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Neonatal encephalopathy prediction of poor outcome with
diffusion-weighted imaging connectome and fixel-based
analysis
Jeong-Won Jeong1,2,3,4, Min-Hee Lee1,2, Nithi Fernandes2, Saihaj Deol5, Swati Mody6, Suzan Arslanturk7, Ratna B. Chinnam8 and
Sidhartha Tan2

BACKGROUND: Better biomarkers of eventual outcome are needed for neonatal encephalopathy. To identify the most potent
neonatal imaging marker associated with 2-year outcomes, we retrospectively performed diffusion-weighted imaging connectome
(DWIC) and fixel-based analysis (FBA) on magnetic resonance imaging (MRI) obtained in the first 4 weeks of life in term neonatal
encephalopathy newborns.
METHODS: Diffusion tractography was available in 15 out of 24 babies with MRI, five each with normal, abnormal motor outcome,
or death. All 15 except one underwent hypothermia as initial treatment. In abnormal motor and death groups, DWIC found 19 white
matter pathways with severely disrupted fiber orientation distributions.
RESULTS: Using random forest classification, these disruptions predicted the follow-up outcomes with 89–99% accuracy. These
pathways showed reduced integrity in abnormal motor and death vs. normal tone groups (p < 10−6). Using ranked supervised
multi-view canonical correlation and depicting just three of the five dimensions of the analysis, the abnormal motor and death were
clearly differentiated from each other and the normal tone group.
CONCLUSIONS: This study suggests that a machine-learning model for prediction using early DWIC and FBA could be a possible
way of developing biomarkers in large MRI datasets having clinical outcomes.

Pediatric Research (2022) 91:1505–1515; https://doi.org/10.1038/s41390-021-01550-2

IMPACT:

● Early connectome and FBA of clinically acquired DWI provide a new noninvasive imaging tool to predict the long-term motor
outcomes after birth, based on the severity of white matter injury.

● Disrupted white matter connectivity as a novel neonatal marker achieves high accuracy of 89–99% to predict 2-year motor
outcomes using conventional machine-learning classification.

● The proposed neonatal marker may allow better prognostication that is important to elucidate neural repair mechanisms and
evaluate treatment modalities in neonatal encephalopathy.

INTRODUCTION
In term newborn infants with hypoxic–ischemic encephalopathy
(HIE) who underwent cooling, neurodevelopmental perfor-
mance was predicted by magnetic resonance imaging (MRI)
determination of fractional anisotropy (FA) decrease in the white
matter on early diffusion tensor imaging (DTI).1 Basal ganglia
and thalamic lesions associated with the severity of motor
impairment and abnormal posterior limb of internal capsule
signal intensity predicted the inability to walk independently by
2 years.2 Recent technical improvements in high-field MRI have
made abnormalities more detectable. In current clinical practice,
MRI interpretations are made by radiologists who may differ in
their opinion of what constitutes critical brain injury.

Furthermore, the state of art on prognostication based on MRI
findings is still in its early stages. We may need a paradigm shift
in achieving prognostication, which is not based on the
subjective opinion of a radiologist.
The present study is part of an evaluation of postnatal MRI

dependent on “intelligent data mining.” We have recently formed
a Big Data group to analyze clinical MRIs in the neonatal period to
discover new biomarkers for eventual neurobehavioral outcomes.
Indeed, it is of clinical importance to ascertain which aspects of
early brain development are predominantly related to the long-
term consequences in order to improve early therapeutic
interventions for newborn infants with HIE. Our immediate
hypothesis was to determine whether the network analysis of
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the whole-brain connectome provides an accurate prediction for
2-year outcomes such as normal tone, abnormal tone, and death.
In this study, we propose the use of clinical diffusion-weighted

imaging (DWI) to investigate novel imaging markers at two
anatomical levels, (1) axonal pathways using DWI connectome
(DWIC)3,4 and (2) subcortical clusters using fixel-based analysis
(FBA).5 The advantage of such powerful imaging tools is to gauge
atypical changes in fiber orientation distribution (FOD) of DWI
tractography data reflecting the severity of white matter injury
due to severe perinatal hypoxia–ischemia. DWIC and FBA have
been used to estimate macroscopic changes in white matter
morphology by measuring the count of the streamline tract that
connects every pair of cortical regions and the intra-axonal
volume measured at individual fiber bundles within every voxel
(called “fixel”). This is a feasibility study to use these methods on
existing MRI data to identify efficient markers of perinatal white
matter injury for accurate prediction of long-term motor outcome.
The objective of the present study is to mine the most effective

DWIC-FBA marker of postnatal DWI that accurately predicts three
long-term outcomes: death, normal, and abnormal motor
(hypertonia) at 2 years follow-up of individual newborn. Our
working hypothesis is that interrogation of the cerebral white
matter tracts can serve as a biomarker for abnormal neurodeve-
lopment. The streamline tract count can be a questionable marker
of neurological connectivity due to the limited spatial resolution of
DWI (e.g., ~2mm) and low sensitivity of the current tractography
method to estimate FOD function from clinically acquired DWI
tractography data.6–8 The innovation of this study is that we utilize
these limitations to derive a feasible and physiologically mean-
ingful measure in the streamline tract count that quantifies the
degree of atypically developed white mature structure in the HIE-
affected brain. We then explore in a blinded fashion whether
white matter pathways show atypical patterns of the streamline
count in subpopulations with different outcomes (in abnormal
and death groups compared to normal outcomes), how the
atypical patterns in streamline counts are associated with other
diffusivity measures, and which subcortical clusters show atypical
changes in FBA metrics using a state-of-the-art machine-learning
technique.

METHODS
Subjects
We performed a retrospective study of 24 term newborns of HIE
whose neurobehavioral outcome was known on a follow-up visit
to the Developmental Assessment Clinic of Children’s Hospital of
Michigan. Clinical examination by a neonatologist data was
available from electronic medical records. Out of the 24 with
MRI, we found that DWI tractography scan was included in 15
newborns (gestation age= 39.2 ± 0.9 weeks and postconceptional
age at MRI= 40.7 ± 1.3 weeks, Table 1). These 15 newborns were
divided into three groups:

(1) any death postnatal,
(2) normal neurological examination at 2 years, especially

normal tone, based on neontologist examination at the
developmental follow-up clinic, and

(3) any abnormal tone findings with hypertonia on the
neurological exam at 2 years.

The “n” was five per group. The present study was approved by
the Wayne State University’s Institutional Review Board, and a
waiver of written informed consent was obtained to perform the
analysis of existing data in our clinical archive.

MRI acquisition
All neonatal MRI scans were performed on a 3 T GE-Signa scanner
(General Electric Healthcare Technologies, Milwaukee, WI) Ta
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equipped with an 8-channel head coil and ASSET. MRI protocol
followed guidelines for routine clinical imaging of DWI, DWI
tractography, T1-weighted image, and T2-weighted image. DWI
scan was acquired via echo-planer imaging sequence in the axial
plane, with respiratory gating at repetition time/echo time (TR/TE)
= 4286/84 ms, field of view (FOV)= 24 cm, 128 × 128 acquisition
matrix (nominal resolution= 1.89 mm), contiguous 3 mm thick-
ness to cover entire axial slices of the whole brain. Two b values (0
and 700 s/mm2) were applied with number of excitations (NEX)=
2. DWI tractography scan was acquired using a double refocusing
pulse sequence to reduce eddy current artifacts at TR= 12,500 ms,
TE= 88.7 ms, FOV= 24 cm, 128 × 128 acquisition matrix, contig-
uous 3 mm thickness to cover entire axial slices of whole brain
using 33 isotropic gradient directions with b= 800 s/mm2, 1 b= 0
acquisition, and NEX= 1. For morphological analysis, a three-
dimensional fast spoiled gradient echo sequence was acquired for
the T1-weighted sagittal image of each participant at TR/TE/TI of
9.12/3.66/400ms, slice thickness of 1.2 mm, and planar resolution
of 0.78 × 0.78 mm2. Axial T2-weighted image was acquired with a
fast spin-echo sequence, with respiratory gating, at TR/TE of 9231/
104ms (effective) with 5 mm slice thickness, 0 mm gap, FOV=
20 cm, matrix size= 512 × 512, and NEX= 2.
A multidisciplinary team (nurse, neonatal nurse practitioner, and

MRI technicians) worked to minimize motion artifacts by a bundle-
and-feed protocol, improve the quality of the image acquisition,
and allow longer scan time for multiple trials. To minimize the
potential confound from motion artifact, the present study
excluded patients with unsuccessful MRI showing head motion
≥2mm in DWI encoding data (i.e., voxel size of DWI image), which
was evaluated by NIH TORTOISE DWI motion artifact correction
package (https://tortoise.nibib.nih.gov/).

Advantages of extraction and evaluation of DWIC marker
Before performing the tractography analysis, we utilized the NIH
TORTOISE DIFF_PREP package9 to correct motion, noise, physio-
logical artifacts, susceptibility-induced distortion, and eddy
current-induced distortion. FOD function10,11 was estimated at
every voxel of DWI b0 image by using constrained spherical
deconvolution (CSD) method12 that seeks the optimal combina-
tions of multiple fiber compartments in directions and magnitudes
of multiple crossing lobe pairs. In contrast to DTI, CSD can model
multiple crossing fiber compartments at every single voxel. One
hundred dynamically randomized seeding points and angular
deviation ≤70° were applied at every voxel of the whole brain to
reconstruct continuous fiber tract streamlines using the MRtrix3
package (http://www.mrtrix.org/) where the second-order integra-
tion over FOD (iFOD2) tractography13 was applied to reconstruct
the fiber tract streamlines continuously connecting the most
probable neighborhood peak of FOD lobes at every voxel.14 The
advantages of using FOD lobes (Fig. 1a) were principally three-
fold. Immediately, one could obtain an idea of the directionality
and magnitude of crossing fibers involved in a particular fiber tract
(Fig. 1a). Second, we made an a priori assumption that brain injury
will cause the FOD lobes to deviate from the values in normal
regions found in the framework of the conventional tractography
method, and result in more spurious streamlines. These deviations
can then be used as a potential biomarker (Fig. 1b). Third, when
the injury occurs to the fiber tract, the magnitude of the insult can
be gauged by estimating abnormal FOD functions and recon-
structing the directionality and magnitude of crossing fibers at the
HIE-affected region (Fig. 1c).
Whole-brain tracts of individual newborns were characterized

by using automated anatomical labeling (AAL) parcellation of UNC
neonate atlas15 that consists of a set of 90 nodes, Ωi= j= 1–90 (Fig. 2
and Supplementary Table 1), resulting in whole-brain connec-
tome, G= (Ω, S). where the elements of edges S(i,j) quantify the
pair-wise connectivity strengths between Ωi and Ωj (i.e., the
number of fiber streamlines scaled by the total volume of two

nodes to stabilize intersubject variability by correcting for
intracranial volume). Three separate Wilcoxon rank-sum tests: (1)
normal vs. abnormal motor, (2) normal motor vs. death, and (3)
abnormal motor vs. death at p < 0.05 after Šidák correction for
multiple comparisons16 were then combined to select pair-wise
connection edges, S(i,j) of which log-strengths are significantly
altered in three different groups, yielding a marker of log(S(i,j))
that can quantify significant changes in multiple edge strengths in
the whole brain.
In addition to the marker of log (S(i,j)), four different markers

were created by averaging four diffusivity measures:17 apparent
diffusion coefficient (ADC, the degree of isotropic water diffusion),
FA (the degree of white matter integrity), axial diffusivity (AD), and
radial diffusivity (RD) at individual streamline tracts included in
each edge of log(S(i,j)) (i.e., streamline tracts connecting Ωi and Ωj).
Combinations of axonal loss and myelin changes may affect
combinations of AD and RD, although these may not be precise
reflections.18 We define a dimension as the total range of values
obtained in each DWIC edge that has been deemed significant by
a priori statistical criteria mentioned above.

Extraction and evaluation of FBA marker
FBA has been used to obtain more comprehensive markers
reflecting the total number of white matter axons within a
voxel.19–21 Most white matter voxels contain contributions from
multiple fiber populations (often referred to as crossing fibers).
Therefore, voxel averaged quantitative markers (e.g., FA, AD, RD,
ADC, etc.) are not fiber-specific and have poor interpretability. Due
to this limitation, fiber density (FD)5 was estimated as a measure of
intra-axonal volume at individual bundles of crossing fibers within
every voxel (called “fixels”) by constructing the representative
fiber-bundle elements at the group level.
The detailed architecture of FBA has been presented else-

where.5,22 This study utilized a pipeline of FBA implemented in the
MRtrix3 package (http://www.mrtrix.org/). Briefly, a group-average
response function was estimated after performing global intensity

Fiber orientation distribution (FOD) function

Biomarker Local FOD lobes

Fiber directions

A priori assumption:
Brain injury causes deviation from normal

Deviation from normal

Normal Injured Injured

50% less horizontal
97% less vertical

a

b

c

Fig. 1 Fiber orientation distribution (FOD) function as a potential
biomarker of white matter injury. a Advantage of using fiber
orientation distribution (FOD) function is that the crossing fiber
compartments simulated in fiber directions can be depicted in the
FOD lobe to reflect the contribution of the crossing fibers to
the orientation distribution function. b A priori assumption of the
present study using the local FOD lobes as a potential biomarker. c
The magnitude of the injury can be depicted in the magnitudes of
an example comparing a normal and injured FOD function lobe.
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normalization across patients and used to reconstruct the FOD
functions from 33-direction diffusion data of individual subjects.
All FOD images were registered towards a study-specific group-
average FOD template (n= 15 patients). Each FOD in the template
was segmented into individual fixels by applying a fixel mask at
the peak threshold of 0.1, thus defining the position and
orientation of all fixels of interest across patients. Warps estimated
from registration were applied to deform FOD images to the
template space. Warping was done to ensure orientation
information remained anatomically consistent across voxels.22

Each FOD in the warped images was segmented to determine a
measure of FD (i.e., FOD lobe integral) per fixel. The estimated FD
was compared between groups using fixel-based statistics called
threshold-free cluster enhancement (TFCE).23

To identify the fixels of which FD values are the most effective
in differentiating normal from abnormal motor and death groups,
we performed two different TCFE analyses, (1) normal vs.
abnormal motor and (2) normal vs. death. The fixel clusters of
which FD values differ in two comparisons were obtained at the
corrected p of TFCE < 0.05. FD values of each cluster were
averaged, providing a marker that can quantify overall intra-
axonal volume changes at the cluster level of the whole brain. We
extracted other two FBA measures: fiber-bundle cross-section (FC),
as an estimate of the difference in FC due to the nonlinear
warping that transforms FOD functions (or fixels) from subject to
template space, and a combined measure of FD and cross-section
(FDC), as the multiplication of FD by FC from the same clusters.
These are used as additional markers quantifying overall changes
in fiber-bundle cross-sectional area and FD-weighted by the
difference in the cross-sectional extent of the tract, respectively.

Classification of DWIC and FBA markers for prediction of long-term
outcome
It should be noted that this study was originally aimed to investigate
whether novel imaging markers underlying the atypically developed

brain abnormalities at two anatomical levels, (1) axonal pathways
using DWIC and (2) subcortical clusters using FBA, can provide an
accurate prediction for 2-year outcomes. Thus, a set of multiple
pathways (or clusters) consists of a multidimensional marker in the
feature space. For each marker of DWIC and FBA, an in-house built
random forest classification with 100 bagged ensemble of regres-
sion trees was used to evaluate individual marker performance in
the framework of supervised multiview canonical correlation
(SMVCCA).24,25 The SMVCCA is an iterative process to reduce data
dimensionality by fusing or integrating the high multidimensional
data into a more amenable data representation for disease
classification. It iteratively projects the original data into a given
number of eigenvectors of their covariance matrix. In other words,
the SMVCCA fuses (or integrates) the multidimensional marker
values into lower-dimensional representation to improve separation
between clinical outcomes. We defined a “fused dimension” as
the given number of eigenvectors and “fused marker” as the
projection of the original multidimensional marker values on the
given number of eigenvectors, respectively. The steps of SMVCCA
are given below:
Step 1 Iterative data reduction and classification using SMVCCA

and Random forest algorithm X: data matrix, X ∈ RN×M, i ∈ {1, …, N},
j ∈ {1,…, M}, N: number of subjects, M: number of multidimensional
features; Y: class label vector, Y ∈ RN×1, Yi= 1 for normal motor, 2 for
abnormal motor, 3 for death class

i. We calculated an optimal weight matrix Ŵ = [Wx WY] to
maximize feature-feature correlation and class label-feature
correlation

argmax
WX ;WY

trace ŴTĈŴ
� �

s:t: ŴTĈdŴ ¼ I

ii. The solution of i) is Ĉ�1
d ĈŴ ¼ Ŵ Λ that can be solved by

[Λ, D]= eig(Ĉd; Ĉ), eig: singular value decomposition.

T2-w template space Connectome, G = (ΩΩ, S) 1
1

90
S (i,j)

Whole-brain tractographyDWl b0 native space

T(x,y,z)

D(x,y,z) D–1(x,y,z)

T2-w native space
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Ω
j

Fig. 2 Schematic of the DWIC analysis to construct the connectome graph, G = (Ω, S), of an individual infant. Advanced normalization
tools (ANTs, https://github.com/ANTsX/ANTs) were used to find a 3-D deformation field, D(x,y,z) that warps T2-w native image into the UNC
neonatal T2-w template image (https://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases/). The inverse of D(x,y,z),
D−1(x,y,z) was then used to place the UNC neonatal AAL parcellation atlas of 90 cortical nodes, Ωi= 1–90, from T2-w template brain space to T2-
w native brain space. Finally, the resulting AAL atlas was placed to native b0 space via nonlinear warping of the ANTs, T(x,y,z), between T2-w
native image and DWI b0 image and used to sort out whole-brain tracts, leading to an adjacent matrix S(i,j) of which elements consist of
connectivity edge strengths (i.e., the number of fiber streamlines scaled by the total volume of two nodes to stabilize intersubject variability
by correcting for intracranial volume). In an example of 3-D visualization (ID #1), colored patches and streamline tubes indicate Ωi and S(i,j) in
the given graph, G.
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where Λ and D are the eigenvector matrix and eigen
value matrix of Ĉd and Ĉ, respectively.
Ĉ = [C XTY; YTX zeros (size (YTX, 1), size (XTY, 2))];
Ĉd = [Cd zeros (size (Cd , 1), size (YTY, 2)); zeros (size (YTY,1),
size (Cd , 2)) Y

TY];
Cd = zeros (size (C)); Cd(1: (size (C, 1)+1): end) = Cd; C = C
− Cd ;

C ¼ covariance matrix of X

iii. Iterative SMVCCA-based data reduction to fuse high
dimensional feature vectors into a low dimensional feature
vector, f and evaluate its classification accuracy in the
random forest algorithm:

for j = 1: M

a. We next created a fused vector, f(j) with the dimension of j
by using a subset of eigen vectors with the largest eigen
values in Λ(j) = [Λ1,.., Λj], Λj = jth column vector of Λ, W(j) =
Λ(j)

f ðjÞ ¼ X � ^ðjÞ

b. Then performed the supervised random forest algorithm to
classify the fused feature vector, f(j) into three target classes,
normal motor, abnormal motor, and death.

c. Evaluated the classification accuracy of the fused feature
vector, f(j)

accuracy(j) = (True positive + True negative)/(True positive +
False positive + True negative + False negative)
end
Step 2 The optimal dimension of the fused feature vector, ĵ,

maximizing the classification accuracy is determined,

ĵ ¼ max
j

accuracyðjÞ

Step 3 The optimal fused feature vector, f̂ , for outcome
prediction then becomes,

f̂ ¼ X � Λð̂jÞ
Using two-fold cross-validation, training data instances (X and Y

of train set samples) were first used to identify ĵ via Steps 1–3. The
identified ĵ was applied to test data instances (X and Y of train set
samples) in order to assess the performance metrics of SMVCCA
for outcome prediction (i.e., accuracy, sensitivity, specificity). This
study repeated the above cross-validation 100 times. The mean
and standard deviation of the performance metrics over these
repetitions were reported in Table 3.
In other words, two-fold cross-validation was applied to split

the fused markers of the entire study cohort into training and
test sets. For each split, the bagged ensemble of the regression
tree (forest) was optimized to yield maximal accuracy of correct
classification at the training set (the first fold, n= 8). The
optimized forest was then applied to predict the class
memberships of the test set (the second fold, n= 7). One
hundred random splits of the 15 samples into training and test
sets were repeated to evaluate the overall accuracy of correct
classification for the fused marker. As for the explorative
comparison, each element value of the original multi-
dimensional marker was ranked according to its magnitude
(e.g., 1–15 from the highest to the lowest). The resulting ranked
multi-dimensional marker was then fused by the SMVCCA

process, and finally re-classified with the forest algorithm using
the two-fold cross-validation.

RESULTS
To demonstrate the feasibility of the iFOD2 method using the
second integral of FOD function in our dataset, we estimated the
FOD functions at two regions of interest, i.e., the lateral part of the
precentral gyrus and superior temporal gyrus, which are the core
regions of the primary somatosensory motor system (Fig. 3). In
both ROIs, shape and morphological features of FOD functions
including magnitude (FOD lobe size), orientation (lobe direction),
and the total number of lobes were atypically altered in abnormal
motor and death subjects. Lower magnitudes, heterogeneous
orientations, and more spurious peaks were found in the two
groups compared with normal subjects, implicating injured
myelination and disrupted maturation of perinatal white matter
in abnormal and death subjects, respectively. In the framework of
subsequent probabilistic tractography, these atypical alterations
inevitably increased spurious fiber streamlines (i.e., false-positive
tracts that do not anatomically exist), leading to paradoxically
increased strength of DWIC edge, S(i,j) in both the abnormal motor
and death groups.
Figure 4 presents the results of the proposed DWIC markers

determined by Wilcoxon rank-sum tests between three long-term
outcome groups. Total 19 pair-wise edges, S(i,j) (Fig. 4a and
Table 2) showed significant difference of group median in their
log-strengths, log(S(i,j)) at the corrected p < 0.05, yielding a 19-
dimensional DWIC marker of log(S(i,j)). Because of the overlap in
observation in groups and multiple comparisons, caution has to
be exercised about the biological importance of the statistical
significance. Another way to look at the biological significance is
to examine how much the Z-score is beyond the value of ±1.96.
Compared with the normal group, pair-wise edge strength, log(S(i,
j)), was significantly reduced in each of 19 pair-wise pathways in
both abnormal tone and death groups with average Z-statistic
value=−2.552/−2.507, p= 0.018/0.012 for abnormal tone and
death, respectively. The overall one-way ANOVAs for log(S(i,j))
were highly significant even after Šidák correction (a priori α=
0.0034) for multiple comparisons (p < 10−6 for normal vs.
abnormal, normal vs. death, and abnormal vs. death), indicating
the presence of significant differences between groups in the
overall dataset. In the comparison of abnormal tone and death
groups, we found that compared with the abnormal group, the
death group has significantly lower strength in each of these 19
edges, with an average Z-statistic value=−2.298, p= 0.026,
which may not be as striking. The group variations of five 19-
dimensional DWIC markers, log(S(i,j)), FA, AD, RD, and ADC, are
shown in Fig. 4b, where each 19-dimensional marker of the
individual patient was concatenated per group for two-group
comparisons in the box-and-whisker plots. FA showed significant
differences in normal vs. abnormal (p < 10−6), normal vs. death
(p < 10−6), and abnormal vs. death (p < 10−6). AD showed less
striking but still significant differences in normal vs. death (p=
0.002). No significant difference was found in AD between in
normal vs. abnormal (p= 0.016), and abnormal and death groups
(p= 0.320). RD showed significant differences in normal vs.
abnormal (p < 10−6), normal vs. death (p < 10−6), but not in
abnormal vs. death (p= 0.026). ADC showed significant differ-
ences in normal vs. abnormal (p < 0.001) and normal vs. death
(p < 10−6). No significant difference was found in ADC between
abnormal and death groups (p= 0.152).
TFCE evaluations of FD (Fig. 5a) found three fixel clusters of

interest in thalamus, posterior limb of internal capsule, and
cerebellar peduncle, yielding a three-dimensional FD marker for
an individual subject. In all three clusters, FOD functions of
abnormal and death groups had lower amplitudes leading to
lower FD, compared with the normal group. Each element of the
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three-dimensional FD marker (left boxplot of Fig. 5b) suggests a
group difference between normal and abnormal (p < 0.013).
Similarly, each concatenation of the three-dimensional FDC
marker samples (right boxplot of Fig. 5b) suggests a group
difference between normal and abnormal (p < 0.016), with no
other differences with α < 0.05 found. These are suggestive
findings, because if we use a correction for multiple comparisons,
the α becomes nonsignificant.
The subsequent random forest classification revealed that

compared with other markers including clinical and radiological
variables such as sex, gender, gestation age, length of stay in the
hospital, intensity change, and involvement on MRI, a DWIC
marker of log(S(i,j)) could achieve the highest accuracy to correctly
classify the follow-up motor outcomes, up to 89% without
SMVCCA, 92% with SMVCCA, and 99% with ranked SMVCCA
(Table 3). Of note, other markers had relatively lower accuracy
compared with log(S(i,j)), indicating the outperformance of DWIC
tract counts to differentiate malformed FOD functions affected by
perinatal white matter injuries and immaturities. The log(S(i,j))
provided the most substantial separation between abnormal tone
and death groups. The major finding of this study shows that we
fused the 19-dimensional data and got five eigen vectors as the
final “fused dimensions” using ranked SMVCCA. We could depict
just three of the five “fused dimensions” of the analysis (it is
impossible to depict four or five dimensions), and one can visually
identify high-risk populations from an MRI study of the eventual
outcome (Fig. 6). As denoted by each colored ellipse representing
the upper limit of the three fused-dimensional features to predict
each group at the confidence level of 99% (i.e., Z-score= 2.58

under the assumption of normal distribution), no spatial overlap of
the upper limit was found between every pair of three groups at
the confidence level of 99%, indicating complete separation of the
individual feature to predict three groups in the proposed feature
space. This suggests that the combined three fused-dimensional
statistic becomes a more powerful biomarker showing high
significance than individual DWIC outcomes, which may not reach
statistical significance due to multiple comparisons.

DISCUSSION
The major finding of this study is that a method using SMVCCA
can provide a predictive MRI of the possible eventual outcome, in
our case, the ranked SMVCCA. The other findings of the present
study are paradoxically increased edge strengths (log(S(i,j)),
reduced white matter integrity (FA), increased RD, and reduced
axonal density (FD) of the multiple white matter pathways in
abnormal tone and death groups compared to the control group
with normal tone. In the present study, DWIC and FBA of the
same dataset were compared to extract the most potent marker
for accurate prediction of long-term motor outcomes: normal
tone, abnormal tone, and death. We showed perinatal white
matter injuries and immaturities in forms of connectivity strength
and FD that were altered in the thalamocortical network,
including thalamus, posterior limb of the internal capsule, and
cerebellar peduncle. This work is the first to look at white matter
abnormalities at different formulations of DWI features (i.e., pair-
wise connection and fiber-specific bundle) that can further
improve long-term prediction in the framework of conventional
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Fig. 3 To the naked eye, three groups of 2-year outcomes can be differentiated by comparing the shapes of FOD functions in the
somatosensory motor system. Representative examples of fiber orientation distribution (FOD) functions estimated from two regions of
interest (ROI) by referring to the UNC neonatal T2-w template images, left lateral portion of the central sulcus and left superior temporal gyrus
of three postmenstrual MRI age-matched subjects, normal, abnormal motor and death (all at 1.3 weeks). Left column: FOD functions located in
the lateral portion of left central sulcus consisting of two AAL nodes, Ω1: left precentral gyrus (PreCG.L) and Ω57: left postcentral gyrus (PoCG.
L). Right column: FOD functions located in the lateral portion of left superior temporal gyrus consisting of two AAL nodes, Ω17: left Rolandic
operculum (ROL.L) and Ω81: left superior temporal gyrus (STG.L). Collectively, the total number of lobes, lobe orientation, and lobe size of each
FOD function appear to be higher, more inconsistent, and smaller in abnormal motor and death groups, compared with the normal group. A
cautionary note is that this phenomenon inevitably increases more spurious fiber streamlines in the framework of probabilistic tractography.
Random seeding per voxel continuously reproduces false-positive tracts by tracking false streamlines within a fixed constraint of angular
deviation (e.g., ≤70°).
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Table 2. Nineteen pair-wise connection edges, S(i,j) used to evaluate DWIC markers.

Edge Ωi Label Anatomy Ωj Label Anatomy

S(1,17) 1 PreCG.L Precentral gyrus left 17 ROL.L Rolandic operculum left

S(2,82) 2 PreCG.R Precentral gyrus right 82 STG.R Superior temporal gyrus right

S(10,42) 10 ORBmid.R Orbitofrontal cortex (middle) right 42 AMYG.R Amygdala right

S(12,40) 12 IFGoperc.R Inferior frontal gyrus (opercular) right 40 PHG.R ParaHippocampal gyrus right

S(14,84) 14 IFGtriang.R Inferior frontal gyrus (triangular) right 84 TPOsup.R Temporal pole (superior) right

S(17,39) 17 ROL.L Rolandic operculum left 39 PHG.L ParaHippocampal gyrus left

S(17,61) 17 ROL.L Rolandic operculum left 61 IPL.L Inferior parietal lobule left

S(24,30) 24 SFGmed.R Superior frontal gyrus (medial) right 30 INS.R Insula right

S(39,57) 39 PHG.L ParaHippocampal gyrus left 57 PoCG.L Postcentral gyrus left

S(39,85) 39 PHG.L ParaHippocampal gyrus left 85 MTG.L Middle temporal gyrus left

S(49,53) 49 SOG.L Superior occipital gyrus left 53 IOG.L Inferior occipital gyrus left

S(49,57) 49 SOG.L Superior occipital gyrus left 57 PoCG.L Postcentral gyrus left

S(57,65) 57 PoCG.L Postcentral gyrus left 65 ANG.L Angular gyrus left

S(57,67) 57 PoCG.L Postcentral gyrus left 67 PCUN.L Precuneus left

S(59,85) 59 SPG.L Superior parietal gyrus left 85 MTG.L Middle temporal gyrus left

S(61,81) 61 IPL.L Inferior parietal lobule left 81 STG.L Superior temporal gyrus left

S(61,85) 61 IPL.L Inferior parietal lobule left 85 MTG.L Middle temporal gyrus left

S(67,71) 67 PCUN.L Precuneus left 71 CAU.L Caudate left

S(86,88) 86 MTG.R Middle temporal gyrus right 88 TPOmid.R Temporal pole (middle) right
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Fig. 4 Trend for differentiating three groups of 2-year outcomes by comparing five DWIC markers that were measured from neural
pathways of interest. a Total 19 pair-wise connection edges, S(i,j), satisfying significant group difference by Wilcoxon rank-sum tests for three
comparisons: (1) normal vs. abnormal motor, (2) normal vs. death, and (3) abnormal motor vs. death (α < 0.05). Colored patch and streamline
tube indicate AAL node, Ωi, and exemplar pathway of S(i,j) connecting two patches, Ωi and Ωj. Anatomical labels of 90 AAL nodes and two
nodes of 19 edges are available in Supplementary Tables 1 and 2. b Each diffusivity measure was averaged in all tracts of 19 pair-wise
connection edges to define a 19-dimensional marker. Box-and-whisker plots, showing five DWIC markers: log(S(i,j)), significantly different for
all three comparisons (Šidák correction α= 0.0034 for multiple comparisons); FA, significantly different in all three comparisons; AD, only
significant in comparison two (normal vs. death); RD and ADC, in first two comparisons (normal vs. abnormal and vs. death).
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machine-learning classification. The altered connectivity strength
underlying the presence of FOD functions with noisy fiber tract
peaks having low lobe amplitudes was confirmed by a significant
reduction in white matter integrity (FA), myelination (RD), and
axonal volume (FD) measured in the same dataset. The FOD
functions with low lobe amplitudes may also reflect inadequate
myelination or a state resulting from inadequate crosstalk
between axons and oligodendroglia. Our neonatal marker log(S
(i,j)) was gradually increased in abnormal and death groups,
yielding a promising accuracy of the correct classification in the
framework of conventional machine-learning technique (e.g.,
89–99% for the test set, which was not included to train the
bagged ensemble of the regression tree). None of the other
markers or their combinations, including clinical and radiological
variables, differentiated between normal and abnormal tone and
death. Please note that the superior performance of log (S(i,j))
might be explained by the fact that other diffusivity markers were
evaluated from streamline tracts of S(i,j). A strategy to use other
diffusivity measures to preselect streamline tracts of interest (in
this study we used streamline count) may not necessarily be
better in differentiating between clinical outcomes. Only
when combining the various elements of the individual marker
using ranked SMVCCA, we found what could be considered a
useful biomarker. Our reasoning is that even with these small
numbers, we could clearly differentiate between the three
subpopulations.

The present study supports that the advanced DWI method
using DWIC and FBA has a strong potential to improve our ability
for early identification of heterogeneous imaging abnormalities
underlying white matter injuries and disrupted maturation
processes across different motor outcomes. Previous works25–28

have investigated age-related white matter development in
infants, mainly focusing on the voxel-wise measure of white
matter maturation reporting the effects of myelination and brain
water on increasing FA and decreasing mean diffusivity. The
efficacy of neonatal DWIC analysis to investigate the develop-
mental trajectory of whole-brain using different network topology
(more clustered pair-wise connection) has been used at 45 weeks
postconceptional age.29 The topological locality of structural brain
networks has been used to help predict neurobehavioral out-
comes such as Bayley-III cognitive and motor scores for preterm
infants (predictive correlation= 0.19 and 0.31 for cognitive and
motor score).30 Preterm infants when imaged at 38.6–47.1 weeks
and utilizing FBA found a relationship between fixel-based
measures (FD, FC, and FDC) with clinical risk factors in preterm,
such as positive correlation with gestational age and negative
correlation with days on requiring ventilation with FD, FC, and
FDC.29 This study also used a similar warping technique as ours.
The warping of FOD may yield different results by causing a local
shear and reduced number of fixels. Despite this limitation, when
warping is used without bias, it could still be useful in the
methodology in developing an objective biomarker. In a similar
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Fig. 5 Using α < 0.05, significant alterations of FOD functions underlying early hypoxic injuries were found in subcortical regions of
abnormal motor and death groups, including thalamus, posterior limb of internal capsule, and cerebellar peduncle. a Two TCFE analyses
of FD maps, (1) normal vs. abnormal motor and (2) normal vs. death, were performed to identify fixel clusters of interest showing significant
deviations from the normal tone group at corrected p < 0.05. Four clusters were found in two regions of the right thalamus (blue square box),
posterior limb of the internal capsule (red square box), and cerebellar peduncle (green square box). In each cluster, abnormal and death
groups showed more FOD changes with lobes being narrower and weaker compared with those of the normal tone group, leading to smaller
FD values in abnormal motor and death groups. b Box-and-whisker plots of FD marker obtained from the voxels of three clusters. Each box
indicates the sample range of 25th and 75th percentiles of each group. These are suggestive findings, because if we use a correction for
multiple comparisons, the α becomes nonsignificant.
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population as ours, using diffusion MRI at 6 months of age, there
was only a trend to declining brain network integration and
segregation with increasing neuromotor deficits following neona-
tal encephalopathy.31 DTI and functional MRI using a passive
motor task at 40 to 48 weeks’ postconceptional age following
perinatal brain injury showed FA and functional connectivity from
the right supplemental motor area to be predictive of cerebral
palsy at 2 years of age.32 The Neonatal Research Network MRI
pattern of neonatal brain injury was reported as a robust
biomarker of neurodevelopmental outcome at 6–7 years of
age.33 A recent large cohort study34 also reported that infants
with better neurodevelopmental outcomes at the 1- and two-year
follow-up showed higher FD, FC, and FDC in the corticospinal
tract, midbrain, and corpus callosum, which suggests better
information transfer capacity facilitated by an increased number
of neurons, increased myelination, thicker bundles, and/or
combinations.
Even though our study was retrospective in design, our MRI

analysis was done in a blinded fashion to the groups. We are fully
aware of the limitations of low statistical powered studies and the
bias to overestimated effect sizes35,36 and the need for more “n”
for machine learning. We were not expecting the clear differentia-
tion between the three populations with a difference between

bounds of 99% confidence intervals in Fig. 6. More studies and
replication in more significant numbers of samples are needed to
further establish whether these predictive prognostic markers will
remain differentiated between our patient groups. Using Big Data
approaches, we can now feed more data into this methodology.
Also, another limitation is that despite the exceptional potential of
clinical DWI data, it remains controversial whether current DWI
tractography techniques can accurately reconstruct macroscopic
structures of FOD functions and effectively remove false-positive
tracts at the low angular acquisition of water diffusion.37,38 Also,
CSD and FBA are problematic with our DWI data with b value=
800 s/mm2. Ideally, the b value should be high (e.g., ~2500–3000 s/
mm²) to reconstruct the FOD functions using CSD12 and measure
intra-axonal volume related to apparent FD.5,39 When considering
this practical problem, the proposed log(S(i,j)) marker might be
limited in its ability to investigate the detailed mechanism about
its biological origin. For instance, our preliminary data of abnormal
motor and death groups showed a paradoxical increase in edge
strength that may be related to the current pitfall of DWI
tractography and our data quality, more likely tracking the wrong
direction of the nearest fiber bundle at low spatial resolution.
Nonetheless, we presumed that this spurious tracking would
generate an exploratory marker that inevitably increases

Table 3. Mean and standard deviation of classification accuracy (Ac), sensitivity (Se), and specificity (Sp) obtained from the random forest algorithm
of the multidimensional marker and patient metavariable.

Modality Marker Without SMVCCA With SMVCCA With ranked SMVCCA

DWIC Log(S(i,j)) Ac 0.894 ± 0.158 (19) 0.923 ± 0.117 (4) 0.987 ± 0.058 (5)

Se 1.000 ± 0.000 (19) 1.000 ± 0.000 (4) 0.997 ± 0.033 (5)

Sp 0.888 ± 0.222 (19) 0.942 ± 0.158 (4) 1.000 ± 0.000 (5)

FA 0.476 ± 0.132 (19) 0.570 ± 0.197 (3) 0.444 ± 0.146 (1)

0.718 ± 0.215 (19) 0.748 ± 0.269 (3) 0.661 ± 0.279 (1)

0.163 ± 0.239 (19) 0.423 ± 0.337 (3) 0.198 ± 0.223 (1)

AD 0.411 ± 0.156 (19) 0.563 ± 0.158 (5) 0.437 ± 0.153 (3)

0.523 ± 0.236 (19) 0.667 ± 0.271 (5) 0.606 ± 0.271 (3)

0.119 ± 0.208 (19) 0.746 ± 0.322 (5) 0.283 ± 0.345 (3)

RD 0.393 ± 0.172 (19) 0.483 ± 0.154 (5) 0.360 ± 0.153 (7)

0.468 ± 0.275 (19) 0.532 ± 0.247 (5) 0.626 ± 0.337 (7)

0.357 ± 0.369 (19) 0.605 ± 0.388 (5) 0.323 ± 0.356 (7)

ADC 0.361 ± 0.147 (19) 0.477 ± 0.145 (6) 0.376 ± 0.166 (6)

0.454 ± 0.271 (19) 0.535 ± 0.241 (6) 0.590 ± 0.364 (6)

0.186 ± 0.259 (19) 0.607 ± 0.377 (6) 0.449 ± 0.441 (6)

FBA FD 0.641 ± 0.172 (3) 0.628 ± 0.166 (3) 0.650 ± 0.174 (3)

0.881 ± 0.184 (3) 0.844 ± 0.206 (3) 0.871 ± 0.205 (3)

0.442 ± 0.362 (3) 0.436 ± 0.386 (3) 0.443 ± 0.388 (3)

FC 0.327 ± 0.164 (3) 0.351 ± 0.150 (2) 0.300 ± 0.148 (3)

0.447 ± 0.342 (3) 0.474 ± 0.355 (2) 0.263 ± 0.238 (3)

0.599 ± 0.397 (3) 0.272 ± 0.327 (2) 0.510 ± 0.355 (3)

FDC 0.601 ± 0.156 (3) 0.517 ± 0.153 (3) 0.477 ± 0.160 (3)

0.853 ± 0.196 (3) 0.845 ± 0.202 (3) 0.843 ± 0.219 (3)

0.404 ± 0.375 (3) 0.283 ± 0.339 (3) 0.223 ± 0.326 (3)

Clinical variable Sex, GA, LOS 0.179 ± 0.112 (3) 0.183 ± 0.127 (2) 0.333 ± 0.156 (2)

0.059 ± 0.127 (3) 0.040 ± 0.093 (2) 0.378 ± 0.284 (2)

0.208 ± 0.298 (3) 0.130 ± 0.195 (2) 0.354 ± 0.358 (2)

Radiological variable Intensity change and involvement on MRI 0.520 ± 0.143 (13) 0.160 ± 0.263 (3) 0.641 ± 0.153 (2)

0.111 ± 0.274 (13) 0.147 ± 0.307 (3) 0.630 ± 0.315 (2)

0.285 ± 0.284 (13) 0.082 ± 0.180 (3) 0.736 ± 0.280 (2)

() indicates the dimension providing the highest accuracy for each multidimensional marker; values in bold show that log(S(i,j)) has the highest accuracy value
in each classification. Clinical and radiological variables of Table 1 were classified using the same classification algorithm for the comparison.
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false-positive tracts in constructing the edge of DWIC when the
FOD functions of neighboring bundles have more spurious peaks
with weak amplitudes as the ones from infants in the abnormal
motor and death groups.
In conclusion, continued and systematic investigation using

machine-learning techniques with clinical DWIC and FBA markers
may improve the early prediction of neonatal motor outcomes. It
may also allow identification of distinct patterns of white matter
injuries, allowing more rapid and targeted intervention for
improving long-term outcomes in term infants as a series of DWI-
based studies40–42 was consistently suggested to predict behavioral
profiles, cognitive abilities, and language functions at 1–2 years old.
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