Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brain proton magnetic resonance spectroscopy and neurodevelopment after preterm birth: a systematic review

Abstract

Background

Preterm infants are at risk of neurodevelopmental impairments. At present, proton magnetic resonance spectroscopy (1H-MRS) is used to evaluate brain metabolites in asphyxiated term infants. The aim of this review is to assess associations between cerebral 1H-MRS and neurodevelopment after preterm birth.

Methods

PubMed and Embase were searched to identify studies using 1H-MRS and preterm birth. Eligible studies for this review included 1H-MRS of the brain, gestational age ≤32 weeks, and neurodevelopment assessed at a corrected age (CA) of at least 12 months up to the age of 18 years.

Results

Twenty papers evaluated 1H-MRS in preterm infants at an age between near-term and 18 years and neurodevelopment. 1H-MRS was performed in both white (WM) and gray matter (GM) in 12 of 20 studies. The main regions were frontal and parietal lobe for WM and basal ganglia for GM. N-acetylaspartate/choline (NAA/Cho) measured in WM and/or GM is the most common metabolite ratio associated with motor, language, and cognitive outcome at 18–24 months CA.

Conclusions

NAA/Cho in WM assessed at term-equivalent age was associated with motor, cognitive, and language outcome, and NAA/Cho in deep GM was associated with language outcome at 18–24 months CA.

Impact

  • In preterm born infants, brain metabolism assessed using 1H-MRS at term-equivalent age is associated with motor, cognitive, and language outcomes at 18–24 months.

  • 1H-MRS at term-equivalent age in preterm born infants may be used as an early indication of brain development.

  • Specific findings relating to NAA were most predictive of outcome.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Liu, L. et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet 388, 3027–3035 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Panigrahy, A. et al. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome. Pediatr. Radiol. 42, 33–61 (2012).

    Article  Google Scholar 

  3. 3.

    Aarnoudse-Moens, C. S. et al. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 124, 717–728 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Saigal, S. & Doyle, L. W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371, 261–269 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Kerr-Wilson, C. O., Mackay, D. F., Smith, G. C. S. & Pell, J. P. Meta-analysis of the association between preterm delivery and intelligence. J. Public Health 34, 209–216 (2011).

    Article  Google Scholar 

  6. 6.

    de Kieviet, J. F. et al. Brain development of very preterm and very low-birthweight children in childhood and adolescence: a meta-analysis. Dev. Med. Child Neurol. 54, 313–323 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    van Noort-van der Spek, I. L., Franken, M. C. J. P. & Weisglas-Kuperus, N. Language functions in preterm-born children: a systematic review and meta-analysis. Pediatrics 129, 745–754 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Johnson, S. et al. Neurodevelopmental disability through 11 years of age in children born before 26 weeks of gestation. Pediatrics 124, e249–e257 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Moster, D., Lie, R. T. & Markestad, T. Long-term medical and social consequences of preterm birth. N. Engl. J. Med. 359, 262–273 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Smith, F. W. The value of NMR imaging in pediatric practice—a preliminary report. Pediatr. Radiol. 13, 141–147 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Johnson, M. A. et al. Clinical NMR imaging of the brain in children—normal and neurologic disease. Am. J. Neuroradiol. 4, 1013–1026 (1983).

    Google Scholar 

  12. 12.

    Groenendaal, F. & de Vries, L. S. Fifty years of brain imaging in neonatal encephalopathy following perinatal asphyxia. Pediatr. Res. 81, 150–155 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Moore, G. J. Proton magnetic resonance spectroscopy in pediatric neuroradiology. Pediatr. Radiol. 28, 805–814 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Kreis, R. et al. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 48, 949–958 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Roelants-van Rijn, A. M., van der Grond, J., Stigter, R. H., de Vries, L. S. & Groenendaal, F. Cerebral structure and metabolism and long-term outcome in small-for-gestational-age preterm neonates. Pediatr. Res. 56, 285–290 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Heerschap, A., Kok, R. D. & van den Berg, P. P. Antenatal proton MR spectroscopy of the human brain in vivo. Childs Nerv. Syst. 19, 418–421 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8, 336–341 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Law, M. et al. Guidelines for Critical Review of the Literature: Quantitative Studies, Vol. 14, 1–11 (McMaster University, 1998).

  19. 19.

    Cheong, J. L. et al. Altered posterior cingulate brain metabolites and cognitive dysfunction in preterm adolescents. Pediatr. Res. 79, 716–722 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Gasparovic, C. et al. The long-term effect of erythropoiesis stimulating agents given to preterm infants: a proton magnetic resonance spectroscopy study on neurometabolites in early childhood. Pediatr. Radiol. 48, 374–382 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Bapat, R., Narayana, P., Zhou, Y. & Parikh, N. Magnetic Resonance spectroscopy at term equivalent age in extremely preterm infants: association with cognitive and language development. Pediatr. Neurol. 51, 53–59 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Hyodo, R. et al. Magnetic resonance spectroscopy in preterm infants: association with neurodevelopmental outcomes. Arch. Dis. Child Fetal Neonatal Ed. 103, 238–244 (2018).

    Article  Google Scholar 

  23. 23.

    Phillips, J. P. et al. Anterior cingulate and frontal lobe white matter spectroscopy in early childhood of former very LBW premature infants. Pediatr. Res. 69, 224–229 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Simões, R. V. et al. Brain metabolite alterations in infants born preterm with intrauterine growth restriction: association with structural changes and neurodevelopmental outcome. Am. J. Obstet. Gynecol. 216, 1–14 (2017).

    Article  CAS  Google Scholar 

  25. 25.

    Tanifuji, S. et al. Temporal brain metabolite changes in preterm infants with normal development. Brain Dev. 39, 196–202 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Van Kooij, B. J. et al. Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants. Dev. Med. Child Neurol. 54, 260–266 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Groenendaal, F. et al. Early cerebral proton MRS and neurodevelopmental outcome in infants with cystic leukomalacia. Dev. Med. Child Neurol. 39, 373–379 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Hart, A. R. et al. Diffusion-weighted imaging and magnetic resonance proton spectroscopy following preterm birth. Clin. Radiol. 69, 870–879 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Kendall, G. S. et al. White matter NAA/Cho and Cho/Cr ratios at MR spectroscopy are predictive of motor outcome in preterm infants. Radiology 271, 230–238 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Podrebarac, S. K. et al. Antenatal exposure to antidepressants is associated with altered brain development in very preterm-born neonates. Neuroscience 7, 252–262 (2017).

    Article  CAS  Google Scholar 

  31. 31.

    Durlak, W. et al. Relationship between proton magnetic resonance spectroscopy of frontoinsular gray matter and neurodevelopmental outcomes in very low birth weight children at the age of 4. PLoS ONE 11, e0156064 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Chau, V. et al. Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology 81, 2082–2089 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Xu, D. et al. MR spectroscopy of normative premature newborns. J. Magn. Reson. Imaging 33, 306–311 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Akasaka, M. et al. Assessing temporal brain metabolite changes in preterm infants using multivoxel magnetic resonance spectroscopy. Magn. Reson. Med. Sci. 15, 187–192 (2016).

    PubMed  Article  Google Scholar 

  35. 35.

    Rademaker, K. J. et al. Neonatal hydrocortisone treatment related to 1H-MRS of the hippocampus and short-term memory at school age in preterm born children. Pediatr. Res. 59, 309–313 (2006).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Taylor, M. J. et al. Magnetic resonance spectroscopy in very preterm-born children at 4 years of age: developmental course from birth and outcomes. Neuroradiology 60, 1063–1073 (2018).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Inder, T. E. et al. Abnormal cerebral structure is present at term in premature infants. Pediatrics 115, 286–294 (2005).

    PubMed  Article  Google Scholar 

  38. 38.

    Augustine, E. M. et al. Can magnetic resonance spectroscopy predict neurodevelopmental outcome in very low birth weight preterm infants? J. Perinatol. 28, 611–618 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Bjartmar, C., Battistuta, J., Terada, N., Dupree, E. & Trapp, B. D. N-acetylaspartate is an axon-specific marker of mature White matter in vivo: a biochemical and immunohistochemical study on the rat optic nerve. Ann. Neurol. 51, 51–58 (2002).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Birken, D. L. & Oldendorf, W. H. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci. Biobehav. Rev. 13, 23–31 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Braissant, O. et al. Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev. Biol. 5, 9 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Pouwels, P. J. et al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr. Res. 46, 474–485 (1999).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Zeisel, S. H., Char, D. & Sheard, N. F. Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. J. Nutr. 116, 50–58 (1986).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Brandon, E. P. et al. Choline transporter 1 maintains cholinergic function in choline acetyltransferase haplo insufficiency. J. Neurosci. 24, 5459–5466 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Stork, C. & Renshaw, P. F. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol. Psychiatry 10, 900–919 (2005).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Howe, F. A. et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 49, 223–232 (2003).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Miller, B. L. A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate,creatine and choline. NMR Biomed. 4, 47–52 (1991).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Licata, S. C. & Renshaw, P. F. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann. NY Acad. Sci. 1187, 148–171 (2010).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Richards, T. L. Proton MR spectroscopy in multiple sclerosis: value in establishing diagnosis, monitoring progression, and evaluating therapy. Am. J. Roentgenol. 157, 1073–1078 (1991).

    CAS  Article  Google Scholar 

  50. 50.

    Berry, G. T. Is prenatal myo-inositol deficiency a mechanism of CNS injury in galactosemia? J. Inherit. Metab. Dis. 34, 345–355 (2011).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Lien, Y. H., Shapiro, J. I. & Chan, L. Effects of hypernatremia on organic brain osmoles. J. Clin. Invest. 85, 1427–1435 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Thurston, J. H., Sherman, W. R., Hauhart, R. E. & Kloepper, R. F. Myo-inositol: a newly identified nonnitrogenous osmoregulatory molecule in mammalian brain. Pediatr. Res. 26, 482–485 (1989).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Isaacks, R. E., Bender, A. S., Kim, C. Y., Prieto, N. M. & Norenberg, M. D. Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem. Res. 19, 331–338 (1994).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Robertson, N. J. et al. Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr. Res. 50, 692–700 (2001).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Xu, D. & Vigneron, D. Magnetic resonance spectroscopy imaging of the newborn brain-a technical review. Semin. Perinatol. 34, 20–27 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Barkovich, A. J. et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. Am. J. Neuroradiol. 20, 1399–1405 (1999).

    CAS  PubMed  Google Scholar 

  57. 57.

    Cheong, J. L. et al. Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. Am. J. Neuroradiol. 27, 1546–1554 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Barkovich, A. J. et al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. Am. J. Neuroradiol. 27, 533–547 (2006).

    CAS  PubMed  Google Scholar 

  59. 59.

    Miller, S. P. et al. Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr. Res. 52, 71–77 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Shu, S. K., Ashwal, S., Holshouser, B. A., Nystrom, G. & Hinshaw, D. B. Prognostic value of 1H-MRS in perinatal CNS insults. Pediatr. Neurol. 17, 309–318 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Groenendaal, F. et al. Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated fullterm neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr. Res. 35, 148–151 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Robertson, N. J. et al. Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr. Res. 46, 287–296 (1999).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Thayyil, S. et al. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 125, 382–395 (2010).

    Article  Google Scholar 

  64. 64.

    Coyle, J. T. The glutamatergic dysfunction hypothesis for schizophrenia. Harv. Rev. Psychiatry 3, 241–253 (1996).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Ueda, Y. et al. Collapse of extracellular glutamate regulation during epileptogenesis: downregulation and functional failure of glutamate transporter function in rats with chronic seizures induced by kainic acid. J. Neurochem. 76, 892–900 (2001).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Nguyen, L. et al. Neurotransmitters as early signals for central nervous system development. Cell Tissue Res. 305, 187–202 (2001).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Manev, H., Favaron, M., Guidotti, A. & Costa, E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol. Pharmacol. 36, 106–112 (1989).

    CAS  PubMed  Google Scholar 

  68. 68.

    Fein, G. & Meyerhoff, D. J. Ethanol in human brain by magnetic resonance spectroscopy: correlation with blood and breath levels, relaxation, and magnetization transfer. Clin. Exp. Res. 24, 1227–1235 (2000).

    CAS  Article  Google Scholar 

  69. 69.

    Gruetter, R. et al. Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J. Magn. Reson. 135, 260–264 (1998).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Cheong, J. L. Y. et al. Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury:metabolite peak-area ratios, relaxation times, and absolute concentrations. Am. J. Neuroradiol. 27, 1546–1554 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Provencher, S. W. Automatic quantitation of localized in vivoH 1 spectra with LCModel. NMR Biomed. 14, 260–264 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Moore, G. J. Proton magnetic resonance spectroscopy in pediatric neuroradiology. Pediatr. Radiol. 28, 805–814 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Anderson, P. J., Cheong, J. L. & Thompson, D. K. The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Semin. Perinatol. 39, 147–158 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Smyser, C. D., Kidokoro, H. & Inder, T. E. Magnetic resonance imaging of the brain at term equivalent age in extremely premature neonates. J. Paediatr. Child Health 48, 794–800 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Inder, T. E. et al. Defining the nature of the cerebral abnormalities in the premature infant: aqualitative magnetic resonance imaging study. J. Pediatr. 143, 171–179 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Kidokoro, H., Neil, J. J. & Inder, T. E. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. Am. J. Neuroradiol. 34, 2208–2214 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Volpe, J. J. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Bax, M., Tydeman, C. & Flodmark, O. Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA 296, 1602–1608 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Himpens, E. et al. Prevalence, type, distribution, and severity of cerebral palsy in relation to gestational age: a meta- analytic review. Dev. Med. Child Neurol. 50, 334–340 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Spittle, A. J. et al. Neonatal white matter abnormality predicts childhood motor impairment in very preterm children. Dev. Med. Child Neurol. 53, 1000–1006 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Riddle, A. et al. Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J. Neurosci. 26, 3045–3055 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Peterson, B. S. et al. Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics 111, 939–948 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Soria-Pastor, S. et al. Decreased regional brain volume and cognitive impairment in preterm children at low risk. Pediatrics 124, 1161–1170 (2009).

    Article  Google Scholar 

  84. 84.

    Peterson, B. S. et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284, 1939–1947 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Anderson, P. & Doyle, L. W. Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 289, 3264–3272 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Woodward, L. J. et al. Object working memory deficits predicted by early brain injury and development in the preterm infant. Brain 128, 2578–2587 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Beauchamp, M. H. et al. Preterm infant hippocampal volumes correlate with later working memory deficits. Brain 131, 2986–2994 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Leviton, A. & Gressens, P. Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci. 30, 473–478 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Carpenter, K. L. H. et al. Magnetic susceptibility of brain iron is associated with childhood spatial IQ. Neuroimage 132, 167–174 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Srinivasan, L. et al. Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images. Pediatrics 119, 759–765 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Pierson, C. R. et al. Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol. 114, 619–631 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Baillieux, H., De Smet, H. J., Paquier, P. F., De Deyn, P. P. & Marien, P. Cerebellar neurocognition: insights into the bottom of the brain. Clin. Neurol. Neurosurg. 110, 763–773 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Tavano, A. et al. Disorders of cognitive and affective development in cerebellar malformations. Brain 130, 2646–2660 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Limperopoulos, C. et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 120, 584–593 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Limperopoulos, C. et al. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 116, 717–724 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Bednarek, N. et al. Outcome of cerebellar injury in very low birth-weight infants: 6 case reports. J. Child Neurol. 23, 906–911 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Tam, E. W. et al. Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome. J. Pediatr. 15, 245–250 (2011).

    Article  Google Scholar 

  98. 98.

    Annink, K. V. et al. Introduction of ultra-high-field MR imaging in infants: preparations and feasibility. Am. J. Neuroradiol. 41, 1532–1537 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Alderliesten, T. et al. MRI and spectroscopy in (near) term neonates with perinatal asphyxia and therapeutic hypothermia. Arch. Dis. Child Fetal Neonatal Ed. 102, F147–F152 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Tkáč, I., Öz, G., Adriany, G., Uǧurbil, K. & Gruetter, R. In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn. Reson. Med. 62, 868–879 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. 101.

    Cudalbu, C., Mlynárik, V. & Gruetter, R. Handling macromolecule signals in the quantification of the neurochemical profile. J. Alzheimer’s Dis. 31, 101–115 (2012).

    Article  CAS  Google Scholar 

  102. 102.

    Wilson, M. et al. Methodological consensus on clinical proton MRS of the brain: review and recommendations. Magn. Reson. Med. 82, 527–550 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Near, J. et al. Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts’ consensus recommendations. NMR Biomed. https://doi.org/10.1002/nbm.4257 (2020).

  104. 104.

    Lin, A. et al. Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): experts’ consensus recommendations. NMR Biomed. https://doi.org/10.1002/nbm.4484 (2021).

Download references

Acknowledgements

A grant from the “Stichting Neonatale Neurologie Utrecht” (www.snnu.nl) was received to cover the publication costs.

Author information

Affiliations

Authors

Contributions

B.C., F.G., A.v.d.H., and T.A.: substantial contributions to conception and design; B.C., F.G., and A.v.d.H.: acquisition of data; B.C., T.A., J.P.W., A.v.d.H., F.G.: analysis and interpretation of data; B.C. and F.G.: drafting the article or revising it critically for important intellectual content; all authors: final approval of the version to be published.

Corresponding author

Correspondence to Floris Groenendaal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cebeci, B., Alderliesten, T., Wijnen, J.P. et al. Brain proton magnetic resonance spectroscopy and neurodevelopment after preterm birth: a systematic review. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01539-x

Download citation

Search

Quick links