Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chorioamnionitis and neonatal outcomes

Abstract

Chorioamnionitis or intrauterine inflammation is a frequent cause of preterm birth. Chorioamnionitis can affect almost every organ of the developing fetus. Multiple microbes have been implicated to cause chorioamnionitis, but “sterile” inflammation appears to be more common. Eradication of microorganisms has not been shown to prevent the morbidity and mortality associated with chorioamnionitis as inflammatory mediators account for continued fetal and maternal injury. Mounting evidence now supports the concept that the ensuing neonatal immune dysfunction reflects the effects of inflammation on immune programming during critical developmental windows, leading to chronic inflammatory disorders as well as vulnerability to infection after birth. A better understanding of microbiome alterations and inflammatory dysregulation may help develop better treatment strategies for infants born to mothers with chorioamnionitis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Exposure to various microbes or sterile inflammation leads to chorioamnionitis and release of various pro-inflammatory cytokines, which in turn causes preterm labor and/or premature rupture of membranes (PROM).
Fig. 2: Management algorithm of neonates exposed to chorioamnionitis.

References

  1. Hamilton, B. E., Martin, J. A. & Osterman, M. J. K. Births: Preliminary Data for 2015. National Vital Statistics Reports, Vol. 65 (National Center for Health Statistics, 2016).

  2. Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008).

    PubMed  PubMed Central  Google Scholar 

  3. DiGiulio, D. B. et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS ONE 3, e3056 (2008).

    PubMed  PubMed Central  Google Scholar 

  4. Goldenberg, R. L., Hauth, J. C. & Andrews, W. W. Intrauterine infection and preterm delivery. N. Engl. J. Med. 342, 1500–1507 (2000).

    CAS  PubMed  Google Scholar 

  5. Yoon, B. H. et al. The clinical significance of detecting ureaplasma urealyticum by the polymerase chain reaction in the amniotic fluid of patients with preterm labor. Am. J. Obstet. Gynecol. 189, 919–924 (2003).

    CAS  PubMed  Google Scholar 

  6. Higgins, R. D. et al. Evaluation and management of women and newborns with a maternal diagnosis of chorioamnionitis: summary of a workshop. Obstet. Gynecol. 127, 426–436 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gomez, R. et al. The fetal inflammatory response syndrome. Am. J. Obstet. Gynecol. 179, 194–202 (1998).

    CAS  PubMed  Google Scholar 

  8. Romero, R. et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Reprod. Immunol. 72, 458–474 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nadeau-Vallee, M. et al. Sterile inflammation and pregnancy complications: a review. Reproduction 152, R277–R292 (2016).

    CAS  PubMed  Google Scholar 

  10. Bove, H. et al. Ambient black carbon particles reach the fetal side of human placenta. Nat. Commun. 10, 3866 (2019).

    PubMed  PubMed Central  Google Scholar 

  11. Familari, M. et al. Exposure of trophoblast cells to fine particulate matter air pollution leads to growth inhibition, inflammation and ER stress. PLoS ONE 14, e0218799 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Menon, R. et al. Cigarette smoke induces oxidative stress and apoptosis in normal term fetal membranes. Placenta 32, 317–322 (2011).

    CAS  PubMed  Google Scholar 

  13. Romero, R. et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic infection in preterm labor with intact membranes. Am. J. Reprod. Immunol. 71, 330–358 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Romero, R. et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 28, 1394–1409 (2015).

    PubMed  Google Scholar 

  15. Romero, R. et al. Sterile intra-amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J. Matern. Fetal Neonatal Med. 28, 1343–1359 (2015).

    PubMed  Google Scholar 

  16. Kallapur, S. G., Presicce, P., Rueda, C. M., Jobe, A. H. & Chougnet, C. A. Fetal immune response to chorioamnionitis. Semin. Reprod. Med. 32, 56–67 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 1277.e14–1292.e14 (2018).

    Google Scholar 

  18. Roberts, D. J. et al. Acute histologic chorioamnionitis at term: nearly always noninfectious. PLoS ONE 7, e31819 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Oh, K. J. et al. Twenty-four percent of patients with clinical chorioamnionitis in preterm gestations have no evidence of either culture-proven intraamniotic infection or intraamniotic inflammation. Am. J. Obstet. Gynecol. 216, 604.e601–604.e611 (2017).

    Google Scholar 

  20. Sung, J. H., Choi, S. J., Oh, S. Y., Roh, C. R. & Kim, J. H. Revisiting the diagnostic criteria of clinical chorioamnionitis in preterm birth. BJOG 124, 775–783 (2017).

    PubMed  Google Scholar 

  21. Redline, R. W. et al. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr. Dev. Pathol. 6, 435–448 (2003).

    PubMed  Google Scholar 

  22. Pacora, P. et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J. Matern. Fetal Neonatal Med. 11, 18–25 (2002).

    CAS  PubMed  Google Scholar 

  23. Gomez-Lopez, N. et al. Are amniotic fluid neutrophils in women with intraamniotic infection and/or inflammation of fetal or maternal origin? Am. J. Obstet. Gynecol. 217, 693.e1–693.e16 (2017).

    Google Scholar 

  24. Kim, C. J. et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol. 213, S29–S52 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Doyle, R. M. et al. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta 35, 1099–1101 (2014).

    CAS  PubMed  Google Scholar 

  26. Goldenberg, R. L. et al. The Alabama Preterm Birth Study: umbilical cord blood Ureaplasma urealyticum and Mycoplasma hominis cultures in very preterm newborn infants. Am. J. Obstet. Gynecol. 198, e41–e45 (2008).

    Google Scholar 

  27. Randis, T. M. et al. Group B Streptococcus beta-hemolysin/cytolysin breaches maternal-fetal barriers to cause preterm birth and intrauterine fetal demise in vivo. J. Infect. Dis. 210, 265–273 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shurin, P. A., Alpert, S., Bernard Rosner, B. A., Driscoll, S. G. & Lee, Y. H. Chorioamnionitis and colonization of the newborn infant with genital mycoplasmas. N. Engl. J. Med. 293, 5–8 (1975).

    CAS  PubMed  Google Scholar 

  29. Prince, A. L. et al. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am. J. Obstet. Gynecol. 214, 627.e1–627.e16 (2016).

    Google Scholar 

  30. Urushiyama, D. et al. Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome. Sci. Rep. 7, 12171 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Combs, C. A. et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am. J. Obstet. Gynecol. 210, 125.e1–125.e15 (2014).

    Google Scholar 

  32. Maki, Y., Fujisaki, M., Sato, Y. & Sameshima, H. Candida chorioamnionitis leads to preterm birth and adverse fetal-neonatal outcome. Infect. Dis. Obstet. Gynecol. 2017, 9060138 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. DiGiulio, D. B. Diversity of microbes in amniotic fluid. Semin. Fetal Neonatal Med. 17, 2–11 (2012).

    PubMed  Google Scholar 

  34. Romero, R. et al. Detection of a microbial biofilm in intraamniotic infection. Am. J. Obstet. Gynecol. 198, e131–e135 (2008).

    Google Scholar 

  35. Aagaard, K. et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 7, e36466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra265 (2014).

    Google Scholar 

  37. Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394.e20–3409.e20 (2021).

  38. DiGiulio, D. B. et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl Acad. Sci. USA 112, 11060–11065 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Uchida, K. et al. Effects of Ureaplasma parvum lipoprotein multiple-banded antigen on pregnancy outcome in mice. J. Reprod. Immunol. 100, 118–127 (2013).

    CAS  PubMed  Google Scholar 

  40. Fardini, Y., Chung, P., Dumm, R., Joshi, N. & Han, Y. W. Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect. Immun. 78, 1789–1796 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mysorekar, I. U. & Diamond, M. S. Modeling Zika virus infection in pregnancy. N. Engl. J. Med. 375, 481–484 (2016).

    PubMed  Google Scholar 

  42. Arora, N., Sadovsky, Y., Dermody, T. S. & Coyne, C. B. Microbial vertical transmission during human pregnancy. Cell Host Microbe 21, 561–567 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharma, L. & Shukla, G. Placental malaria: a new insight into the pathophysiology. Front. Med. 4, 117 (2017).

    Google Scholar 

  44. Qureshi, F. et al. Candida funisitis: a clinicopathologic study of 32 cases. Pediatr. Dev. Pathol. 1, 118–124 (1998).

    CAS  PubMed  Google Scholar 

  45. Cappelletti, M., Presicce, P. & Kallapur, S. G. Immunobiology of acute chorioamnionitis. Front. Immunol. 11, 649 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Galask, R. P., Varner, M. W., Petzold, C. R. & Wilbur, S. L. Bacterial attachment to the chorioamniotic membranes. Am. J. Obstet. Gynecol. 148, 915–928 (1984).

    CAS  PubMed  Google Scholar 

  47. Coultrip, L. L. et al. The value of amniotic fluid interleukin-6 determination in patients with preterm labor and intact membranes in the detection of microbial invasion of the amniotic cavity. Am. J. Obstet. Gynecol. 171, 901–911 (1994).

    CAS  PubMed  Google Scholar 

  48. Romero, R., Dey, S. K. & Fisher, S. J. Preterm labor: one syndrome, many causes. Science 345, 760–765 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chatterjee, J., Gullam, J., Vatish, M. & Thornton, S. The management of preterm labour. Arch. Dis. Child. Fetal Neonatal Ed. 92, F88–F93 (2007).

    PubMed  PubMed Central  Google Scholar 

  50. Lawn, J. E. et al. Born too soon: accelerating actions for prevention and care of 15 million newborns born too soon. Reprod. Health 10, S6 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Winer, N. et al. 17 Alpha-hydroxyprogesterone caproate does not prolong pregnancy or reduce the rate of preterm birth in women at high risk for preterm delivery and a short cervix: a randomized controlled trial. Am. J. Obstet. Gynecol. 212, 485.e1–485.e10 (2015).

    CAS  Google Scholar 

  52. Subramaniam, A., Abramovici, A., Andrews, W. W. & Tita, A. T. Antimicrobials for preterm birth prevention: an overview. Infect. Dis. Obstet. Gynecol. 2012, 157159 (2012).

    PubMed  PubMed Central  Google Scholar 

  53. van den Broek, N. R. et al. The Apple Study: a randomized, community-based, placebo-controlled trial of azithromycin for the prevention of preterm birth, with meta-analysis. PLoS Med. 6, e1000191 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. Gravett, M. G. et al. Immunomodulators plus antibiotics delay preterm delivery after experimental intraamniotic infection in a nonhuman primate model. Am. J. Obstet. Gynecol. 197, e511–e518 (2007).

    Google Scholar 

  55. Weitkamp, J. H. et al. Histological chorioamnionitis shapes the neonatal transcriptomic immune response. Early Hum. Dev. 98, 1–6 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Spinillo, A., Iacobone, A. D., Calvino, I. G., Alberi, I. & Gardella, B. The role of the placenta in feto-neonatal infections. Early Hum. Dev. 90, S7–S9 (2014).

    CAS  PubMed  Google Scholar 

  57. Romero, R. & Mazor, M. Infection and preterm labor. Clin. Obstet. Gynecol. 31, 553–584 (1988).

    CAS  PubMed  Google Scholar 

  58. Romero, R. et al. Damage-associated molecular patterns (damps) in preterm labor with intact membranes and preterm prom: a study of the Alarmin Hmgb1. J. Matern. Fetal Neonatal Med. 24, 1444–1455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Madsen-Bouterse, S. A. et al. The transcriptome of the fetal inflammatory response syndrome. Am. J. Reprod. Immunol. 63, 73–92 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cua, D. J. & Tato, C. M. Innate Il-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    CAS  PubMed  Google Scholar 

  62. Lawrence, S. M. & Wynn, J. L. Chorioamnionitis, IL-17a, and fetal origins of neurologic disease. Am. J. Reprod. Immunol. 79, e12803 (2018).

    PubMed  Google Scholar 

  63. Caron, J. E. et al. Severely depressed interleukin-17 production by human neonatal mononuclear cells. Pediatr. Res. 76, 522–527 (2014).

    CAS  PubMed  Google Scholar 

  64. Huang, W., Na, L., Fidel, P. L. & Schwarzenberger, P. Requirement of interleukin-17a for systemic anti-Candida albicans host defense in mice. J. Infect. Dis. 190, 624–631 (2004).

    CAS  PubMed  Google Scholar 

  65. Schelonka, R. L. et al. T cell cytokines and the risk of blood stream infection in extremely low birth weight infants. Cytokine 53, 249–255 (2011).

    CAS  PubMed  Google Scholar 

  66. Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M. & Rudensky, A. Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150, 29–38 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jackson, C. M. et al. Pro-inflammatory immune responses in leukocytes of premature infants exposed to maternal chorioamnionitis or funisitis. Pediatr. Res. 81, 384–390 (2017).

    CAS  PubMed  Google Scholar 

  68. Kamdar, S. et al. Perinatal inflammation influences but does not arrest rapid immune development in preterm babies. Nat. Commun. 11, 1284 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hirsch, E., Filipovich, Y. & Mahendroo, M. Signaling via the type I Il-1 and TNF receptors is necessary for bacterially induced preterm labor in a murine model. Am. J. Obstet. Gynecol. 194, 1334–1340 (2006).

    CAS  PubMed  Google Scholar 

  70. Sadowsky, D. W., Adams, K. M., Gravett, M. G., Witkin, S. S. & Novy, M. J. Preterm labor is induced by intraamniotic infusions of interleukin-1beta and tumor necrosis factor-alpha but not by interleukin-6 or interleukin-8 in a nonhuman primate model. Am. J. Obstet. Gynecol. 195, 1578–1589 (2006).

    CAS  PubMed  Google Scholar 

  71. Presicce, P. et al. IL-1 signaling mediates intrauterine inflammation and chorio-decidua neutrophil recruitment and activation. JCI Insight 3, e98306 (2018).

  72. Romero, R. et al. Amniotic fluid interleukin-1 in spontaneous labor at term. J. Reprod. Med. 35, 235–238 (1990).

    CAS  PubMed  Google Scholar 

  73. Nadeau-Vallee, M. et al. A critical role of interleukin-1 in preterm labor. Cytokine Growth Factor Rev. 28, 37–51 (2016).

    CAS  PubMed  Google Scholar 

  74. Skogstrand, K. et al. Association of preterm birth with sustained postnatal inflammatory response. Obstet. Gynecol. 111, 1118–1128 (2008).

    CAS  PubMed  Google Scholar 

  75. Vitoratos, N., Mastorakos, G., Kountouris, A., Papadias, K. & Creatsas, G. Positive association of serum interleukin-1beta and CRH levels in women with pre-term labor. J. Endocrinol. Investig. 30, 35–40 (2007).

    CAS  Google Scholar 

  76. Jain, V. G. et al. Irak1 is a critical mediator of inflammation-induced preterm birth. J. Immunol. 204, 2651–2660 (2020).

    CAS  PubMed  Google Scholar 

  77. Etyang, A. K., Omuse, G., Mukaindo, A. M. & Temmerman, M. Maternal inflammatory markers for chorioamnionitis in preterm prelabour rupture of membranes: a systematic review and meta-analysis of diagnostic test accuracy studies. Syst. Rev. 9, 141 (2020).

    PubMed  PubMed Central  Google Scholar 

  78. Venkatesh, K. K. et al. Association of chorioamnionitis and its duration with neonatal morbidity and mortality. J. Perinatol. 39, 673–682 (2019).

    PubMed  Google Scholar 

  79. Beck, C. et al. Chorioamnionitis and risk for maternal and neonatal sepsis: a systematic review and meta-analysis. Obstet. Gynecol. 137, 1007–1022 (2021).

  80. Villamor-Martinez, E. et al. Chorioamnionitis is a risk factor for intraventricular hemorrhage in preterm infants: a systematic review and meta-analysis. Front. Physiol. 9, 1253 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Villamor-Martinez, E. et al. Chorioamnionitis as a risk factor for retinopathy of prematurity: an updated systematic review and meta-analysis. PLoS ONE 13, e0205838 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Villamor-Martinez, E. et al. Association of chorioamnionitis with bronchopulmonary dysplasia among preterm infants: a systematic review, meta-analysis, and metaregression. JAMA Netw. Open 2, e1914611 (2019).

    PubMed  PubMed Central  Google Scholar 

  83. Xing, L. et al. Is chorioamnionitis associated with neurodevelopmental outcomes in preterm infants? A systematic review and meta-analysis following PRISMA. Medicine 98, e18229 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. Salas, A. A. et al. Histological characteristics of the fetal inflammatory response associated with neurodevelopmental impairment and death in extremely preterm infants. J. Pediatr. 163, e652.e1-2–e657.e1-2 (2013).

    Google Scholar 

  85. Soraisham, A. S. et al. A multicenter study on the clinical outcome of chorioamnionitis in preterm infants. Am. J. Obstet. Gynecol. 200, 372.e1–372.e6 (2009).

    Google Scholar 

  86. De Felice, C. et al. Recurrent otitis media with effusion in preterm infants with histologic chorioamnionitis–a 3 years follow-up study. Early Hum. Dev. 84, 667–671 (2008).

    PubMed  Google Scholar 

  87. Kim, Y. M. et al. Dermatitis as a component of the fetal inflammatory response syndrome is associated with activation of toll-like receptors in epidermal keratinocytes. Histopathology 49, 506–514 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Newton, E. R. Chorioamnionitis and intraamniotic infection. Clin. Obstet. Gynecol. 36, 795–808 (1993).

    CAS  PubMed  Google Scholar 

  89. Wortham, J. M. et al. Chorioamnionitis and culture-confirmed, early-onset neonatal infections. Pediatrics 137, e20152323 (2016).

  90. Watterberg, K. L., Demers, L. M., Scott, S. M. & Murphy, S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 97, 210–215 (1996).

    CAS  PubMed  Google Scholar 

  91. Hitti, J. et al. Amniotic fluid tumor necrosis factor-alpha and the risk of respiratory distress syndrome among preterm infants. Am. J. Obstet. Gynecol. 177, 50–56 (1997).

    CAS  PubMed  Google Scholar 

  92. Lahra, M. M., Beeby, P. J. & Jeffery, H. E. Maternal versus fetal inflammation and respiratory distress syndrome: a 10-year hospital cohort study. Arch. Dis. Child. Fetal Neonatal Ed. 94, F13–F16 (2009).

    CAS  PubMed  Google Scholar 

  93. Laughon, M. et al. Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants. Pediatrics 123, 1124–1131 (2009).

    PubMed  Google Scholar 

  94. Been, J. V. et al. Chorioamnionitis alters the response to surfactant in preterm infants. J. Pediatr. 156, 10.e1–15.e1 (2010).

    Google Scholar 

  95. Giambelluca, S. et al. Chorioamnionitis alters lung surfactant lipidome in newborns with respiratory distress syndrome. Pediatr. Res. https://doi.org/10.1038/s41390-021-01371-3 (2021).

  96. Jobe, A. H. Effects of chorioamnionitis on the fetal lung. Clin. Perinatol. 39, 441–457 (2012).

    PubMed  PubMed Central  Google Scholar 

  97. Laughon, M. M. et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am. J. Respir. Crit. Care Med. 183, 1715–1722 (2011).

    PubMed  PubMed Central  Google Scholar 

  98. Wu, Y. W. & Colford, J. M. Jr. Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA 284, 1417–1424 (2000).

    CAS  PubMed  Google Scholar 

  99. Pappas, A. et al. Chorioamnionitis and early childhood outcomes among extremely low-gestational-age neonates. JAMA Pediatr. 168, 137–147 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Suppiej, A. et al. Neurodevelopmental outcome in preterm histological chorioamnionitis. Early Hum. Dev. 85, 187–189 (2009).

    PubMed  Google Scholar 

  101. Meyer, U., Feldon, J. & Dammann, O. Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr. Res. 69, 26R–33R (2011).

    PubMed  PubMed Central  Google Scholar 

  102. Shi, Z. et al. Chorioamnionitis in the development of cerebral palsy: a meta-analysis and systematic review. Pediatrics 139, e20163781 (2017).

  103. Maisonneuve, E., Ancel, P. Y., Foix-L’Helias, L., Marret, S. & Kayem, G. Impact of clinical and/or histological chorioamnionitis on neurodevelopmental outcomes in preterm infants: a literature review. J. Gynecol. Obstet. Hum. Reprod. 46, 307–316 (2017).

    CAS  PubMed  Google Scholar 

  104. Thomas, W. & Speer, C. P. Chorioamnionitis: important risk factor or innocent bystander for neonatal outcome? Neonatology 99, 177–187 (2011).

    PubMed  Google Scholar 

  105. Schmidt, A. F. et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J. Neuroinflammation 13, 238 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Gisslen, T., Singh, G. & Georgieff, M. K. Fetal inflammation is associated with persistent systemic and hippocampal inflammation and dysregulation of hippocampal glutamatergic homeostasis. Pediatr. Res. 85, 703–710 (2019).

    PubMed  PubMed Central  Google Scholar 

  107. Kaukola, T. et al. Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr. Res. 59, 478–483 (2006).

    PubMed  Google Scholar 

  108. Hansen-Pupp, I. et al. Inflammation at birth is associated with subnormal development in very preterm infants. Pediatr. Res. 64, 183–188 (2008).

    PubMed  Google Scholar 

  109. Galinsky, R., Polglase, G. R., Hooper, S. B., Black, M. J. & Moss, T. J. The consequences of chorioamnionitis: preterm birth and effects on development. J. Pregnancy 2013, 412831 (2013).

    PubMed  PubMed Central  Google Scholar 

  110. Yanowitz, T. D. et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr. Res. 51, 310–316 (2002).

    PubMed  Google Scholar 

  111. Leviton, A. & Gressens, P. Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci. 30, 473–478 (2007).

    CAS  PubMed  Google Scholar 

  112. Khwaja, O. & Volpe, J. J. Pathogenesis of cerebral white matter injury of prematurity. Arch. Dis. Child. Fetal Neonatal Ed. 93, F153–F161 (2008).

    CAS  PubMed  Google Scholar 

  113. Puri, K. et al. Association of chorioamnionitis with aberrant neonatal gut colonization and adverse clinical outcomes. PLoS ONE 11, e0162734 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Been, J. V., Lievense, S., Zimmermann, L. J., Kramer, B. W. & Wolfs, T. G. Chorioamnionitis as a risk factor for necrotizing enterocolitis: a systematic review and meta-analysis. J. Pediatr. 162, 236.e2–242.e2 (2013).

    Google Scholar 

  115. Garzoni, L., Faure, C. & Frasch, M. G. Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: the brain-gut connection begins in utero. Front. Integr. Neurosci. 7, 57 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Calkins, K. & Devaskar, S. U. Fetal origins of adult disease. Curr. Probl. Pediatr. Adolesc. Health Care 41, 158–176 (2011).

    PubMed  PubMed Central  Google Scholar 

  117. Liu, Y. et al. DNA methylation at imprint regulatory regions in preterm birth and infection. Am. J. Obstet. Gynecol. 208, 395.e1–395.e7 (2013).

    CAS  Google Scholar 

  118. Lu, L. & Claud, E. C. Intrauterine inflammation, epigenetics, and microbiome influences on preterm infant health. Curr. Pathobiol. Rep. 6, 15–21 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Getahun, D. et al. Effect of chorioamnionitis on early childhood asthma. Arch. Pediatr. Adolesc. Med. 164, 187–192 (2010).

    PubMed  Google Scholar 

  120. McDowell, K. M. et al. Pulmonary morbidity in infancy after exposure to chorioamnionitis in late preterm infants. Ann. Am. Thorac. Soc. 13, 867–876 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. Cekmez, Y. et al. uPAR, IL-33, and ST2 values as a predictor of subclinical chorioamnionitis in preterm premature rupture of membranes. J. Interferon Cytokine Res. 33, 778–782 (2013).

    CAS  PubMed  Google Scholar 

  122. Topping, V. et al. Interleukin-33 in the human placenta. J. Matern. Fetal Neonatal Med. 26, 327–338 (2013).

    CAS  PubMed  Google Scholar 

  123. Borish, L. & Steinke, J. W. Interleukin-33 in asthma: how big of a role does it play? Curr. Allergy Asthma Rep. 11, 7–11 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Jackson, C. M. et al. Pulmonary consequences of prenatal inflammatory exposures: clinical perspective and review of basic immunological mechanisms. Front. Immunol. 11, 1285 (2020).

    PubMed  PubMed Central  Google Scholar 

  125. Kuppala, V. S., Meinzen-Derr, J., Morrow, A. L. & Schibler, K. R. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J. Pediatr. 159, 720–725 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Puopolo, K. M. et al. Estimating the probability of neonatal early-onset infection on the basis of maternal risk factors. Pediatrics 128, e1155–e1163 (2011).

    PubMed  PubMed Central  Google Scholar 

  127. Money, N., Newman, J., Demissie, S., Roth, P. & Blau, J. Anti-microbial stewardship: antibiotic use in well-appearing term neonates born to mothers with chorioamnionitis. J. Perinatol. 37, 1304–1309 (2017).

    CAS  PubMed  Google Scholar 

  128. Pettinger, K. J., Mayers, K., McKechnie, L. & Phillips, B. Sensitivity of the Kaiser Permanente early-onset sepsis calculator: a systematic review and meta-analysis. EClinicalMedicine 19, 100227 (2020).

    PubMed  Google Scholar 

  129. Musilova, I. et al. Vaginal fluid interleukin-6 concentrations as a point-of-care test is of value in women with preterm prelabor rupture of membranes. Am. J. Obstet. Gynecol. 215, 619.e1–619.e12 (2016).

    CAS  Google Scholar 

  130. Lee, S. M. et al. A transcervical amniotic fluid collector: a new medical device for the assessment of amniotic fluid in patients with ruptured membranes. J. Perinat. Med. 43, 381–389 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by The Lung Health Center Pilot Grant, The University of Alabama at Birmingham (to V.G.J. and K.A.W.); The Kaul Pediatric Research Award, Children’s of Alabama (to V.G.J. and K.A.W.); and The NIH, NHLBI: K08 HL151907 (to K.A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viral G. Jain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jain, V.G., Willis, K.A., Jobe, A. et al. Chorioamnionitis and neonatal outcomes. Pediatr Res 91, 289–296 (2022). https://doi.org/10.1038/s41390-021-01633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-021-01633-0

Further reading

Search

Quick links