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BACKGROUND: Shiga toxin-producing Escherichia coli is responsible for post-diarrheal (D+) hemolytic uremic syndrome (HUS),
which is a cause of acute renal failure in children. The glycolipid globotriaosylceramide (Gb3) is the main receptor for Shiga toxin
(Stx) in kidney target cells. Eliglustat (EG) is a specific and potent inhibitor of glucosylceramide synthase, first step of
glycosphingolipid biosynthesis, actually used for the treatment of Gaucher’s disease. The aim of the present work was to evaluate
the efficiency of EG in preventing the damage caused by Stx2 in human renal epithelial cells.
METHODS: Human renal tubular epithelial cell (HRTEC) primary cultures were pre-treated with different dilutions of EG followed by
co-incubation with EG and Stx2 at different times, and cell viability, proliferation, apoptosis, tubulogenesis, and Gb3 expression
were assessed.
RESULTS: In HRTEC, pre-treatments with 50 nmol/L EG for 24 h, or 500 nmol/L EG for 6 h, reduced Gb3 expression and totally
prevented the effects of Stx2 on cell viability, proliferation, and apoptosis. EG treatment also allowed the development of
tubulogenesis in 3D-HRTEC exposed to Stx2.
CONCLUSIONS: EG could be a potential therapeutic drug for the prevention of acute kidney injury caused by Stx2.
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IMPACT:

● For the first time, we have demonstrated that Eliglustat prevents Shiga toxin 2 cytotoxic effects on human renal epithelia, by
reducing the expression of the toxin receptor globotriaosylceramide.

● The present work also shows that Eliglustat prevents Shiga toxin 2 effects on tubulogenesis of renal epithelial cells.
● Eliglustat, actually used for the treatment of patients with Gaucher’s disease, could be a therapeutic strategy to prevent the

renal damage caused by Shiga toxin.

INTRODUCTION
Infection with Shiga toxin (Stx)-producing Escherichia coli (STEC) is
the main etiology of post-diarrheal (D+) hemolytic uremic
syndrome (HUS), also called typical HUS1. HUS is characterized
by hemolytic anemia, thrombocytopenia, and acute kidney injury
(AKI)2. In Argentina, diarrhea-associated HUS is endemic, being the
country with the highest incidence rate in the world, with 10–17
cases per 100,000 children aged <5 years, and a case mortality rate
<4%3. Children with AKI due to HUS can result in chronic renal
failure and long-term renal sequels in about 30% of cases4 and
kidney transplants in about 9% of children and adolescents5. The
acute stage of the disease is marked by hematological alterations,
oligoanuria/anuria, hypertension, and edema4,6. STEC not only
affects children in many parts of the world but also adults, as
occurred in Germany during the outbreak of STEC-HUS7.
There is no specific therapy presently available to protect

people from the damage caused by Stx, and supportive care is
applied to reduce mortality in patients with HUS4. This involves

intravenous volume expansion especially in the early phases of
the illness, fluid and electrolyte management, packed red blood
cell transfusion, and dialysis8.
Cattle have been identified as the main reservoir for STEC.

Humans can be contaminated by eating undercooked beef
products and by other sources including other domestic animals,
fresh fruits and vegetables and products that have been
contaminated with manure3,9,10. Drinking or swimming in
contaminated water, person-to-person transmission, and contact
with infected animals have been described as other infection
sources11,12.
Shiga toxin type 1 and 2 (Stx1 and Stx2, respectively) and their

variants are the main virulence factors produced by STEC strains,
such as O157:H713. However, epidemiological data show that
Stx2a-producing STEC strains are more likely to cause HUS than
those strains that produce only Stx13,14.
Stx contains a single A subunit bound to a monopentamer of B

subunits15,16. The initial step in the renal pathogenesis of STEC-
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HUS starts with the binding of the B pentamer to the glycolipid
globotriaosylceramide (Gb3) located on the cell membrane.
Subsequently, Stx is endocytosed and retrograde transported to
the endoplasmic reticulum17,18. The A subunit exerts RNA N-
glycohydrolase activity on the 28S ribosomal subunit, leading to
halt the protein synthesis causing ribotoxic stress and finally
apoptosis19,20. Gb3 is the main receptor for Stx, which is highly
expressed on the plasma membrane of human kidney cells, such
as glomerular endothelial cells, podocytes, mesangial cells, and
tubular epithelial cells21–23, as well as in other target organs, such
as the brain24.
Previous works, carried out in primary cultures of human renal

tubular epithelial cells (HRTECs), showed that Stx2 inhibited
protein synthesis, decreased cell viability and cell proliferation,
and induced apoptosis25–28. We demonstrated that the compound
C-9 (Genzyme, Cambridge, MA), an inhibitor of glucosylceramide
(GL) synthase, reduced Gb3 expression and therefore prevented
the decrease of cell viability caused by Stx2 in HRTEC primary
cultures29 and also in human glomerular endothelial cells
(HGECs)30. In addition, in rats intraperitoneally injected with
Stx2, treatment with C-9 reduced the animal mortality and the
renal injury in the surviving animals31.
Eliglustat (EG), another potent and selective GL synthase

inhibitor, has been approved by the US Food and Drug
Administration and recently by the National Administration of
Drugs, Foods and Medical Devices (ANMAT) in Argentina to be
used for the oral treatment of adults with Gaucher’s disease32.
Therefore, the aim of the present work was to evaluate the
efficiency of EG in preventing the damage caused by Stx2 in
HRTEC primary cultures, which are a main target of Stx2 action.
Results in the present work show that EG could be used to prevent
the human renal damage caused by Stx2.

MATERIALS AND METHODS
Reagents
Stx2a was purchased at Phoenix Lab, Tuft Medical Center, Boston, MA.
EG, also known as Genz-112638, was purchased at MedKoo Biosciences,

Inc., Morrisville, NC33.

Cell cultures
Primary cultures of HRTEC were developed from kidneys removed from
pediatric patients undergoing nephrectomies, indicated for the correction
of urological conditions or tumor resections, at the Hospital General de
Pediatría Pedro de Elizalde, Buenos Aires, Argentina. Cortical renal
fragments were dissected and processed as described previously28,34.
HRTEC primary cultures were grown in RPMI 1640 medium supplemented
with 5% fetal bovine serum (FBS), L-glutamine (2mmol/L), penicillin/
streptomycin (100 U/mL), and endothelial cell growth supplement (ECGS)
(Merck-Sigma, St. Louis, MO). HRTECs were used between 1 and 5 passages
to guarantee the morphogenetic stability of the cells. HRTEC showed a
similar morphology observed under light microscopy. Cells were
characterized by immunofluorescence, using an antibody against aqua-
porin 1 (AQP1) (Alpha Diagnostic, San Antonio, TX). More than 90% of the
cells were positive for AQP1, indicating their origin in the renal proximal
tubule. None of the cells were stained with the endothelial antibody
PECAM CD31 (DAKO, Tecnolab, Buenos Aires, Argentina).
In selected experiments, the HK-2 cell line was used. Cells were grown in

Dulbecco’s Modified Eagle Medium-F12 medium containing 10% FBS, L-
glutamine, and penicillin/streptomycin. All cell cultures were incubated in
5% CO2 and a humidified atmosphere at 37 °C.

Neutral red cytotoxicity assay
Neutral red uptake was performed to evaluate cell viability as was
described previously29. For this purpose, HRTEC and HK-2 were seeded in
96-well plates and grown to confluence in culture medium. Cells were then
incubated with serial dilutions of Stx2 (0.001–1000 ng/mL) for 24 and 72 h.
The concentration of Stx2 able to cause the death of 50% of the cells
(CD50) after 72 h of the toxin exposure was established and used for the
rest of the experiments.

Next, HRTEC and HK-2 were pre-treated with or without EG (1–500 nmol/L)
for 6 and 24 h, followed by co-treatment with same concentration of EG with
or without Stx2 (1 or 10 ng/mL), for 24 or 72 h. Control cells were incubated
under the same medium conditions but without EG and Stx2 treatments.
HRTEC cultures were also co-treated with EG (500 or 5000 nmol/L) and Stx2
(1 ng/mL) during 24 and 72 h. For another set of experiments, HRTEC were
pre-incubated with lipopolysaccharide (LPS, 1 μg/mL) (Sigma-Aldrich, St.
Louis, MO) with or without 50 nmol/L EG, during 24 h, followed by the
addition of Stx2 (1 ng/mL) for 72 h. All treatments were performed under
arrest growth conditions without FBS and ECGS.
At the end of the treatments, cells were incubated with a solution of 50

μg/mL neutral red in RPMI medium for 2 h at 37 °C. Cells were then fixed in
a solution of CaCl2 (1%) and formaldehyde (4%), solubilized in acetic acid
(1%) and ethanol (50%), and absorption was read in an automated plate
spectrophotometer at 540 nm29. Cell viability is expressed as neutral red
uptake percent with respect to control cells incubated without EG and Stx2.

Cell proliferation assay
Cell proliferation was evaluated by the incorporation of 5-bromo-2-
deoxyuridine (BrdU) into cell nuclei during DNA replication, as previously
described28. HRTECs were grown to 50–70% confluence on coverslips
inserted in a 24-well plate, and all treatments were performed in triplicate.
HRTECs were pre-incubated with EG (1–500 nmol/L) for 6 or 24 h, followed
by co-incubation with the same dilution of EG with or without Stx2 (1 ng/
mL) for 24 h, under arrest growth conditions. Prior to finishing the
treatments, all cells received a 2-h pulse of BrdU (10 µmol/L) (Sigma-
Aldrich, St. Louis, MO). BrdU uptake into the cell nuclei was detected using
a primary antibody anti-BrdU (1:100) (Sigma-Aldrich, St. Louis, MO) and an
anti-mouse IgG secondary antibody conjugated with Alexa fluor 488
(1:200) (Invitrogen, Waltham, MA). To count the total number of cells,
nuclei were stained with Hoechst (1 µg/mL). Micrographs were taken with
a digital camera (Nikon E4300) under a fluorescence microscope (Nikon
Eclipse E-2000) and processed using the Image J (NIH) analysis software.

Apoptosis and necrosis
Apoptosis and necrosis were analyzed on HRTEC primary cultures grown
on coverslips, as previously described28. Cells grown on coverslips were
treated with or without EG and Stx2 as described above for BrdU assay.
Each experiment was performed in duplicate. After treatments, cells were
incubated with Annexin V–fluorescein isothiocyanate (FITC)–Propidium
Iodide (AV-PI) according to manufacturer’s proceedings (BD Biosciences,
San Jose, CA). Staining for AV (green) and PI (red) was immediately
observed under a fluorescence microscope, and micrographs of each well
were taken as described above.
Negative cells for both AV and PI (AV−/PI−) staining were considered live

cells; AV-positive and PI-negative (AV+/PI−) stained cells were considered
in primary apoptosis; both AV- and PI-positive (AV+/PI+) and AV-negative
and PI-positive (AV−/PI+) stained cells were considered necrotic cells.
For some assays, after treatments, cells were treated with trypsin to

detach from the coverslips and the number of cells was counted in a
Neubauer chamber.

Tubulogenesis assay
Confluent HRTECs were pre-treated with or without 50 nmol/L EG for 24 h,
followed by co-treatment with EG and 1 ng/mL Stx2 for 24 h. Some cells
were treated with EG without Stx2, and control cells were incubated
without Stx2 and EG. All treatments were performed under arrest growth
conditions. After treatments, cells were detached and washed, and three-
dimensional (3D) cultures of HRTECs (3D-HRTEC) were developed34. For
this purpose, 4 × 104 treated cells were seeded per well on matrigel
(Sigma-Merck, St. Louis, MO) and incubated in culture medium containing
the same supplements used for HRTEC primary cultures34. Cell aggregation
and formation of tubular shape structures was observed under an inverted
optical microscope (Nikon Eclipse TS100), and micrographs of two different
assays were taken with a digital camera (Nikon Coolpix S10).

Glycolipid extraction and thin layer chromatography (TLC)
Expression of Gb3 receptor was analyzed in HRTECs by TLC as described
previously30,35. Cells were grown in culture flasks at 37 °C in an atmosphere
of 5% CO2 to almost confluence and incubated then with or without 50
nmol/L EG for 24, 48, and 96 h, or 500 nmol/L EG for 6 h, in arrest growth
conditions. Some cells were treated with EG (50 nmol/L) for 24 h followed
by co-treatment with EG and Stx2 (1 ng/mL) for another 24 h. Control cells
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were incubated in arrest growth conditions without treatment. After
treatments, total glycolipids were extracted from HRTECs, following a
modified protocol of Bligh and Dyer method36. Briefly, 4 mL of chloroform:
methanol:water (1:2:1 v/v) were added to 2.5 × 106 cells and incubated on
ice for 15min. Subsequently, 2.5 mL of chloroform:methanol:water (1:1:0.5)
were added to the tube and the mixture was centrifuged to separate
phases. The lower phase was dried, and submitted to alkaline hydrolysis in
1mL of methanol and 0.1 mL of NaOH (1.0 N) during 16 h at 37 °C. To
separate phases, 2 mL chloroform and 0.5 mL water were added, and the
chloroform phase with neutral glycolipids was dried and used for the
determination of Gb3 expression. Aliquots of glycolipids extracts were
dissolved in chloroform–methanol (2:1) and separated by TLC in a mix of
chloroform, methanol, and water (65:35:8). Samples were compared to a
purified Gb3 standard (0.5–2.0–μg; Matreya, State College, PA). The
glycolipids bands were revealed after treating the TLC plate with a
solution of orcinol (Acros Organics, Belgium). The densitometric analysis of
Gb3 bands was performed by the Image J software.

Statistical analysis
Results are reported as mean ± standard error of the mean (SEM). Student’s
t test was used for individual comparisons. One-way analysis of variance
followed by Tukey post hoc test was used for comparison of three or more
groups. A p value < 0.05 was considered significant. The statistical analysis
was performed using the GraphPad software.

RESULTS
EG prevents the cytotoxic effects of Stx2 on HRTEC and HK-2
cell viability
Confluent HRTEC primary cultures and HK-2 cell line were incubated
with different Stx2 concentrations for 24 and 72 h. Cell viability was
then evaluated by neutral red uptake. The CD50 of Stx2, estimated
from the dose–response curves of cell viability, was 1 ng/mL at 72 h
for HRTEC (Fig. 1a) and 10 ng/mL at 72 h for HK-2 (Fig. 1b).
To evaluate whether EG protects renal epithelial cells from Stx2

cytotoxic effect, cell viability was assessed in HRTEC and HK-2
monolayers pre-incubated with different concentrations of EG for
6 h or 24 h, followed by the addition of 1 and 10 ng/mL Stx2,
respectively, for 24 or 72 h. The treatment of either HRTEC or HK-2
with EG significantly prevented the cytotoxic effect of Stx2 in a
dose- and time-dependent manner (Fig. 2a, b).
Pre-incubation of HRTEC with 50 nmol/L EG for 24 h completely

prevented the decrease of cell viability caused by 1 ng/mL Stx2 at
24 h and also at 72 h (Fig. 2a). Moreover, the pre-incubation with
500 nmol/L EG for 6 h was enough to totally prevent the reduction
of cell viability caused by Stx2 at 24 h (Fig. 2a).
In addition, pre-incubation of HK-2 with 1 nmol/L EG for 24 h or

10 nmol/L EG for 6 h totally prevented the reduction of cell

viability caused by 10 ng/mL Stx2 at 24 h (Fig. 2b). Furthermore,
pre-incubation of HK-2 with 10 nmol/L EG, for 24 h, totally
prevented the Stx2 cytotoxicity at 72 h.
The incubation of HRTEC and HK-2 with EG alone did not modify

cell viability at any dose and time tested compared to untreated
control cells, considered as 100% cell viability (Fig. 2a, b).
Co-incubation of HRTEC with EG (500 nmol/L) and Stx2 (1 ng/

mL), for 24 and 72 h, did not protect the cells from the cytotoxic
effect of Stx2 (data not shown). HRTEC co-incubated with a higher
concentration of EG (5 μmol/L) and Stx2 partially protected the
cells from Stx2 effect at 72 h, but not at 24 h (data not shown).
Furthermore, the pre-incubation of HRTEC with LPS (1 μg/mL),

followed with the addition of Stx2 (1 ng/mL) for 72 h, significantly
increased the effect of Stx2 on cell viability (Fig. 2c). Nevertheless,
the pre-incubation of HRTEC with EG (50 nmol/L) for 24 h
protected the cells from the combined effect of LPS and Stx2 at
72 h of exposure (Fig. 2c). Cells incubated with EG or LPS alone, or
with both EG and LPS, showed no significant differences
compared to control non-treated cells.

EG prevents the inhibitory effects of Stx2 on cell proliferation
Cell proliferation was evaluated by BrdU uptake in HRTEC primary
cultures grown on coverslips. Representative microphotographs in
Fig. 3a show that the incubation of HRTECs with 1 ng/mL Stx2, for
24 h, significantly reduced the number of cell nuclei that
incorporated BrdU, and the number of cells attached, with respect
to non-treated control cells. The percentage of BrdU uptake was
23.1 ± 6.7% in control cells and 7.6 ± 0.2% in HRTECs exposed to
Stx2 (Fig. 3b), which demonstrates that Stx2 significantly
decreased the cell proliferation rate in HRTEC cultures.
Cell proliferation was also evaluated in HRTEC cultures pre-treated

with different concentrations of EG during 6 or 24 h, followed by co-
incubation with the same EG concentrations with or without Stx2
(1 ng/mL) for 24 h. Pre-treatment of HRTEC with 50 nmol/L EG for 24
h (Fig. 3b) or 500 nmol/L EG for 6 h (Fig. 3c), followed by the addition
of Stx2 for 24 h significantly prevented, at about 100%, the inhibition
of BrdU uptake caused by Stx2. The treatment of HRTEC with EG in
the absence of Stx2 did not alter significantly the BrdU uptake
compared to untreated control cells (Fig. 3b, c)

EG prevents the induction of apoptosis and necrosis caused
by Stx2
Apoptosis and necrosis were assessed by the incorporation of AV-
FITC/PI into HRTEC primary cultures. As shown in representative
micrographs in Fig. 4a, the significant increase of primary
apoptotic cells (AV+) caused by Stx2 was prevented by EG
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treatment. Incubation of HRTECs with Stx2 (1 ng/mL, 24 h)
enhanced the percentage of primary (AV+/PI−) apoptotic cells
(15 ± 1.3%) to about double compared to non-treated control cells
(7.9 ± 0.9%) (Fig. 4b, c). Pre-treatment of HRTEC with 50 nmol/L EG
for 24 h (Fig. 4b) or 500 nmol/L EG for 6 h (Fig. 4c) followed by co-
treatment with EG and Stx2 for another 24 h completely
prevented the apoptotic stimuli of Stx2.
Moreover, Fig. 4d, e show that Stx2 also induced a significant

rise in the percentage of AV−/PI+ and AV+/PI+ (7.0 ± 2.0%)
necrotic cells, compared to control (4.5 ± 1.1%) cultures. Further-
more, the toxin induced the percentage of dead cells (25–30%)
detached from the coverslips, which could have undergone
apoptosis and/or necrosis. These Stx2 effects were completely
prevented by the same EG treatments used for studies shown
above, corroborating doses and treatment times. EG alone did not
induce significant apoptosis or necrosis in any of the studies
performed in HRTECs.

EG prevents the effect of Stx2 on 3D-HRTEC cultures
To investigate the ability of EG to prevent the effect of Stx2 in 3D-
HRTEC cultures, primary cultures were pre-incubated with or
without 50 nmol/L EG, followed by the addition of 1 ng/mL Stx2
for 24 h. Cells were then seeded on matrigel to develop 3D-HRTEC
(Fig. 5). Control cells migrated, formed multicellular cords (5 h),
and cellular aggregates (day 1) emerged and evolved into
structures with tubular appearance at day 4 on matrigel. The
exposure to 1 ng/mL Stx2 completely inhibited cell migration and

aggregation showing cell debris and dead cells trapped in the
matrix on the fourth day, compared to the appearance of tubular
structures in control HRTEC at this time. Pre-treatment with 50
nmol/L EG for 24 h allowed HRTEC to migrate and aggregate
despite having been exposed to the toxin and to develop tubular
structures like in control HRTEC (Fig. 5).

EG decreases Gb3 expression in HRTEC primary cultures
The effect of EG on Gb3 expression was evaluated in HRTEC
primary cultures by TLC assay. Figure 6a shows that the treatment
of HRTEC with 50 nmol/L EG, for 24 h, significantly decreased the
expression levels of Gb3 receptor, which remained low until 96 h
of incubation. Similarly, the incubation of HRTEC with 500 nmol/L
EG, for only 6 h, significantly decreased Gb3 expression. The
decrease in Gb3 expression due to EG treatment may explain the
effect of EG in preventing the Stx2 activity in human kidney
epithelial cells.
As shown in Fig. 6b, co-incubation of HRTEC with Stx2 and 50

nmol/L EG, for 48 h, also produced a significant reduction in Gb3
expression. Moreover, Gb3 expression in HRTEC treated with Stx2
alone was comparable to that of untreated control cells.

DISCUSSION
The present work demonstrates that EG prevents Stx2 cytotoxic
effects on HRTECs, one of the main targets of the toxin. A strategy
is proposed based on short-term inhibition of GL synthase, first
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step in the glycosphingolipid biosynthesis, to inhibit Gb3
expression and therefore avoid the binding and action of Stx2
in renal cells expressing Gb3.
The exposure of HRTEC to Stx2 inhibited cell viability and

stimulated the percentage of apoptosis, which corroborates
previous results of our group and others25–28. Although 24 h after
incubation with Stx2 most of the cells still survived, a significant
inhibition in cell proliferation and an increase in apoptosis and
necrosis were observed in the remaining cells. Therefore, cell
proliferation and apoptosis mechanisms were observed at 24 h,
before most of the cells were detached due to Stx2.
The treatment with EG prevented Stx2 effect on cell viability in a

dose- and time-dependent manner in HRTEC primary cultures.
These results were also obtained in the human proximal tubule
cell line HK-2. Furthermore, EG protection against Stx2 was also
observed on cell proliferation, and apoptosis/necrosis mechanisms
in HRTEC primary cultures.
We have previously shown that 3D-HRTEC cultures developed

tubulogenesis resembling the original tissue characteristics, which
was inhibited by pre-exposure to Stx234. Herein the treatment
with EG allowed HRTECs to develop tubular structures as in control
cultures and prevented Stx2 effect on tubulogenesis.
Our group has been studying the effect of different GL synthase

inhibitors on renal cells. In the present work, EG was more
effective in a time and dose manner, comparing with our previous
results using the compound C-9, another GL synthase inhibitor, in
HRTEC primary cultures. While the treatment of HRTEC with EG in
the nanomolar range (50 nmol/L) significantly reduced Gb3
expression and completely protected from Stx2 effects, higher

concentrations of C-9 (1–5 μmol/L) in the order of micromolar,
with a minimal pre-incubation time of 24 h, were necessary in the
primary cultures29. The effect of EG to prevent the toxin action
was maintained up to 72 h in HRTEC as well as in HK-2 exposed to
both Stx2 and EG. Moreover, a shorter pre-incubation time with EG
(500 nmol/L), for only 6 h, was enough to inhibit Gb3 expression
and produce a total protective effect from Stx2 in HRTEC primary
cultures. These results demonstrate that EG protects HRTEC
cultures from Stx2 action by reducing the expression of Gb3
receptor.
Moreover, the treatment of HRTECs with EG followed by the

addition of Stx2 also reduced Gb3 expression to the same level as
with the treatment with EG alone, indicating that Stx2 does not
interfere with EG mechanism of action.
Co-treatment of HRTEC with 500 nmol/L EG and Stx2 did not

protect the cells from Stx2 activity. Although a higher concentra-
tion of EG (5 µmol/L) protected HRTEC cultures from Stx2 cytotoxic
effect at 72 h without a pre-incubation period, this protective
effect did not occur at 24 h. These results demonstrate that a
minimum period of time is necessary for EG to inhibit the
expression of the Stx2 receptor and therefore exert a protective
effect.
The treatment with EG also avoided the Stx2-mediated

cytotoxic effect enhanced by LPS. We have previously shown
that the sensitivity of HRTEC cultures to Stx2-mediated cytotoxic
effect was increased by LPS and others pro-inflammatory factors26.
Besides, it was demonstrated that both Stx and LPS are required to
elicit the triad of HUS symptoms37. The toxin may be absorbed
from the inflamed gastrointestinal tract together with LPS, a major
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product of Gram-negative bacteria as STEC, and induce synergistic
effect during Stx-induced HUS, which could be due to an increase
in the expression of the Gb3 receptor produced by LPS38.
We have previously shown that the treatment with C-9 for 48 h

significantly reduced the expression of both GL synthase and Gb3
receptor in HRTEC primary cultures. The inhibition of GL synthase
and Gb3 was also observed in the kidney of rats orally treated with
C-929,31. Moreover, the treatment of HK-2 and HGEC primary
cultures with Miglustat (750 μmol/L for 48 h), another GL synthase

inhibitor, also reduced significantly the Gb3 expression and only
partially prevented the effect of Stx235. Other studies showed that
the incubation of HGEC with the ceramide analogous D-PDMP,
another inhibitor of glycosphingolipid synthesis, with a concen-
tration in the order of micromolar (5 µM) for 72 h, reduced Gb3Cer
and Gb4 content23.
Hence, both HRTEC and HK-2 cultures express Gb3 and are

sensitive to Stx2. Herein dose–response curves show that HRTECs
are more sensitive to Stx2 than HK-2. These results may be due to
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the differences between established cell lines and primary
cultures. Established cell lines often differ from original cells.
However, the activity of Stx2 in this work was comparable to that
observed in previous studies with C-9 in primary cultures29.
The GL synthesis is the first step in the biosynthesis of Gb3 and

other glycosphingolipids39. This reaction is catalyzed by GL
synthase, which glycosylates the ceramide using uridine
diphospho-glucose40. Galactose is then added to GL-producing
lactosylceramide, followed by the addition of another galactose to
produce Gb341. Different inhibitors of GL synthase have been
synthesized and tested for treating several glycosphingolipidoses
diseases33,41,42. Studies in cell cultures demonstrated that these
compounds inhibit glycosphingolipid synthesis but do not alter
cell growth or increase intracellular ceramide levels39. Herein the
treatment of HRTEC and HK-2 with EG alone did not produce any
significant effect compared to non-treated control cells in any of
the times and doses assayed, as well as in all the mechanisms
studied, indicating that this compound does not interfere with
tubular epithelial growth and morphology.
GL synthase inhibitors have been evolved, changing the

chemical conformation of the compounds, for better efficiency
and specificity41. These modifications resulted in a compound
with an improved action such as EG. EG (also known as Genz-
112638) and C-9 (also known as Genz-123346) were reported to

have comparable effects in rodents. However, EG was demon-
strated to have a better pharmacokinetic and pharmacodynamic
profile for the use in humans and contains a natural ceramide
structure, compared to C-943. Therefore, it was of our
interest to evaluate EG, now used for the treatment of Gaucher’s
disease, in renal human epithelial cells for the prevention of Stx2
activity.
For several years, different ways of preventing the binding of

Stx to target organs have been studied44–49. However, at present,
there is no effective therapy available for human use to prevent
infection with STEC or to protect from Stx2 effects and
development of HUS. Taking into account that in patients HUS
development occurs between several days after bloody diarrhea
appears, it would be relevant to find an efficient treatment that
could be administrated during this period to avoid the action of
Stx2 in the target organs and the development of the disease. In
this sense, our studies demonstrate that EG was effective in
preventing the action of Stx2 in the human tubular renal epithelia
at shorter treatment times and at lower concentrations than other
GL synthase inhibitors previously studied. Further studies in
experimental animal models will be developed to corroborate the
action of EG in vivo. The treatment with EG could be a therapeutic
strategy to prevent the action of Stx2 in target tissues and the
development of AKI in diarrhea-associated HUS patients.
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