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Detecting acute bilirubin encephalopathy in neonates based on
multimodal MRI with deep learning
Miao Wu1,2, Xiaoxia Shen3, Can Lai4, Yuqing You4, Zhiyong Zhao1 and Dan Wu1

BACKGROUND: Differentiating acute bilirubin encephalopathy (ABE) from non-ABE in neonates with hyperbilirubinemia (HB) from
routine magnetic resonance imaging (MRI) is extremely challenging since both conditions demonstrate similar T1 hyperintensities.
To this end, we investigated whether the integration of multimodal MRI from routine clinical scans with deep-learning approaches
could improve diagnostic performance.
METHODS: A total of 75 neonates with ABE and 75 neonates with HB (non-ABE) were included in the study. Each patient had three
types of multimodal images taken, i.e., a T1-weighted image (T1WI), a T2-weighted image (T2WI), and an apparent diffusion
coefficient (ADC) map. The three types of MRI contrasts and their combination were fed into two deep convolutional neural
networks (CNNs), i.e., ResNet18 and DenseNet201. The performance of CNNs was compared with a traditional statistical method
named logistic regression.
RESULTS: We demonstrated that diagnostic methods with the multimodal data were better than any of the single-modal data.
Both CNN models outperformed the logistic regression method. The best performance was achieved by DenseNet201 with the
combination of three modalities of T1WI, T2WI, and ADC, with an accuracy of 0.929 ± 0.042 and an area under the curve (AUC) of
0.991 ± 0.007.
CONCLUSIONS: Our study demonstrated that CNN models with multimodal MRI significantly improve the accuracy of
diagnosing ABE.
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IMPACT:

● We proposed an efficient strategy of detecting ABE in neonates based on multimodal MRI with deep learning, which achieved
an accuracy of 0.929 ± 0.042 and an AUC of 0.991 ± 0.007.

● We demonstrated the advantage of integrating multimodal MRI in detecting ABE in neonates with HB, using deep-learning
models.

● Our strategy of diagnosing ABE using deep-learning techniques with multimodal MRI from routine clinical scans is potentially
applicable to clinical practice.

INTRODUCTION
Neonatal jaundice is one of the most common conditions
encountered by neonatologists and pediatricians, and occurs in
~60–80% of healthy term newborns during the first days of life.1,2

Although most jaundice is benign, 8–9% of newborns might
develop severe hyperbilirubinemia (HB), defined as total serum
bilirubin (TSB) level above the 95th percentile for age in hours
(high-risk zone) during the first week.3 Neonates with HB, when
unmonitored or untreated, can develop acute bilirubin encepha-
lopathy (ABE), which can lead to varying degrees of brain damage
and neurobehavioral disorders.4,5 If the TSB concentration is
not reduced in time to prevent further neurotoxicity in these
neonates, chronic irreversible encephalopathy, known as kernic-
terus, or even death can occur.6 Nowadays, ABE remains a

significant cause of morbidity and mortality throughout the world,
which can account for up to 15% of neonatal deaths in low- and
middle-income countries.4 The incidence of ABE may have
decreased in developed countries in recent years, but it still
occurs at a rate of 0.4–2.7 cases per 100,000 infants,7,8 with a
higher incidence in Asia, the Middle East, and Africa.9 In Nigeria,
159 cases of ABE were diagnosed in 1040 patients who were
admitted for treatment of jaundice (15.3%)10 and ~4.8% in
China.11 Early identification for newborns at high risk of ABE for
timely treatment is crucial to minimize the incidence of
kernicterus or to avoid overtreatment.
The TSB concentration is most widely used for evaluating

neonatal jaundice, but it is not a direct index of the actual bilirubin
level in the brain and not an accurate predictor of ABE.12
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Moreover, because the collection of blood is required, TSB
measurement has a risk of infection and anemia.13,14 Therefore,
a noninvasive method for direct detection of bilirubin-induced
changes in the brain is needed for ABE diagnosis. Magnetic
resonance imaging (MRI) has been widely used for diagnosing
neurological diseases, including bilirubin encephalopathy.15–17

Many radiological reports found that in the early stages of ABE, T1
hyperintensity of the globus pallidus (GP) bilaterally is a common
characteristic in most cases.18–20 This might be caused by the
relatively high resting neuronal activity in the GP, which makes it
particularly vulnerable to the intense, subacute oxidative stresses
from mitochondrial toxins such as bilirubin.6 However, this
radiological signature does not hold for all cases. To complicate
things further, non-ABE neonates with HB conditions often exhibit
T1 hyperintensity in the GP as well, making it difficult to
differentiate ABE and non-ABE HB patients only by T1-weighted
images (T1WIs).
Previous studies revealed that T1WI, T2-weighted imaging

(T2WI), and diffusion-weighted imaging (DWI) all contributed to
the diagnosis of ABE and may provide complementary informa-
tion to improve diagnostic accuracy. Wisnowski et al.15 and Wang
et al.19 reported that MRI of neonates in the first days to weeks
following ABE showed an increased T1 signal in the GP, while
T2WI of this region was often unremarkable or showed subtle T2
hyperintensity. The increased T2 signal in the GP was often
observed in the chronic stage.21 In a study of 30 ABE patients and
24 control subjects, Cece et al.22 found that there was a significant
correlation between bilirubin values and DWI-based apparent
diffusion coefficients (ADCs) (r= 0.41, p < 0.05). We speculate that
the accuracy of diagnosing ABE could be further improved by
combining information from multimodal MRI.
While a traditional radiological decision is based on visual

inspection, it can be objective, highly empirical, and especially
difficult in identifying diseases that do not have a clear radiological
standard, such as ABE. To this end, machine-learning-based
methods have gained acceptance among radiologists and
clinicians.23 Particularly, deep-learning algorithms, such as con-
volutional neural networks (CNNs), have been widely used in
medical image analyses and achieved great success.24–27 In this
study, we evaluated whether the use of the multimodal MRI and a
deep-learning approach can differentiate ABE patients from non-
ABE neonates with HB. Two advanced CNN models, namely,
ResNet18 and DenseNet201, were tested for classifying ABE and
non-ABE patients from a cohort of HB neonates based on T1WI,
T2WI, and ADC, and in combination. We also compared CNN-based
results with a traditional statistical approach based on normalized
T1WI intensity, T2WI intensity, and ADC values in the GP, with
logistical regression as the classifier. This study demonstrates that
potential and noninvasive diagnostic methods for ABE, which
might improve the clinicians’ performance and support clinical
management, especially for those regions with high ABE incidence.

MATERIALS AND METHODS
Study subjects
The data were collected retrospectively from routine clinical
examinations at the Children’s Hospital of Zhejiang University
School of Medicine between 2016 and 2020. All research protocols
were approved by the local Institutional Review Board with a waiver
of consent. MRI data were collected from a total of 150 HB neonates
who were clinically confirmed with TSB >5mg/dL,28 including 75
with ABE and 75 with non-ABE, who underwent MRI during their
hospitalization at postmenstrual age (PMA) of 37–41 weeks at the
time of the scan. All ABE-positive cases had a bilirubin-induced
neurologic dysfunction (BIND) score of ≥1. A BIND score of 1–3, 4–6,
and 7–9 represent mild, moderate, and severe ABE, respectively,
which is scored based on the muscle tone, cry pattern, and
behavioral and mental status with a total of nine points.29 Non-ABE

infants did not exhibit any ABE-related clinical symptoms. The
diagnosis was confirmed based on the clinical records by two
experienced pediatricians with >8 years of clinical practice (X.S.
and C.L.).

MRI acquisition
All images were acquired using a 3.0-T MRI scanner (Achieva, Philips
Healthcare, Best, The Netherlands) based on a routine clinical brain
MRI protocol with T1WI, T2WI, and DWI. The T1-weighted fast
gradient-echo sequence was performed using the following
parameters: echo time (TE) of 2.14ms, repetition time (TR) of
200ms, flip angle of 80°, a field of view (FOV) of 330 × 330mm2, in-
plane resolution of 0.45 × 0.45mm2, and 18 slices with a thickness
of 4.5mm in the axonal direction. T2-weighted turbo spin-echo
sequence was performed using the following parameters: TE/TR=
80/3000ms, FOV of 230 × 230mm2, in-plane resolution of 0.34 ×
0.34mm2, and 18 slices with a thickness of 4.5mm in the axial
direction. Diffusion-weighted echo-planar imaging was acquired
using the following parameters: TE/TR= 80/2109ms, FOV of 230 ×
230mm2, in-plane resolution of 0.90 × 0.90mm2, 18 slices with a
thickness of 4.5mm in the axial direction, one non-DWI (b0), and a
single DWI at a b value of 800 s/mm2. All images were visually
examined by pediatric radiologists to ensure adequate image
quality for further analysis.

Image preprocessing
ADC map was calculated using the following equation: ADC=
−log(SDWI/Sb0)/b. In order to combine the three types of images
for the CNN models, we first performed image registration
between the different image modalities by aligning the T2WI
and ADC images to T1WI using the FMRIB’s Linear Image
Registration Tool (FSL v6.0, FMRIB, Oxford, UK)30 with a 2D rigid-
body transformation since the images were acquired with the
same slice center and the same slice thickness. Then, three
continuous slices centered around the GP region from the T1WI,
T2WI, and ADC images were selected as the inputs to the
networks. Thus, 225 slices from 75 ABE patients and 225 slices
from 75 non-ABE patients were selected for each MRI modality.
We then cropped the images around the brain, resized them
uniformly to the size of 224 × 224 pixels, and normalized the
intensities between 0 and 1.

Logistic regression with normalized T1WI, T2WI, and ADC
As the GP is known to be the most vulnerable brain region affected
by bilirubin neurotoxicity,19 we utilized the MR features of the GP for
classification using logistic regression.31 For quantification purposes,
we normalized the T1WI, T2WI, and ADC signal intensities of GP to
that of the subcortical white matter (WM) as there is no known
effect of ABE on the MR properties of the WM. The normalized
intensity of the GP was calculated as GPnorm= GP

WM
, where GP and

WM were averaged intensities in the manually delineated GP and
WM regions of interest (ROIs) on a center slice that covered the GP
(Fig. 1a).
Logistic regression was performed using a MATLAB toolbox

(Mathworks, Natick, MA), with the following input schemes:
(1) individual single-modal features of GPnorm, T1, GPnorm, T2, or
GPnorm, ADC, (2) combination of any two of these features, and
(3) combination of all three features. The maximum Youden
index32,33 was used to determine the optimal cut-off threshold of
these features for separating ABE and non-ABE patients.

Deep-learning framework
We applied two CNN models, ResNet1834 and DenseNet201,35

which were pre-trained on a public database named ImageNet36

with three-channel (i.e., RGB images) inputs, with a transfer
learning strategy for differentiating ABE and non-ABE patients
based on multimodal MRI images. Since each single-modal image
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is a 2D grayscale image, the following strategies were taken to
meet the three-channel input scheme: (1) for the single-modal
data, we simply duplicated the normalized image to make three
identical channels; (2) for the two-modal data, i.e., T1WI+ T2WI,
T1WI+ ADC, or T2WI+ ADC, we added an empty image with all
zero values as the additional channel; (3) for the three-modal data,
T1WI, T2WI, and ADC naturally constituted the three channels. The

resulting 225 images were divided into 80% and 20% for the
training and testing sets. Data augmentation was applied to the
training dataset, which included image rotation with a random
angle in the range of −30° to 30°, image zooming by a random
scale within the range of 0.9–1.1, and image horizontal and
vertical translation with random distance in the range of −30 to
30 pixels. A 5-fold cross-validation was applied to assess the
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Fig. 1 ROI definition and multimodal MRI measurements in the ABE and non-ABE neonates with HB. a–c T1WI, T2WI, and ADC images of
representative ABE neonates. d–f T1WI, T2WI, and ADC images of a representative non-ABE neonate. The blue outlines indicate the WM ROI
and the red outlines indicate the GP ROI. g–i Comparison of the MR features between ABE and non-ABE neonates, in terms of GPnorm,T1 (g),
GPnorm,T2 (h), and GPnorm,ADC (i). GPnorm,T1 of ABE and non-ABE neonates are 1.345 ± 0.062 and 1.405 ± 0.126. GPnorm,T2 of ABE and non-ABE
neonates are 1.342 ± 0.059 and 1.426 ± 0.146.GPnorm,ADC of ABE and non-ABE neonates are 0.767 ± 0.050 and 0.774 ± 0.056.
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models’ generalization performance with metrics of classification
accuracy, the area under the ROC curve (AUC), sensitivity,
specificity, precision, and F1 score. Equations (1)–(5) showed the
definition of these performance metrics, where TP, FP, TN, and FN
represent the numbers of true-positive, false-positive, true-
negative, and false-negative cases, respectively. The performance
metrics were presented as mean ± standard deviation from the 5-
fold cross-validation:

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(1)

Sensitivity ¼ TP
TPþ FN

(2)

Specificity ¼ TN
TNþ FP

(3)

Precision ¼ TP
TPþ FP

(4)

F1 score ¼ 2 ´precision ´ sensitivity
precisionþ sensitivity

(5)

The models were obtained from the Deep Learning Toolbox in
MATLAB 2019a. The hyperparameters of the CNN were heuristi-
cally set as follows: the learning rate was initialized to 0.0003,
maximum epoch number was limited to 6, stochastic gradient
descent momentum-based solver was used with a minibatch size
of ten images for training. The experiment was implemented in
MATLAB 2019a.

Statistical analyses
Differences in the sex distribution among groups were evaluated
using the χ2 test, while other clinical features, which all passed the
Kolmogorov–Smirnov normality test, were evaluated by a two-
tailed t test with unequal variance. The differences of GPnorm, T1,
GPnorm, T1, and GPADC measurements between ABE and non-ABE
groups were also tested using t tests. A p value < 0.05 was
considered statistically significant. All statistical analyses were
performed using IBM SPSS Statistics 21 (https://www.ibm.com/
products/spss-statistics).

RESULTS
The demographic and clinical characteristics of the patients in our
study are listed in Table 1, including sex, age, weight, gestational
age (GA), PMA at scan, TSB, and albumin. Significant differences in
age (p= 0.004, ~2 days off) and TSB (p= 0.000, ~5.03 mg/dL
difference) were found between the ABE and non-ABE groups,
while other features were comparable between the two groups
(p > 0.05).

Figure 1 shows T1WI, T2WI, and ADC images of representative
ABE (Fig. 1a–c) and non-ABE (Fig. 1d–f) patients with HB. Blue and
red outlines indicate the manually traced WM and GP ROIs for
calculations of normalized intensities. The differences in GPnorm, T1,
GPnorm, T2, and GPnorm,ADC are presented in Fig. 1g–i. T tests
indicated a significant difference in GPnorm,T1 (1.345 ± 0.062
versus 1.405 ± 0.126, p= 0.000) and GPnorm,T2 (1.342 ± 0.059 versus
1.426 ± 0.146, p= 0.000) values, but no significant difference
was found in GPnorm,ADC (0.767 ± 0.050 versus 0.774 ± 0.056, p >
0.05). Considerable overlaps were observed between the two
groups for all three measurements, indicating the difficulty of
classification based on any of the single modalities.
The performance of logistic regression on identifying ABE

and non-ABE infants is shown in Table 2 and Supplementary
Fig. S1, with ROC curves shown in Fig. 2a. The combined feature of
GPnorm,T2 and GPnorm,ADC achieved the highest AUC of 0.681, while
the highest accuracy of 0.833 was obtained using the combination
of GPnorm,T1 and GPADC. The combination of all three modalities
provided the second-highest AUC of 0.677 and the second best
accuracy of 0.800. Accuracies of 0.720, 0.773, and 0.600 were
found for GPnorm,T1, GPnorm,T2, and GPnorm,ADC, respectively, with
optimal cut-off values of 1.439, 1.435, and 0.714, respectively.
These results indicated that although ADC alone did not have a
good predictive value, but in combination with T1WI or T2WI the
prediction accuracy improved. From Supplementary Fig. S1(a)
we can see that the sensitivities for the logistic regression are
almost 100% for all modalities except ADC, indicating that the
logistic regression method has a good capability for predicting
true-positive samples (ABE) with no false-negative samples are
detected in our experiments. However, since there was no
statistically significant difference between the GPnorm,ADC of
ABE and non-ABE (shown in Fig. 1i), the optimal cut-off value
of GPnorm,ADC (0.714) can hardly separate ABE and non-ABE
accurately with a lot of false-negative samples and no false-
positive samples were detected in the result, which directly leads
to the poor sensitivity of 20% and the high precision of 100% and
the specificity of 100%.
We then evaluated the performances of the ResNet18 and

DenseNet201 CNN models based on the single- or multimodal
images through a 5-fold cross-validation. Comparing the results
using different classifiers (Table 2), the DenseNet201 achieved the
best overall performance, followed by ResNet18, which both
outperformed logistic regression. T tests indicated that the
classification accuracy of DenseNet201 was significantly higher
than ResNet18 when using combined images of T1WI+ ADC (p=
0.048, <0.05) and T2WI+ ADC (p= 0.003, <0.05), but their
performance was similar in terms of T1WI, T2WI, ADC, T1WI+
T2WI, and T1WI+ T2WI+ ADC.
Figure 2 and Supplementary Fig. S1 show that with the

increased number of MR modalities fused in the input image,
the AUC gradually improved for both CNN models, and the
combination of all three modalities gave the best performance in
almost all of the evaluation metrics with high accuracy of 0.929
and an AUC of 0.991 for DenseNet201. Among the single-modal
MRI data, T1WI had the best classification performance, followed
by T2WI and then ADC for DenseNet201, which is similar to the
findings from logistic regression. Interestingly, the sensitivities of
DenseNet201 for single-modal MRI from high to low were T2WI,
ADC, and T1WI, while their specificities showed approximately an
opposite order, which again suggested their complementary roles
in the classification task. Among the two-modal data, T1WI+ T2WI
achieved an accuracy of 0.918 with an AUC of 0.991, which was
considerably higher than that for T1WI+ ADC and T2WI+ ADC.

DISCUSSION
This study evaluated whether multimodal MRI could improve the
diagnostic performance compared with using a single modality.

Table 1. The demographic and clinical characteristics of the patients.

Clinical features ABE (n= 75) Non-ABE (n= 75) p Value

Sex (male) 47 (62.67%) 50 (66.67%) 0.61

Age (days) 10.08 ± 3.64 12.37 ± 5.62 0.00

Weight (kg) 3.26 ± 0.43 3.38 ± 0.43 0.08

Gestational age at
birth (weeks)

38.54 ± 1.49 38.58 ± 1.26 0.85

PMA at scan (weeks) 39.98 ± 1.52 40.35 ± 1.57 0.14

TSB (mg/dL) 23.45 ± 8.04 18.42 ± 3.71 0.00

Albumin (g/L) 38.47 ± 2.99 37.93 ± 2.94 0.27
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We also demonstrated the advantage of deep-learning networks
compared with the traditional statistical methods based on the
multimodal MRI markers. This was done in the framework of
separating ABE and non-ABE neonates who both had HB, which is
known to be particularly challenging with current clinical and
radiological examinations. Our results indicated that multimodal
MRI plays an important role in the clinical management of ABE,
and should be incorporated into the clinical routine whenever MRI
is available.
At present, ABE remains one of the most significant causes of

neonatal mortality and lifelong disability. The commonly used
physiological parameters, such as TSB, albumin need, unconju-
gated or free bilirubin levels, and bilirubin bound to albumin, do
not have sufficient diagnostic power as they do not directly reflect
bilirubin toxicity in the brain.37,38 The clinical manifestations
and neurological symptoms could also be absent, subtle, or

nonspecific in the early phases of ABE.39 When an overt clinical
sign appears, the bilirubin-induced neurological injuries may have
already been present and become irreversible. Although MRI has
been increasingly used to investigate the neuropathology induced
by ABE in the clinical setting, its diagnostic accuracy is limited and
research in this field is relatively scarce. A study by Mao et al.20

reported that 20 of 36 neonates with HB have symmetric
hyperintense GP on T1WI; and among these 20 HB neonates, 15
had ABE. Coskun et al.18 reported that 8 of 13 (61.54%) ABE
patients demonstrated bilateral, symmetric increased signal
intensity in the GP on T1WI and these lesions were not apparent
on T2WI. Clearly, visual inspection is not sufficient for diagnosing
ABE given the subtle and nonspecific differences from single-
modality MRI.
Our results demonstrate that for all three methods the

performance metrics gradually improved when the input data

T1 (AUC = 0.90844)
T1 (AUC = 0.61582)

T2 (AUC = 0.66116)

ADC (AUC = 0.50116)

T1 + T2 (AUC = 0.63751)

T2 + ADC (AUC = 0.68071)

T1 + ADC (AUC = 0.65582)

T1 + T2 + ADC (AUC = 0.67662)

T1 (AUC = 0.92089)

T2 (AUC = 0.82607)

ADC (AUC = 0.81896)

T1 + T2 (AUC = 0.99072)

T1 + ADC (AUC = 0.96385)

T2 + ADC (AUC = 0.96632)

T1 + T2 + ADC (AUC = 0.99121)

T2 (AUC = 0.82173)

ADC (AUC = 0.82568)

T1 + T2 (AUC = 0.97017)

T1 + ADC (AUC = 0.93205)

T2 + ADC (AUC = 0.968)

T1 + T2 + ADC (AUC = 0.98509)

10.80.6
False-positive rate

T
ru

e-
po

si
tiv

e 
ra

te

0.40.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

ru
e-

po
si

tiv
e 

ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a b

c

1
T

ru
e-

po
si

tiv
e 

ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

010.80.6
False-positive rate
0.40.20

10.80.6
False-positive rate
0.40.20

Fig. 2 ROC curves of the single- and multimodal MRI features for differentiating ABE and non-ABE. Single-modal data of T1WI, T2WI, ADC,
and multimodal data of T1WI+ T2WI, T1WI+ ADC, T2WI+ ADC, and T1WI+ T2WI+ ADC were tested, respectively. a ROC curves based on
logistic regression classifiers using the semi-quantitative MRI measurements in the GP. b ROC curves based on ResNet18 using the single- and
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combined more modalities. The combination of three-modal
images (T1WI+ T2WI+ ADC) achieved the best performance with
a mean accuracy of 0.929, 0.871, and 0.800 for DenseNet201,
ResNet18, and logistic regression, respectively. This was consider-
ably higher than when using a single modality (accuracies
< 0.750). This may be because images from the three modalities
provide different presentations of the ABE pathology that support
each other,15,19,22 as T1WI and T2WI reflect the chemical
components of the tissue, while ADC is associated with tissue
microstructures that dictate the water diffusion. The different
modality images were complementary in classification sensitivity
and specificity, e.g., T2WI had the highest sensitivity and T1WI
gave the highest specificity.
Our results also show that the CNN models outperformed

the statistical approach of logistical regression, as expected.
One reason for this outcome is that the features used for the
classification work are much different for CNN and logistic
regression. CNN uses the whole image as the input data so that
all the information is captured, while the logistic regressor that
uses manually defined MRI features of GPnorm and other image
features that are potentially useful for the classification are
ignored. Among the two CNN models, DenseNet201 achieved
higher classification accuracy than ResNet18, owing to the more
learnable layers, which likely benefited the feature extraction and
classification efficacy. However, using a model with a complex
architecture has a risk of overfitting, especially for a limited
training sample set with little heterogeneity. As shown in Fig. 3,
we found that the training loss decreased, whereas the validation
loss increased after 160 iterations for DenseNet201, indicating
overfitting.
Another limitation of the study is that our data were all

collected from one hospital; therefore, the generalizability of the
models is unknown. Future multicenter studies are necessary
to validate the models’ generalizability. Also, in addition to the
use of conventional MRI contrasts of T1WI, T2WI, and DWI,
the integration of more advanced MRI techniques, such as
susceptibility-weighted MRI, perfusion MRI, and spectroscopy, as
well as the clinical information, is likely to further enhance the
diagnostic power. Moreover, it would be ideal to test the
prediction ability to kernicterus, the chronic phase of ABE, which
is critical to the clinical management of newborns.

CONCLUSION
Here, we demonstrate the potential of multimodal MRI with
machine-learning approaches in identifying ABE in HB patients.
The results indicate that the multimodal MRI outperforms the
single modalities for all types of classifiers, and the CNN models
outperform the logistic regression with predefined features in the
GP. The best performance was achieved by DenseNet201 with the
fusion images combined by T1WI, T2WI, and ADC, which achieved
an accuracy of 0.929 with an AUC of 0.991. The strategy of the
multimodal MRI-based diagnosis of ABE is potentially applicable to
clinical practice to facilitate clinical management.
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