Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Elevated circulating endothelial microparticles (EMPs) in prepubertal children born preterm

Abstract

Background

Endothelial microparticles (EMPs) act as early biomarkers of endothelial activation and damage. No studies have investigated EMPs in preterm-born individuals.

Methods

Sixty-three preterm-born children and 52 children born full-term (controls) were studied. Circulating CD62E(+), CD144(+), and CD31(+)/CD42b(−) EMPs were measured in preterm-born children compared to controls; possible associations with cardiovascular risk factors and endothelial function parameters were also assessed.

Results

Circulating CD62E(+), CD144(+), and CD31(+)/CD42b(−) EMPs were significantly higher in preterm-born children compared to controls (p = 0.003, p < 0.001, and p < 0.001, respectively). Preterm birth was recognized as an independent predictor of each EMP subpopulation studied; moreover, the mean pressure and velocity of pulmonary artery were independently correlated with CD62E(+) (β = 0.20, p = 0.04) and CD144(+) EMPs (β = 0.22, p = 0.02), respectively, whereas age (β = 0.21, p = 0.03) and being born SGA (β = 0.26, p = 0.01) correlated independently with CD31(+)/CD42b(−) EMPs in the study population. Furthermore, diastolic blood pressure (β = 0.24, p = 0.04), being born SGA (β = 0.24, p = 0.04) and the hyperemic peak velocity of the brachial artery (β = −0.65, p = 0.02) were independently associated with CD31(+)/CD42b(−) EMPs in the preterm-born group.

Conclusion

Circulating EMPs were higher in preterm-born children compared to children born full-term. Whether EMPs could act, in clinical practice, as a complementary tool for non-invasive evaluation of endothelium in preterm-born children, remains under investigation.

Impact

  • Circulating endothelial microparticles (EMPs) are small membrane vesicles released from endothelial cells and they act as novel biomarkers of endothelial activation and damage.

  • No studies have investigated circulating EMPs in preterm-born individuals.

  • Circulating EMPs were significantly higher in prepubertal preterm-born children compared to children born at term.

  • In the preterm-born group, the hyperemic peak velocity of the brachial artery was independently associated with CD31(+)/CD42b(−) EMPs.

  • Whether assessment of circulating EMPs could act, in clinical practice, as a complementary tool for non-invasive evaluation of endothelium in preterm-born children, remains to be defined in future investigations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Log-transformed circulating CD62E(+), CD144(+) and CD31(+)/CD42b(−) endothelial microparticles (EMPs) in preterm-born children compared to controls.

References

  1. 1.

    Heindel, J. J. et al. Developmental origins of health and disease: integrating environmental influences. Endocrinology 156, 3416–3421 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Bavineni, M. et al. Mechanisms linking preterm birth to onset of cardiovascular disease later in adulthood. Eur. Heart J. 40, 1107–1112 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Bassareo, P. P., Namana, V., Fanos, V. & Mercuro, G. Preterm birth and risk of heart failure up to early adulthood. J. Am. Coll. Cardiol. 70, 1943–1944 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Carr, H., Cnattingius, S., Granath, F., Ludvigsson, J. F. & Edstedt Bonamy, A. K. Preterm birth and risk of heart failure up to early adulthood. J. Am. Coll. Cardiol. 69, 2634–2642 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Crump, C. et al. Association of preterm birth with risk of ischemic heart disease in adulthood. JAMA Pediatr. 179, 736–743 (2019).

    Article  Google Scholar 

  6. 6.

    Markopoulou, P., Papanikolaou, E., Analytis, A., Zoumakis, E. & Siahanidou, T. Preterm birth as a risk factor for metabolic syndrome and cardiovascular disease in adult life: a systematic review and meta-analysis. J. Pediatr. 210, 69–80 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    de Jong, F., Monuteaux, M. C., van Elburg, R. M., Gillman, M. W. & Belfort, M. B. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 59, 226–234 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    Kajantie, E. et al. Insulin sensitivity and secretory response in adults born preterm: the Helsinki Study of Very Low Birth Weight Adults. J. Clin. Endocrinol. Metab. 100, 244–250 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Sipola-Leppänen, M. et al. Cardiometabolic risk factors in young adults who were born preterm. Am. J. Epidemiol. 181, 861–873 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Breukhoven, P. E., Kerkhof, G. F., Willemsen, R. H. & Hokken-Koelega, A. C. Fat mass and lipid profile in young adults born preterm. J. Clin. Endocrinol. Metab. 97, 1294–1302 (2012).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Hovi, P. et al. Intima-media thickness and flow-mediated dilatation in the Helsinki study of very low birth weight adults. Pediatrics 127, 304–311 (2011).

    Article  Google Scholar 

  12. 12.

    Lee, H., Dichtl, S., Mormanova, Z., Dalla Pozza, R. & Genzel-Boroviczeny, O. In adolescence, extreme prematurity is associated with significant changes in the microvasculature, elevated blood pressure and increased carotid intima-media thickness. Arch. Dis. Child. 99, 907–911 (2014).

    PubMed  Article  Google Scholar 

  13. 13.

    Shimizu, T. et al. Abdominal aortic intima-media thickness in preschool children born preterm. Pediatr. Cardiol. 35, 121–125 (2014).

    PubMed  Article  Google Scholar 

  14. 14.

    Mohlkert, L. A. et al. The preterm heart in childhood: left ventricular structure, geometry, and function assessed by echocardiography in 6-year-old survivors of periviable births. J. Am. Heart Assoc. 7, e007742 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Lewandowski, A. J. The preterm heart: a unique cardiomyopathy? Pediatr. Res. 85, 738–739 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Bassareo, P. P. et al. Reduced brachial flow-mediated vasodilation in young adult ex extremely low birth weight preterm: a condition predictive of increased cardiovascular risk? J. Matern. Fetal Neonatal Med. 23 (Suppl. 3), 121–124 (2010).

  17. 17.

    Cheung, Y. F., Wong, K. Y., Lam, B. C. & Tsoi, N. S. Relation of arterial stiffness with gestational age and birth weight. Arch. Dis. Child. 89, 217–221 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Wei, F. F. et al. Retinal and renal microvasculature in relation to central hemodynamics in 11-year-old children born preterm or at term. J. Am. Heart Assoc. 9, e014305 (2020).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Melville, J. M. & Moss, T. J. The immune consequences of preterm birth. Front. Neurosci. 7, 79 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Markopoulou, P. et al. Increased circulating endothelial progenitor cells (EPCs) in prepubertal children born prematurely: a possible link between prematurity and cardiovascular risk. Pediatr. Res. https://doi.org/10.1038/s41390-020-01190-y (2020).

  21. 21.

    Bertagnolli, M. et al. Endothelial colony-forming cells in young adults born preterm: a novel link between neonatal complications and adult risks for cardiovascular disease. J. Am. Heart Assoc. 7, e009720 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Dignat-George, F. & Boulanger, C. M. The many faces of endothelial microparticles. Arterioscler. Thromb. Vasc. Biol. 31, 27–33 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Agouni, A. et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am. J. Pathol. 173, 1210–1219 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Tramontano, A. F. et al. Circulating endothelial microparticles in diabetes mellitus. Mediators Inflamm. 2010, 250476 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Bernal-Mizrachi, L. et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am. Heart J. 145, 962–970 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Fenton, T. R. & Kim, J. H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 13, 59 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Higgins, R. D. et al. Bronchopulmonary dysplasia: executive summary of a workshop. J. Pediatr. 197, 300–308 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Cutfield, W. S., Jefferies, C. A., Jackson, W. E., Robinson, E. M. & Hofman, P. L. Evaluation of HOMA and QUICKI as measures of insulin sensitivity in prepubertal children. Pediatr. Diabetes 4, 119–125 (2003).

    PubMed  Article  Google Scholar 

  29. 29.

    Dalla Pozza, R. et al. Intima media thickness measurement in children: a statement from the Association for European Paediatric Cardiology (AEPC) Working Group on Cardiovascular Prevention endorsed by the Association for European Paediatric Cardiology. Atherosclerosis 238, 380–387 (2015).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Järvisalo, M. J. et al. Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children. Circulation 104, 2943–2947 (2001).

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Thijssen, D. H. et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 40, 2534–2547 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Lai, W. W. et al. Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 19, 1413–1430 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Amabile, N. et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur. Heart J. 35, 2972–2979 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Bruyndonckx, L. et al. Endothelial progenitor cells and endothelial microparticles are independent predictors of endothelial function. J. Pediatr. 165, 300–305 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Deng, F., Wang, S. & Zhang, L. Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of circulatory hypoxia-related diseases: a literature review. J. Cell Mol. Med. 21, 1698–1710 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Shebl, S. S. et al. Thrombo-hemorrhagic liability in children with congenital heart diseases. Hematol. Oncol. Stem Cell Ther. 11, 123–128 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Adly, A. A. et al. Vascular dysfunction in patients with young β-thalassemia: relation to cardiovascular complications and subclinical atherosclerosis. Clin. Appl Thromb. Hemost. 21, 733–744 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Ding, Y. Y. et al. Correlation between brachial artery flow-mediated dilation and endothelial microparticle levels for identifying endothelial dysfunction in children with Kawasaki disease. Pediatr. Res. 75, 453–458 (2014).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Dursun, I. et al. Circulating endothelial microparticles in children with Henoch-Schönlein purpura; preliminary results. Rheumatol. Int. 31, 1595–1600 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Narin, N. et al. Are endothelial microparticles early markers of pulmonary hypertension? Biomarkers 19, 319–325 (2014).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Boulanger, C. M. et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 104, 2649–2652 (2001).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Edwards, M. O. et al. Higher systolic blood pressure with normal vascular function measurements in preterm-born children. Acta Paediatr. 103, 904–912 (2014).

    PubMed  Article  Google Scholar 

  43. 43.

    Witte, D. R. et al. Is the association between flow-mediated dilation and cardiovascular risk limited to low-risk populations? J. Am. Coll. Cardiol. 45, 1987–1993 (2005).

    PubMed  Article  Google Scholar 

  44. 44.

    Seals, D. R., Jablonski, K. L. & Donato, A. J. Aging and vascular endothelial function in humans. Clin. Sci. (Lond.). 120, 357–375 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Wexler, O. et al. Brachial artery reactivity in patients with severe sepsis: an observational study. Crit. Care 16, R38 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Philpott, A. & Anderson, T. J. Reactive hyperemia and cardiovascular risk. Arterioscler Thromb. Vasc. Biol. 27, 2065–2067 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Lammi, M. R. et al. Microparticles in systemic sclerosis: potential pro-inflammatory mediators and pulmonary hypertension biomarkers. Respirology 24, 675–683 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Kosanovic, D. et al. Enhanced circulating levels of CD3 cells-derived extracellular vesicles in different forms of pulmonary hypertension. Pulm. Circ. 9, 2045894019864357 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Flint, A. C. et al. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N. Engl. J. Med. 381, 243–251 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Alexander, B. T., Dasinger, J. H. & Intapad, S. Fetal programming and cardiovascular pathology. Compr. Physiol. 5, 997–1025 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Skilton, M. R. et al. Fetal growth and preterm birth influence cardiovascular risk factors and arterial health in young adults: the Cardiovascular Risk in Young Finns Study. Arterioscler. Thromb. Vasc. Biol. 31, 2975–2981 (2011).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful towards all children and their parents participating voluntarily in the study.

Author information

Affiliations

Authors

Contributions

All the authors assisted with study design, acquisition, analysis and interpretation of the data; P.M. performed the clinical assessment; P.M. and E.P. were responsible for the flow cytometric analysis of circulating EMPs; P.G. was responsible for the ultrasound study of cIMT, aIMT, and FMD of the brachial artery; S.L. was responsible for cardiology data; and I.P. was responsible for blood biochemistry. T.S. supervised the study. P.M. developed the first draft of the manuscript and T.S. critically reviewed it. All the authors edited the manuscript, revised it critically for important intellectual content, and approved the final version to be published.

Corresponding author

Correspondence to Tania Siahanidou.

Ethics declarations

Competing interests

The authors declare no competing interests

Consent statement

Informed written consent was obtained from parents and children.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Markopoulou, P., Papanikolaou, E., Loukopoulou, S. et al. Elevated circulating endothelial microparticles (EMPs) in prepubertal children born preterm. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01655-8

Download citation

Search

Quick links