–392 (1998).

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Falck, M. et al. Neonatal systemic inflammation induces inflammatory reactions and brain apoptosis in a pathogen-specific manner. Neonatology 113, 212–220 (2018).

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Leon, L. R. Hypothermia in systemic inflammation: role of cytokines. Front. Biosci. 9, 1877–1888 (2004).

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Leon, L. R., White, A. A. & Kluger, M. J. Role of IL-6 and TNF in thermoregulation and survival during sepsis in mice. Am. J. Physiol. 275, R269–R277 (1998).

    CAS  PubMed  Google Scholar 

  122. 122.

    Engblom, D. et al. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat. Neurosci. 6, 1137–1138 (2003).

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Garami, A., Steiner, A. A. & Romanovsky, A. A. Fever and hypothermia in systemic inflammation. Handb. Clin. Neurol. 157, 565–597 (2018).

    PubMed  Article  Google Scholar 

  124. 124.

    Ramgopal, S., Noorbakhsh, K. A., Pruitt, C. M., Aronson, P. L., Alpern, E. R. & Hickey, R. W. Outcomes of young infants with hypothermia evaluated in the emergency department. J. Pediatr. 221, 132–137.e2 (2020).

    PubMed  Article  Google Scholar 

  125. 125.

    Knobel-Dail, R. B., Sloane, R., Holditch-Davis, D. & Tanaka, D. T. Negative temperature differential in preterm infants less than 29 weeks gestational age: associations with infection and maternal smoking. Nurs. Res. 66, 442–453 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Knobel, R. B., Holditch-Davis, D., Schwartz, T. A. & Wimmer, J. E. Extremely low birth weight preterm infants lack vasomotor response in relationship to cold body temperatures at birth. J. Perinatol. 29, 814–821 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Dail, R. B. et al. Predicting infection in very preterm infants: a study protocol. Nurs. Res. 70, 142–149 (2020).

  128. 128.

    Hasday, J. D., Fairchild, K. D. & Shanholtz, C. The role of fever in the infected host. Microbes Infect. 2, 1891–1904 (2000).

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Jiang, N. M. et al. Febrile illness and pro-inflammatory cytokines are associated with lower neurodevelopmental scores in Bangladeshi infants living in poverty. BMC Pediatr. 14, 50 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. 130.

    Mathur, N. B., Krishnamurthy, S. & Mishra, T. K. Evaluation of WHO classification of hypothermia in sick extramural neonates as predictor of fatality. J. Trop. Pediatr. 51, 341–345 (2005).

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Zhu, C. et al. Post-ischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia-ischemia. Brain Res. 996, 67–75 (2004).

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

  133. 133.

    Kressel, A. M. et al. Identification of a brainstem locus that inhibits tumor necrosis factor. Proc. Natl Acad. Sci. USA 117, 29803–29810 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Bernik, T. R. et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J. Exp. Med. 195, 781–788 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Lake, D. E., Richman, J. S., Griffin, M. P. & Moorman, J. R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R789–R797 (2002).

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Kovatchev, B. P., Farhy, L. S., Cao, H., Griffin, M. P., Lake, D. E. & Moorman, J. R. Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory response syndrome. Pediatr. Res. 54, 892–898 (2003).

    PubMed  Article  Google Scholar 

  137. 137.

    Moorman, J. R. et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J. Pediatr. 159, 900–6.e1 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Fairchild, K. D. et al. Septicemia mortality reduction in neonates in a heart rate characteristics monitoring trial. Pediatr. Res. 74, 570–575 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Joshi, R. et al. A ballistographic approach for continuous and non-obtrusive monitoring of movement in neonates. IEEE J. Transl. Eng. Health Med. 6, 2700809 (2018).

    PubMed  Article  Google Scholar 

  140. 140.

    Joshi, R., Kommers, D., Oosterwijk, L., Feijs, L., van Pul, C. & Andriessen, P. Predicting neonatal sepsis using features of heart rate variability, respiratory characteristics, and ECG-derived estimates of infant motion. IEEE J. Biomed. Health Inform. 24, 681–692 (2020).

    PubMed  Article  Google Scholar 

  141. 141.

    Fox, J. R., Thacker, L. R. & Hendricks-Muñoz, K. D. Early detection tool of intestinal dysfunction: impact on necrotizing enterocolitis severity. Am. J. Perinatol. 32, 927–932 (2015).

    PubMed  Article  Google Scholar 

  142. 142.

    Saria, S., Rajani, A. K., Gould, J., Koller, D. & Penn, A. A. Integration of early physiological responses predicts later illness severity in preterm infants. Sci. Transl. Med. 2, 48ra65 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Chisholm, K. M. et al. Correlation of preterm infant illness severity with placental histology. Placenta 39, 61–69 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    International Neonatal Network. The CRIB (clinical risk index for babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. Lancet 342, 193–198 (1993).

    Article  Google Scholar 

  145. 145.

    Richardson, D. K., Corcoran, J. D., Escobar, G. J. & Lee, S. K. SNAP-II and SNAPPE-II: simplified newborn illness severity and mortality risk scores. J. Pediatr. 138, 92–100 (2001).

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Fowlie, P. W., Gould, C. R., Tarnow-Mordi, W. O. & Strang, D. Measurement properties of the clinical risk index for babies-reliabilty, validity beyond the first 12 h, and responsiveness over 7 days. Crit. Care Med. 26, 163–168 (1998).

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Matics, T. J. & Sanchez-Pinto, L. N. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children. JAMA Pediatr. 171, e172352 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Wynn, J. L. & Polin, R. A. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr. Res. 88, 85–90 (2020).

    PubMed  Article  Google Scholar 

  149. 149.

    Fleiss, N. et al. Evaluation of the neonatal sequential organ failure assessment and mortality risk in preterm infants with late-onset infection. JAMA Netw. Open. 4, e2036518 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Kausch, S. L., Moorman, J. R., Lake, D. E. & Keim-Malpass, J. Physiological machine learning models for prediction of sepsis in hospitalized adults: an integrative review. Intensive Crit. Care Nurs. 65, 103035 (2021).

  151. 151.

    Song, W., Jung, S. Y., Baek, H., Choi, C. W., Jung, Y. H. & Yoo, S. A predictive model based on machine learning for the early detection of late-onset neonatal sepsis: development and observational study. JMIR Med. Inform. 8, e15965 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Mani, S. et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J. Am. Med Inf. Assoc. 21, 326–336 (2014).

    Article  Google Scholar 

  153. 153.

    Masino, A. J. et al. Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS ONE 14, e0212665 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Spaeder, M. C. et al. Predictive analytics in the pediatric intensive care unit for early identification of sepsis: capturing the context of age. Pediatr. Res. 86, 655–661 (2019).

    PubMed  Article  Google Scholar 

  155. 155.

    Beaulieu-Jones, B. K. et al. Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians? npj Digital Med. 4, 62 (2021).

    Article  Google Scholar 

  156. 156.

    Kumar, N., Akangire, G., Sullivan, B., Fairchild, K. & Sampath, V. Continuous vital sign analysis for predicting and preventing neonatal diseases in the twenty-first century: big data to the forefront. Pediatr. Res. 87, 210–220 (2020).

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Both authors made substantial contributions to this manuscript including review of the literature, drafting the paper, and revising it critically for important intellectual content. Both authors gave final approval of the submitted manuscript to be published.

Corresponding author

Correspondence to Brynne A. Sullivan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sullivan, B.A., Fairchild, K.D. Vital signs as physiomarkers of neonatal sepsis. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01709-x

Download citation

Search

Quick links