Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neonatal chest compressions: time to act

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Oxygen Therapy in the Delivery Room.


  1. 1.

    Guidelines for cardiopulmonary resuscitation and emergency cardiac care. Emergency Cardiac Care Committee and Subcommittees, American Heart Association. Part VII. Neonatal resuscitation. JAMA 268, 2276–2281 (1992).

  2. 2.

    WHO. Basic Newborn Resuscitation: A Practical Guide (WHO, 1998).

    Google Scholar 

  3. 3.

    Perlman, J. M. et al. Neonatal Resuscitation Chapter Collaborators. Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 122, S516–S538 (2010).

    Article  Google Scholar 

  4. 4.

    Ramji, S. et al. Resuscitation of asphyxic newborn infants with room air or 100% oxygen. Pediatr. Res. 34, 809–812 (1993).

    CAS  Article  Google Scholar 

  5. 5.

    Saugstad, O. D., Rootwelt, T. & Aalen, O. Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial: the Resair 2 study. Pediatrics 102, e1 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    Tan, A., Schulze, A., O’Donnell, C. P. & Davis, P. G. Air versus oxygen for resuscitation of infants at birth. Cochrane Database Syst. Rev. 2005, CD002273 (2005).

  7. 7.

    Saugstad, O. D., Ramji, S. & Vento, M. Resuscitation of depressed newborn infants with ambient air or pure oxygen: a meta-analysis. Biol. Neonate 87, 27–34 (2005).

    Article  Google Scholar 

  8. 8.

    Perlman, J. M. et al. Neonatal Resuscitation Chapter Collaborators. Part 7: Neonatal Resuscitation: 2015. International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 132, S204–S241 (2015).

    Article  Google Scholar 

  9. 9.

    Solevåg, A. L., Dannevig, I., Wyckoff, M., Saugstad, O. D. & Nakstad, B. Return of spontaneous circulation with a compression:ventilation ratio of 15:2 versus 3:1 in newborn pigs with cardiac arrest due to asphyxia. Arch. Dis. Child. Fetal Neonatal Ed. 96, F417–F421 (2011).

    Article  Google Scholar 

  10. 10.

    Schmölzer, G. M. et al. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation. Resuscitation 85, 270–275 (2014).

    Article  Google Scholar 

  11. 11.

    Patel, S. et al. Asynchronous ventilation at 120 compared with 90 or 100 compressions per minute improves haemodynamic recovery in asphyxiated newborn piglets. Arch. Dis. Child. Fetal Neonatal Ed. 105, 357–363 (2020).

    Article  Google Scholar 

  12. 12.

    Solevåg, A. L., Dannevig, I., Nakstad, B. & Saugstad, O. D. Resuscitation of severely asphyctic newborn pigs with cardiac arrest by using 21% or 100% oxygen. Neonatology 98, 64–72 (2010).

    Article  Google Scholar 

  13. 13.

    Rawat, M. et al. Oxygenation and hemodynamics during chest compressions in a lamb model of perinatal asphyxia induced cardiac arrest. Children 6, 52 (2019).

    Article  Google Scholar 

  14. 14.

    Solevåg, A. L., Schmölzer, G. M. & Cheung, P. Y. Is supplemental oxygen needed in cardiac compression?-The influence of oxygen on cerebral perfusion in severely asphyxiated neonates with bradycardia or cardiac asystole. Front. Pediatr. 7, 486 (2019).

    Article  Google Scholar 

  15. 15.

    Garcia-Hidalgo, C. A. et al. Review of oxygen use during chest compressions in newborns-a meta-analysis of animal data. Front. Pediatr. 6, 400 (2018).

    Article  Google Scholar 

  16. 16.

    Vali, P. et al. Continuous chest compressions with asynchronous ventilations increase carotid blood flow in the perinatal asphyxiated lamb model. Pediatr. Res. (2021).

  17. 17.

    Weiner, G. M. & Zaichkin, J. Textbook of Neonatal Resuscitation 7th edn (American Academy of Pediatrics, 2016).

  18. 18.

    Badurdeen, S. et al. Excess cerebral oxygen delivery follows return of spontaneous circulation in near-term asphyxiated lambs. Sci. Rep. 10, 16443 (2020).

    CAS  Article  Google Scholar 

  19. 19.

    Sankaran, D. et al. Randomized trial of oxygen weaning strategies following chest compressions during neonatal resuscitation. Pediatr. Res. (2021).

  20. 20.

    Badurdeen, S. et al. Rapid wean of supplemental oxygen following return of spontaneous circulation (ROSC) reduces cerebral oxygen exposure and improves mitochondrial bioenergetics in near-term asphyxiated lambs PAS Publication #: 2320-PL-QA.1 (2021).

  21. 21.

    Dannevig, I., Solevåg, A. L., Sonerud, T., Saugstad, O. D. & Nakstad, B. Brain inflammation induced by severe asphyxia in newborn pigs and the impact of alternative resuscitation strategies on the newborn central nervous system. Pediatr. Res. 73, 163–170 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Rognlien, A. G., Wollen, E. J., Atneosen-Åsegg, M. & Saugstad, O. D. Increased expression of inflammatory genes in the neonatal mouse brain after hyperoxic reoxygenation. Pediatr. Res. 77, 326–333 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Lakshminrusimha, S. et al. Pulmonary hemodynamics and vascular reactivity in asphyxiated term lambs resuscitated with 21 and 100% oxygen. J. Appl. Physiol. 111, 1441–1447 (2011).

    Article  Google Scholar 

  24. 24.

    Vento, M., Sastre, J., Asensi, M. A. & Viña, J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am. J. Respir. Crit. Care Med. 172, 1393–1398 (2005).

    Article  Google Scholar 

  25. 25.

    Naumburg, E., Bellocco, R., Cnattingius, S., Jonzon, A. & Ekbom, A. Supplementary oxygen and risk of childhood lymphatic leukaemia. Acta Paediatr. 91, 1328–1333 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    Perez-de-Sa, V. et al. High brain tissue oxygen tension during ventilation with 100% oxygen after fetal asphyxia in newborn sheep. Pediatr. Res. 65, 57–61 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Solberg, R. et al. Metabolomic analyses of plasma reveals new insights into asphyxia and resuscitation in pigs. PLoS ONE 9, e9606 (2010)

  28. 28.

    Wollen, E. J. et al. Transcriptome profiling of the newborn mouse brain after hypoxia-reoxygenation: hyperoxic reoxygenation induces inflammatory and energy failure responsive genes. Pediatr. Res. 75, 517–526 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Wollen, E. J. et al. Transcriptome profiling of the newborn mouse lung after hypoxia and reoxygenation: hyperoxic reoxygenation affects mTOR signaling pathway, DNA repair, and JNK-pathway regulation. Pediatr. Res. 74, 536–544 (2013).

    CAS  Article  Google Scholar 

Download references

Author information




ODS has alone contributed to conception and design, acquisition of data, or analysis and interpretation of data; drafted the article critically for important intellectual content; and finally approved the version to be published.

Corresponding author

Correspondence to Ola D. Saugstad.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saugstad, O.D. Neonatal chest compressions: time to act. Pediatr Res (2021).

Download citation


Quick links