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BACKGROUND: Low birth size (BS) and obesity have been associated with higher dehydroepiandrosterone sulfate (DHEAS) levels in
childhood, insulin acting as a mediator, despite contradictory findings. To further explore these issues, we studied the associations
between DHEAS, BS, adiposity, maternal characteristics, and cardiometabolic risk indicators, in participants of Generation XXI, a
population-based birth cohort.
METHODS: A sample of 700 children (mean age 7.1 yr) was randomly selected. Data on maternal characteristics, BS, body mass
index (BMI), waist-to-height ratio, body fat (dual-energy X-ray absorptiometry), insulin, lipid profile, and high-sensitivity C-reactive
protein were analyzed in relation to DHEAS.
RESULTS: DHEAS was negatively associated with BS and positively associated with all adiposity indicators, with no sex differences.
DHEAS was positively associated with insulinemia independently of the child’s BS or BMI. No significant association was found
between DHEAS, maternal characteristics, lipid profile, or high-sensitivity C-reactive protein. Including insulin in the model did not
affect the association between BS and DHEAS but reduced the magnitude of the BMI effect by 24% for boys and 30% for girls.
CONCLUSION: Higher DHEAS levels at 7 years old were associated with lower BS and higher adiposity. DHEAS levels were positively
associated with insulinemia independently of BS or BMI.
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IMPACT:

● Low birth weight and obesity have been associated with higher dehydroepiandrosterone sulfate (DHEAS) levels in prepuberty.
Insulin has been suggested as a mediator, despite previous studies failing to show an association between DHEAS and insulin
levels.

● In a randomly selected population of 700 7-year-old children from the Generation XXI birth cohort, higher DHEAS levels were
associated with a lower birth size and higher adiposity, with no sex differences.

● DHEAS was positively related to insulinemia independently of the child’s birth size or body mass index.
● No association was found between DHEAS and other cardiometabolic risk factors.

INTRODUCTION
Adrenarche is the maturational increase in adrenal androgen
production, including dehydroepiandrosterone (DHEA) and its
sulfate (DHEAS). It only occurs in humans and in higher primate
species that have a long childhood preceding the advent of
puberty. It is a sensitive period of neurobiological development,
since adrenal androgens are involved in sexual maturation,
fertility, metabolism, and central nervous system buildout.1,2

DHEAS is a widely used marker for adrenarche, while DHEA’s
more potent androgenic conversion products contribute to the
clinical signs of adrenarche (pubic and axillary hair, adult-type body
odor, acne, and seborrhea).3,4 DHEAS secretion rises at around 6–8
years of age and the clinical signs of adrenarche are usually seen
after 8 years in girls and 9 in boys.3,4 However, in some children,

clinical signs of androgen action together with a rise in serum
DHEAS are observed earlier, without breast or testicular enlarge-
ment, a condition called premature adrenarche (PA).5

The mechanisms underlying adrenarche’s regulation are not
completely understood. Pre and postnatal factors have been
associated with higher DHEAS levels in childhood,3,4 mainly low
birth weight,6–9 especially if accompanied by rapid weight or length/
height gain in the first years of life,6,10,11 and childhood obesity.12–14

Data on DHEAS levels in healthy children, using population-based
samples, have been published, mostly describing Finnish,7,11,12,15

Chilean,10,13,16 and British6 populations, but there are some puzzling
issues. First, insulin was suggested to mediate the link between birth
weight, higher prepubertal DHEAS levels, and childhood obesity,17–19

but data on this association are contradictory.7,12,13 Secondly,
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although PA was associated with a high-risk cardiovascular profile in
prepuberty in a specific group of Catalan girls with premature
pubarche and low birth weight,20 no adverse cardiovascular risk
factors, besides obesity, have been found in children with higher
serum DHEAS but without premature pubarche.12

Therefore, we aimed to assess the associations between serum
DHEAS and birth weight and length, adiposity, cardiovascular risk
indicators, and maternal characteristics, in 7-year-old children
from a well-characterized Portuguese birth cohort.

METHODS
Population
Participants of the present study are part of the birth cohort Generation
XXI21 that recruited 8647 children born in 2005/2006 in all five public
maternity units covering the metropolitan area of Porto, Portugal. At birth,
91.4% of the invited mothers agreed to participate. Data on demographic
and socioeconomic characteristics, lifestyle, obstetric history, pre-
pregnancy anthropometrics, and personal history of disease, were
collected in a face-to-face interview, conducted by trained interviewers
using structured questionnaires, during the hospital stay. Data on delivery
and newborn characteristics (including gestational age, birth weight, and
birth length) were additionally abstracted from clinical records.21,22 Birth
weight and birth length z-scores were obtained according to the Fenton
growth charts.23 For this study, children with a birth weight below the 10th
percentile for sex and gestational age were categorized as small for
gestational age (SGA), those between the 10th and the 90th percentile as
appropriate for gestational age (AGA), and those above the 90th percentile
as large for gestational age (LGA).23

In 2012/2014, the whole cohort was invited to the 7 years of age follow-
up and 6889 (80% of the initial population) participated. For the current
study, 700 children were randomly selected from those who have attended
the 7-year-old follow-up, assuming 80% power and a 2-tail significance
level of 0.05. Children included in the present study were similar to the
remaining cohort regarding sex distribution, birth weight, height, and
weight at 7 years old (data not shown). The study sample consisted of 351
girls and 349 boys with a mean age of 7.1 years (SD: 0.2).

Physical evaluation and body composition at 7 years old
Trained observers performed a physical examination and anthropometric
measures. Participants were evaluated in underwear and bare feet. Weight was
measured to the nearest 0.1 kg using a digital scale (Tanita®, Arlington Heights,
IL), and standing height was measured to the nearest 0.1 cm using a wall
stadiometer (Seca®, Hamburg, Germany). Body mass index (BMI) was calculated
by dividing weight (kg) by squared height (m2). Weight, height, and BMI were
transformed into age and sex-specific z-scores using World Health Organiza-
tion (WHO) standards,24 and obesity was defined as a BMI z-score ≥ 2 standard
deviations (SD) and overweight as a BMI z-score between 1 and 2 SD.
Waist circumference measurements were taken with a tape measure to

the nearest 0.1 cm, at the umbilicus level, at the end of a normal expiration,
with the child in a standing position, arms at the sides and feet together.
Hip circumference was measured around the largest part of the hips.
Central obesity was defined as waist circumference above the 90th
percentile for sex and age, according to Fernandez’s reference data for
European-American children.25 Waist-to-height ratio was calculated as an
additional measure of body fat distribution.
Total body mass, fat body mass, fat mass percentage, lean body mass,

trunk fat, and trunk mass were measured with the bladder emptied and lying
in underwear by a dual-energy X-ray absorptiometry (DXA) scan in a Hologic
Discovery QDR 4500W device (Hologic Inc., Bedford, Massachusetts).
At the 7-year-old visit, maternal height and weight were also measured.

Maternal age at menarche was self-reported. Maternal pre-pregnancy
weight and weight gain during pregnancy were abstracted from the
pregnancy health card at recruitment.

Hormone and metabolic indicators at 7 years old
An overnight fasting venous blood sample was obtained before 11:00 a.m.,
after applying topical analgesic with lidocaine/prilocaine (EMLA cream).
Serum was used for the biochemical measurements.
DHEAS and insulin were measured by electrochemiluminescence

immunoassays on the Cobas® E411 (Roche); the limits of detection were
0.1 μg/dL and 0.2 μU/mL, respectively, and the intra- and interassay

coefficients of variation were <2.3% and <3.2%, for insulin, and <2.5% and
<3.9%, for DHEAS, respectively.
HbA1c was determined by high-performance liquid ion-exchange

chromatography (BIO RAD VARIANT II), serum glucose was measured
using a UV enzymatic assay (hexokinase method), and total-cholesterol,
HDL-cholesterol, and triglycerides were measured using conventional
assays, all on a Beckman-Coulter® AU5400 automated clinical chemistry
analyzer. LDL-cholesterol was calculated using the Friedewald formula.26

High-sensitivity C-reactive protein (hsCRP) was measured using particle-
enhanced immunonephelometric assay on a BN® II laser nephelometer.
The Homeostasis model assessment for insulin resistance (HOMA-IR) was
computed as “glucose (mg/dL) × insulin (mU/mL)/405”.27

Analyses were performed in the Clinical Pathology Department of
Centro Hospitalar São João, Porto, Portugal.

Statistical analysis
Statistical analysis was performed using SPSS® (v.24; SPSS, IBM Corp.,
Armonk, NY).
Categorical and continuous variables are presented as counts (propor-

tions), mean (SD), and median (range), as appropriate. Continuous
variables were compared using the independent-samples Student t-test
or the Mann–Whitney U test. Categorical variables were compared using
Pearson’s chi-square test.
Differences in DHEAS levels among SGA, AGA, and LGA individuals and

among normal weight, overweight and obese children were analyzed by
ANCOVA, and post hoc pairwise comparisons among groups were
conducted using Sidak correction.
The variation of DHEAS levels in relation to birth weight and length z-

scores, adiposity indicators (weight, height, BMI, waist circumference,
waist-to-height ratio, fat mass percentage, total body fat, trunk fat),
biochemical indicators (fasting glucose, HOMA-IR, insulin, HbA1c, total-
cholesterol, LDL and HDL-cholesterol, triglycerides and hsCRP) and
maternal characteristics (maternal pre-pregnancy BMI, weight gain during
pregnancy, or maternal age at menarche), were estimated fitting linear
regression models, by sex strata. Variables with a distribution different
from the normal were logarithmically transformed.
Logistic regression models were fitted to assess the association between

the adiposity indicators and being at or above the 75th percentile for the
DHEAS distribution of the studied population, arbitrarily defined as “high
DHEAS levels”.
p-values < 0.05 were considered statistically significant.

Ethical issues
All the phases of the study complied with the Ethical Principles for Medical
Research Involving Human Subjects expressed in the Declaration of
Helsinki. The study was approved by the University of Porto Medical
School/Centro Hospitalar São João ethics committee and parents or legal
representatives of the children signed informed consent at the baseline
and all the subsequent follow-up evaluations.

RESULTS
The median serum DHEAS in the sample was 39.1 µg/dL (range:
1.8–237.2 µg/dL), 40.7 µg/dL (range: 2.7–231.4 µg/dL) in girls and
37.7 µg/dL (range: 1.8–237.2 µg/dL) in boys (p= 0.077) (Table 1).

Table 1. DHEAS levels distribution by sex in 700 7-year-old children.

DHEAS (µg/dL) p-value*

Percentile All
(n= 700)

Girls
(n= 351)

Boys
(n= 349)

10th 12.4 13.6 10.4

25th 21.5 24.6 18.8

50th 39.1 40.7 37.7

75th 60.0 60.2 58.8

90th 89.0 90.6 87.8 0.077

DHEAS dehydroepiandrosterone sulfate.
*Mann–Whitney test.
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Adiposity, metabolic and hormonal characteristics of the
participants are detailed in Table 2. The prevalence of overweight
was 23% and 15% were obese. Girls presented a higher proportion
of central adiposity and a higher mean fat mass percentage. Girls
had higher insulinemia, HOMA-IR, total-cholesterol, LDL-choles-
terol, and higher triglyceride levels. No sex differences were found
in birth weight and length z-scores nor maternal characteristics.
There was a significant difference in serum DHEAS levels among

SGA, AGA and LGA children. The post hoc test (Sidak correction)

showed higher DHEAS levels in SGA and lower DHEAS levels in
LGA, when compared with each other and with AGA children
(Fig. 1a). High DHEAS levels (>75th percentile of the whole study
group) were found in 41% (57% females) of the SGA individuals,
23% (52% females) of the AGA individuals and 23% (44% females)
of the LGA individuals.
A significant difference in serum DHEAS levels was also seen

among normal weight, overweight and obese children. The post
hoc test (Sidak correction) showed higher DHEAS levels in obese

Table 2. Anthropometric, metabolic, and hormonal characteristics of the participants.

All (n= 700) Girls (n= 351) Boys (n= 349) p-value

At birth

Gestational age (weeks), mean (SD) 38.8 (1.5) 38.8 (1.6) 38.7 (1.4) 0.541*

Birth weight (g), mean (SD) 3228 (463) 3153 (452) 3303 (463) <0.001*

Birth weight z-score, mean (SD) −0.05 (0.8) −0.1 (0.7) 0.0 (0.8) 0.076*

Birth weight < 10th percentile, n (%) 84 (12.0%) 42 (12.0%) 42 (12.0%) 0.978†

Birth weight ≥ 90th percentile, n (%) 30 (4.3%) 16 (4.6%) 14 (4.0%) 0.721†

Birth length (cm), mean (SD) 49.0 (2.2) 48.6 (2.1) 49.4 (2.1) <0.001*

Birth length z-score, mean (SD) −0.3 (0.7) −0.4 (0.7) −0.3 (0.8) 0.101*

Adiposity indicators at 7 years old

Age (years), mean (SD) 7.1 (0.2) 7.1 (0.2) 7.1 (0.3) 0.228*

Weight (kg), mean (SD) 26.5 (5.1) 26.4 (5.5) 26.6 (4.8) 0.749*

Height (cm), mean (SD) 124.2 (5.2) 123.4 (5.2) 125.1 (5.1) <0.001*

Body mass index z-score, mean (SD) 0.7 (1.1) 0.8 (1.1) 0.7 (1.2) 0.634*

Overweight (1 ≤ BMI z-score < 2 SD), n (%) 161 (22.7%) 76 (21.7%) 83 (23.8%) 0.149†

Obesity (BMI z-score ≥ 2 SD), n (%) 108 (14.4%) 57 (16.2%) 44 (12.6%) 0.149†

Waist circumference ≥ P90, n (%) 91 (13.0%) 55 (15.7%) 36 (10.3%) 0.043†

Waist-to-height ratio, mean (SD) 0.5 (0.05) 0.5 (0.05) 0.5 (0.04) 0.006*

Waist-hip ratio, mean (SD) 0,9 (0.05) 0.9 (0.05) 0.9 (0.06) 0.066*

Total body mass (kg), mean (SD) 27.3 (5.6) 27.4 (6.0) 27.2 (5.1) 0.813*

Total body lean mass (kg), mean (SD) 18.5 (2.7) 17.7 (2.6) 19.3 (2.5) <0.001*

Total body fat mass (kg), mean (SD) 8.9 (3.7) 9.7 (3.9) 8.0 (3.2) <0.001*

Fat mass percentage, mean (SD) 31.5 (6.9) 34.4 (6.6) 28.5 (6.0) 0.041*

Trunk fat (kg), mean (SD) 3.4 (1.8) 3.9 (1.8) 3.0 (1.6) <0.001*

Trunk mass (kg), mean (SD) 11.9 (2.7) 11.9 (2.9) 11.8 (2.5) 0.560*

Biochemical indicators at 7 years old

DHEAS (µg/dL), median (range) 39.1 (1.8–237.2) 40.7 (2.7–231.4) 37.7 (1.8–237.4) 0.077‡

Glucose (mg/dL), mean (SD) 81.9 (6.0) 81.0 (6.1) 82.9 (5.8) <0.001*

Insulin (µU/mL), median (range) 4.4 (1.0–22.0) 4.8 (1.0–22.0) 4.1 (1.0–19.0) <0.001‡

HOMA-IR (median (range)) 0.9 (0.0–5.1) 1.0 (0.0–5.1) 0.9 (0.1–3.9) 0.007‡

HbA1c (%), mean (SD) 5.3 (0.4) 5.3 (0.4) 5.3 (0.4) 0.591*

Total-cholesterol (mg/dL), mean (SD) 168.2 (28.0) 170.8 (28.3) 165.6 (27.5) 0.015*

LDL-cholesterol (mg/dL), mean (SD) 99.7 (24.3) 102.4 (24.5) 96.9 (23.8) 0.003*

HDL-cholesterol (mg/dL), mean (SD) 56.3 (10.8) 55.5 (10.8) 56.99 (10.8) 0.075*

Triglycerides (mg/dL), (median (range)) 54.0 (23.0–229.0) 56.0 (23.0–201.0) 52.0 (23.0–229.0) 0.003‡

hsCRP (mg/L), mean (SD) 2.0 (5.8) 2.3 (6.7) 1.7 (4.0) 0.243*

Maternal characteristics

Maternal height (cm), mean (SD) 159.5 (5.66) 159.8 (5.7) 159.2 (5.5) 0.137*

Maternal pre-pregnancy BMI (kg/m2), mean (SD) 23.9 (4.2) 24.0 (4.3) 23.9 (4.0) 0.730*

Maternal age at menarche (years), mean (SD) 12.3 (1.5) 12.3 (1.5) 12.3 (1.5) 0.973*

Gestational diabetes, n (%) 53 (7.6%) 22 (6.3%) 31 (8.9%) 0.180†

Birth weight and length z-scores according to the Fenton growth charts23 and anthropometric z-scores based on WHO 2007;24 waist circumference percentiles
are based on Fernandez data for European children.25

DHEAS dehydroepiandrosterone sulfate, BMI body mass index, hsCRP high-sensitivity C-reactive protein.
*t-test; †Chi-square test; ‡Mann–Whitney U test; the p-values mean the difference between boys and girls.
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and overweight children when compared with normal-weight
children; obese children also presented significantly higher DHEAS
than overweight children (Fig. 1b).
DHEAS levels were inversely related to birth weight and birth

length (Table 3). DHEAS was positively associated with all the
adiposity indicators: BMI, waist-to-height ratio, total body fat, fat
mass percentage, and trunk fat. DHEAS was also positively
associated with glucose, insulin, and HOMA-IR (Table 3). Associa-
tions were similar in magnitude and direction in both sexes.
No significant associations were found between DHEAS levels

and total, LDL or HDL-cholesterol, triglycerides, hsCRP, maternal
pre-pregnancy BMI, weight gain during pregnancy, nor maternal
age at menarche (Table 3).
A positive association was found between insulin and BMI

z-score at 7 years of age (β= 0.265 [95% CI: 0.231; 0.299]). No
association was found between birth weight z-score and insulin
(β= 0.027 [95% CI: −0.029; 0.083]) (data not shown).
In multivariable linear regression models, both lower birth

weight, and higher BMI (model 1), and lower birth weight, higher
BMI, and higher insulin (model 2) were associated with higher
serum DHEAS (Table 4). Children with higher fasting insulin had
higher DHEAS levels, even after adjustment for birth weight (or
birth length) and BMI. A one percent increase in insulin levels
increased DHEAS by 0.195%; for each 1 z-score increase in birth
weight, DHEAS decreased by 15.4% and for each 1 z-score
increase in BMI, DHEAS increased 13.4%. Similar results were
found when total body fat rather than BMI was considered in the
adjusted model (model 3). Also, the inclusion of birth length,
instead of birth weight, did not change appreciably the strength
and the direction of the associations (model 4).
Including insulin in the model did not affect the magnitude of

the association between birth weight and DHEAS but reduced the
magnitude of the BMI effect by 24% for boys and 30% for girls.
Despite the reduction in the point estimate, the regression
coefficients for BMI remained statistically significant.
The overall and sex-specific associations of adiposity with

DHEAS levels above the 75th percentile are shown in Table 5.
Obese children (odds ratio (OR): 2.4; 95% CI: 1.5–3.7) and those
born SGA (OR 2.3; 95% CI: 1.4–3.7) had twice the odds of DHEAS
above the 75th percentile. After adjustment for age, birth weight,
and insulin (Table 5, model 3), obesity remained significantly
associated with a DHEAS above the 75th percentile (OR 1.6 [95%
CI: 1.0–1.6]).

DISCUSSION
In our sample of 700 Portuguese children, we highlight two main
results: DHEAS concentrations at age 7 were associated with lower
birth size, higher adiposity, and higher insulinemia, independently
of the child’s BMI or birth size, and insulin seemed to explain a
part of the effect of BMI on DHEAS levels.
The median DHEAS levels in our population were 40.7 µg/dL in

girls and 37.7 µg/dL in boys, slightly higher than those found in 7-
year-old Chilean and Finnish children.12,13 The median DHEAS
levels in a sample of 97 Portuguese 7-year-old PA patients (with
clinical and biochemical criteria) from the same geographical area
were 102 µg/dL in girls and 114 µg/dL in boys.28 Thus, we add to
the existing knowledge by presenting the distribution of serum
DHEAS levels in a population-based sample of Portuguese
children.
DHEAS reflects adrenarche, although it is an inactive androgen

metabolite and its levels do not always match the clinical signs of
adrenarche.29 DHEAS cannot bind to the androgen receptor and
cannot enter most cells as it needs active transport mechanisms as
a hydrophilic steroid compound. The active androgens, such as
testosterone and dihydrotestosterone, derive from DHEA, which is
rarely (re-) generated from peripheral DHEAS.4,30,31 The activation
of the androgen receptor is necessary for the appearance of
adrenarche’s clinical signs, like pubic and axillary hair. Therefore,
the phenotypic changes of pubarche depend on the concentra-
tions of DHEAS, which reflects adrenal androgen output, the rate
of DHEA peripheral conversion to biologically active androgens,
and the androgen receptor activity.29,32

Adiposity increases adrenal androgen production and conver-
sion to more potent androgens in peripheral fat tissue,15,32 thus
explaining the association of prepubertal overweight and obesity
with PA.33–36

DHEAS levels were positively associated with BMI, fat mass
percentage, waist circumference, waist-to-height ratio, total body
fat, and trunk fat. Furthermore, DHEAS levels were higher among
obese and overweight prepubertal children, in comparison with
their lean counterparts, and obese children had twice the odds of
higher DHEAS levels (≥75th percentile). These results were in
accordance with previous reports.12–15,37

Previous studies in the Finnish and the Chilean population found
no association between DHEAS and insulinemia12,13 but we
observed a linear association between serum DHEAS and fasting
insulin levels and HOMA-IR. These associations remained after

300
a b

250

200

150

D
H

E
A

S
 (
�g

/d
L)

D
H

E
A

S
 (
�g

/d
L)

45.6 (38.5; 53.5)

34.1 (32.1; 36.2)
26.8 (20.5; 35.9) 31.5 (29.4; 33.8)

37.3 (33.1; 42.1)

49.4 (42.5; 57.4)100

50

0
AGA LGA Normal weight Overweight ObeseSGA

300

250

200

150

100

50

0

Fig. 1 DHEAS levels (µg/dL, geometric mean and 95% CI) at 7 years old according to birth weight categories (a)* and according to BMI
categories (b)**. *ANCOVA; the post hoc test (Sidak correction) p < 0.05 between AGA and SGA and between AGA and LGA; p < 0.05
between LGA e SGA. **ANCOVA; the post hoc test (Sidak correction) p < 0.05 between normal weight and overweight and between normal
weight and obese; p < 0.05 between overweight and obese. SGA: birth weight < 10th percentile; AGA: birth weight between the 10th and the
90th percentile; LGA: birth weight ≥ 90th percentile. Birth weight percentiles based on Fenton growth charts.23 Normal weight (BMI < 1 z-
score); overweight (1 z-score ≤ BMI < 2 z-score); obese (BMI ≥ 2 z-score); p < 0.001. BMI z-scores based on WHO 2007.24

R. Santos-Silva et al.

1900

Pediatric Research (2022) 91:1897 – 1905



adjustment for birth size (both birth weight and length) and
adiposity (both BMI and total body fat) and were similar in both
sexes. Our results were consistent with case–control studies showing
that PA prepubertal children have higher serum insulin17,36,38–41 and
insulin resistance,39,40,42 independently of weight,36,43 and that
insulin seems directly related to the degree of androgen excess.44–47

In our study, the point estimate of the association between BMI
and DHEAS levels decreased 24% for boys and 30% for girls when
insulin was included in the model. Also, the association between
obesity and higher DHEAS levels decreased when insulin was
included in the adjusted model (OR= 2.3 in the model adjusted
for age and birth weight to OR= 1.6 in the model adjusted for
age, birth weight, and insulin). These results suggest that insulin
may mediate the effect of obesity on androgen production. This

mediating role may be partly explained, as obesity increases
insulin and insulin-like growth factors (IGFs)3,4,11 and the IGFs
stimulate adrenal cell proliferation and steroidogenesis.48

We confirmed that DHEAS was inversely associated with birth
size,6–9,11,12 with higher DHEAS levels being found in 7-year-old
children with lower birth weight, independently of their BMI and
insulinemia. We also showed that LGA children presented lower
serum DHEAS than AGA and SGA children, as previously reported
in the Finnish population.7 Metabolic programming during fetal
and early postnatal life after intrauterine growth restriction can
modulate insulin secretion,49 and hyperinsulinemia could justify
the higher levels of DHEAS in SGA children. However, in our
sample, the association between birth size and DHEAS remained
similar after adjustment for insulin. We can hypothesize a role for

Table 3. Univariate regression coefficients (95% CI) between DHEAS levels at 7 years old and birth weight, adiposity, and biochemical indicators.

LnDHEAS (µg/dL)a p-value

All (n= 700)
β (95% CI)

p-value Girls (n= 351)
β (95% CI)

p-value Boys (n= 349)
β (95% CI)

At birth

Birth weight z-score −0.121
(−0.193; −0.004)

0.001 −0.107
(−0.200; −0.002)

0.045 −0.127
(−0.231; −0.022)

0.018

Birth length z-score −0.185
(−0.185; −0.028)

0.008 −0.094
(−0.197; 0.009)

0.073 −0.107
(−0.225; 0.010)

0.073

Adiposity indicators at 7 years old

BMI z-score 0.160 (0.112; 0.209) <0.001 0.152 (0.089; 0.215) <0.001 0.166 (0.092; 0.240) <0.001

Height z-score 0.143 (0.081; 0.205) <0.001 0.173 (0.095; 0.252) <0.001 0.126 (0.030; 0.222) 0.010

Waist circumference (cm) 0.029 (0.021; 0.048) <0.001 0.025 (0.016; 0.035) <0.001 0.034 (0.020; 0.048) <0.001

Waist-to-height ratio 3.336 (2.152; 4.521) <0.001 2.771 (1.346; 4.196) <0.001 3.815 (1.839; 5.792) <0.001

Whole body total fat (kg) 0.058 (0.035; 0.081) <0.001 0.057 (0.028; 0.087) <0.001 0.048 (0.010; 0.086) 0.013

Fat mass percentage 0.029 (0.016; 0.041) <0.001 0.031 (0.013; 0.048) 0.001 0.021 (0.000; 0.041) 0.051

Trunk fat (kg) 0.123 (0.075; 0.170) <0.001 0.123 (0.060; 0.185) <0.001 0.100 (0.022; 0.179) 0.013

Biochemical indicators at 7 years old

Glucose (mg/dL) 0.018 (0.008; 0.027) <0.001 0.016 (0.004; 0.028) 0.011 0.025 (0.010; 0.040) 0.001

LnInsulin (µU/mL)a 0.306 (0.213; 0.400) <0.001 0.292 (0.175; 0.409) <0.001 0.303 (0.153; 0.453) <0.001

HOMA-IR 0.295 (0.207; 0.384) <0.001 0.278 (0.168; 0.388) <0.001 0.299 (0.157; 0.440) <0.001

HbA1c (%) 0.303 (0.118; 0.488) 0.001 0.264 (0.025; 0.503) 0.030 0.358 (0.073; 0.643) 0.014

Total-cholesterol (mg/dL) −0.001
(−0.002; 0.002)

0.927 −0.002
(−0.005; 0.001)

0.346 0.002 (−0.002; 0.005) 0.114

HDL-cholesterol (mg/dL) −0.001
(−0.006; 0.005)

0.796 −0.004
(−0.010; 0.003)

0.301 0.003 (−0.005; 0.011) 0.470

LDL-cholesterol (mg/dL) 0.000 (−0.003; 0.002) 0.776 −0.002
(−0.005; 0.001)

0.126 0.001 (−0.003; 0.005) 0.566

LnTriglycerides (mg/dL)a 0.112 (−0.037; 0.261) 0.142 0.045 (−0.151; 0.242) 0.650 0.140 (−0.085; 0.364) 0.221

hsCRP (mg/L) 0.000 (−0.012; 0.011) 0.949 −0.003
(−0.014; 0.009)

0.670 0.005 (−0.025; 0.035) 0.638

Maternal characteristics

Maternal pre-pregnancy BMI
(kg/m2)

0.000 (−0.015; 0.014) 0.963 0.001 (−0.016; 0.019) 0.883 −0.003
(−0.026; 0.020)

0.819

Weight gain during
pregnancy (kg)

−0.008
(−0.018; 0.002)

0.131 −0.004
(−0.016; 0.009)

0.590 −0.011
(−0.027; 0.005)

0.177

Maternal age at menarche
(years)

−0.034
(−0.073; 0.004)

0.083 −0.032
(−0.081; 0.017)

0.196 −0.037
(−0.097; 0.024)

0.237

Birth weight z-scores according to the Fenton growth charts23 and BMI z-score based on WHO 2007.24

This table reports univariate regression coefficients between DHEAS levels (logarithmically transformed) and several indicators. Each cell is a separate
univariate regression and shows the estimated coefficient with 95% confidence intervals in parentheses.
DHEAS dehydroepiandrosterone sulfate, BMI body mass index, HOMA-IR homeostasis model assessment for insulin resistance, DXA dual-energy-X-ray
absorptiometry, hsCRP high-sensitivity C-reactive protein.
aVariables in a distribution different from the normal were logarithmically transformed; whole-body total fat (DXA), % fat (DXA), and trunk fat (DXA) were
available in 306 children; the remaining variables were available for all children (n= 700).
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neonatal stress and higher activation of the adrenal axis from
prenatal life on, since there is some evidence of increased cortisol
secretion and adrenal responsiveness to ACTH stimulation in SGA
individuals.50

In our population, no significant associations between serum
DHEAS and lipid profile or hsCRP were observed. Increased
cardiometabolic risk and later development of the metabolic
syndrome and ovarian hyperandrogenism were shown in a
specific group of PA girls, who presented premature pubarche
and overweight/obesity, and/or excessive weight gain in the
first years of life, and/or low birth weight, and/or markedly
elevated androgen levels in prepuberty.20,51,52 The association
between DHEAS levels and cardiometabolic risk factors was
explored in the Finnish population, and no association between
higher DHEAS and an unfavorable metabolic profile, besides
obesity, was found in children without premature pubarche; on
the contrary, higher DHEAS levels were associated with a more
favorable lipid profile, possibly due to their higher skeletal
muscle mass.12

PA is more frequently observed in girls,3,4 but no sex difference
in DHEAS levels was found in prepuberty.12,13 The large difference
in the prevalence of PA between girls and boys, despite similar
DHEAS levels in prepuberty, can be explained by a more efficient
peripheral adrenal androgen conversion in girls not only to more
potent androgens (due to their higher fat mass percentage, also
seen in the present study), but also to estrogens through
aromatase.15,16 Furthermore, girls are more predisposed to show
signs of androgen action as their pilosebaceous unit is more
sensitive to androgens. Hence, and even though DHEAS in our
sample was similar in boys and girls, we decided to stratify our
analysis by sex.
A major strength of our study is that we evaluated a large

population-based sample at the same age. As serum DHEAS varies
with age, we could analyze the association between birth weight,
adiposity, and hormonal mediators, assessing the potential sex
differences independently of such effect. We also had detailed
information regarding body composition based on anthropometry
measurements and total body DXA.
As potential limitations, we did not have information regarding

Tanner stages nor other clinical signs of adrenarche, such as
apocrine body odor, acne, or seborrhea, in this population.
However, as we have analyzed a biochemical marker (serum
DHEAS) and not the clinical signs of adrenarche, we do not expect
this to affect our conclusions. DHEAS was measured with an
immunoassay and not with liquid chromatography-tandem mass
spectrometry; nevertheless, DHEAS measurement does not usually
require mass spectrometric analytics, because its concentrations
are sufficiently high to be analyzed reliably by immunoassays.
Although DHEAS has been traditionally considered the most

relevant biomarker of adrenal androgen production, recent
studies suggest that 11-oxygenated C19 adrenal-derived steroids
are the main bioactive androgens during adrenarche and PA, and
might be responsible for the clinical signs of adrenarche.53–55

However, large cross-sectional and longitudinal studies are
needed.
In summary, we found that DHEAS levels in 7-year-old children

were inversely associated with birth size and directly related to
BMI, waist circumference, waist-to-height ratio, total body fat, and
trunk fat. We also found that DHEAS levels were positively
associated with insulinemia and HOMA-IR independently of birth
size or BMI. We found no associations between DHEAS levels and
lipid profile or hsCRP.
SGA, overweight, and obese children in prepubertal years may

present with increased adrenocortical function. Whether higher
androgen levels in these children will represent a higher risk for
metabolic complications in the future deserves further investiga-
tion. As we continue to follow these children, our cohort may
contribute to better explore these issues.Ta
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