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Early development of sleep and brain functional connectivity
in term-born and preterm infants

Julie Uchitel', Sampsa Vanhatalo®® and Topun Austin'*

The proper development of sleep and sleep-wake rhythms during early neonatal life is crucial to lifelong neurological well-being.
Recent data suggests that infants who have poor quality sleep demonstrate a risk for impaired neurocognitive outcomes. Sleep
ontogenesis is a complex process, whereby alternations between rudimentary brain states—active vs. wake and active sleep vs. quiet
sleep—mature during the last trimester of pregnancy. If the infant is born preterm, much of this process occurs in the neonatal
intensive care unit, where environmental conditions might interfere with sleep. Functional brain connectivity (FC), which reflects the
brain’s ability to process and integrate information, may become impaired, with ensuing risks of compromised neurodevelopment.
However, the specific mechanisms linking sleep ontogenesis to the emergence of FC are poorly understood and have received little
investigation, mainly due to the challenges of studying causal links between developmental phenomena and assessing FC in newborn
infants. Recent advancements in infant neuromonitoring and neuroimaging strategies will allow for the design of interventions to
improve infant sleep quality and quantity. This review discusses how sleep and FC develop in early life, the dynamic relationship

between sleep, preterm birth, and FC, and the challenges associated with understanding these processes.

Pediatric Research (2022) 91:771-786; https://doi.org/10.1038/s41390-021-01497-4

IMPACT:

® Sleep in early life is essential for proper functional brain development, which is essential for the brain to integrate and process
information. This process may be impaired in infants born preterm.

® The connection between preterm birth, early development of brain functional connectivity, and sleep is poorly understood.

® This review discusses how sleep and brain functional connectivity develop in early life, how these processes might become
impaired, and the challenges associated with understanding these processes. Potential solutions to these challenges are

presented to provide direction for future research.

INTRODUCTION

Sleep is essential for life. It serves multiple purposes for ensuring
brain health, including memory consolidation, emotional proces-
sing, and most importantly, maintaining neural networks and
synaptic plasticity."™ Sleep begins to develop in early fetal life,
during which it is described as an alternation in behavioral
states.>™” Poor quality sleep in the fetal and neonatal period is
associated with lifelong developmental consequences. Sleep in
early life is not only physiologically crucial,®'* but also may be
used as a contextual framework to understand the early
organization of brain networks, and even the effects of medical
adversities on later neurodevelopment.

Sleep and brain development may be disrupted in early life if
infants are born preterm. Preterm infants are often admitted to
neonatal intensive care units (NICUs), where they are exposed to
environmental conditions that interrupt sleep.””2' As such, dis-
rupted sleep in this period can be both the cause and the effect of
neurodevelopmental impairments,'®'**%?3 as supported by studies
of neonatal sleep deprivation in animal models.>* Moreover,
preterm birth has a significant impact on neurodevelopment across

the life span.?’~° Studying sleep development (sleep ontogenesis) in
preterm infants, therefore, provides a unique opportunity to
investigate the relationship between disrupted sleep and potential
impairments in early neurodevelopment.

Early brain development and relative maturation can be
investigated by studying functional brain connectivity (FC), which
reflects the functional integration of different brain regions."*2
Formally, FC is defined as a type of statistical relationship (usually a
correlation) between brain areas that describes their related activity.
These related areas are therefore described as functional brain
networks, or functional connectivity networks (FCNs).337¢ Large-scale
correlations in FCNs are associated with all cognitive functions,*”>®
including sleep,®® and are also tightly linked to sleep states. 33 It is,
therefore, essential in the study of the development of large-scale
functional brain networks to understand sleep ontogenesis and its
disturbances. The presence of FCNs has been described both in
term-born and preterm infants, and alterations in network develop-
ment are associated with prematurity.”**> Therefore, alongside
the developmental emergence of sleep states, the appropriate
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Fig. 1 Relationship between preterm birth, sleep ontogenesis,
and functional brain connectivity. The relationship between these
three processes is currently unclear.

development of their neuronal underpinnings, such as FC patterns, in
early life appears important for later neurocognitive outcomes.

In recent years, several technological advances in neurophysiolo-
gical brain monitoring and functional neuroimaging have allowed for
more detailed investigations into neonatal FC and early sleep
development 3*3*451 As pointed out in this review, it is challenging
to study the causal relationships between preterm birth, sleep
impairments, and development of brain FC (Fig. 1). In the first part of
this review, we provide an overview of sleep ontogenesis, from early
fetal life to birth, and the impact of preterm birth on this process. We
then go on to discuss neonatal FC development within the context
of sleep states and its associated challenges, before describing
studies that have specifically investigated neonatal FC in the context
of sleep and/or preterm birth. Finally, current research challenges are
discussed, as well as new technological and methodological
innovations that hold promise for future research.

This review article is a systematized review, which includes
elements of the systematic review process without meeting all of
the standards, given the broad nature of this topic. To identify
studies relevant to this topic, we used the following search
strategies in PubMed and SCOPUS. (1) ((functional connectivity)
OR (resting-state functional connectivity)) AND ((newborn) OR
(neonate) OR (preterm)) AND ((sleep) OR (sleep state)); (2) (fMRI)
AND ((resting-state functional connectivity) OR (functional con-
nectivity)) AND (infant) AND (sleep); (3) (fNIRS) AND ((resting-state
functional connectivity) OR (functional connectivity)) AND (infant)
AND (sleep). All resulting EEG and fNIRS studies were included in
Tables 2 and 3. fMRI studies were not included as nearly all infant
fMRI studies are conducted during sleep, yet none take into
account the effect of sleep state. The text includes the findings of
the most relevant studies that are exemplary of the current state
of the literature. Additional literature is also presented to provide
background for the reader on the development of sleep states,
the control of sleep-wake cycling, the impact of preterm birth on
sleep ontogenesis, and FC analysis.

SLEEP ONTOGENESIS

Basic principles

Development of brain networks to support sleep. Sleep ontogen-
esis coincides with structural and functional brain development.
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Structural brain organization is an activity-dependent process
where neuronal function shapes the growth, organization, and
survival of brain structures.® Therefore, neuronal interactions, or
functional connections, evolve together with the growth of brain
networks (Fig. 1). From the 24th week of gestational age (GA) to
term-equivalent age of 40 weeks GA, the major events in neural
network development are (1) growth of thalamocortical connec-
tions, (2) growth of long-range cortico-cortical connections, (3)
growth of short cortico-cortical connections, and (4) pruning of
connections based on initial endogenous, and then subsequent
exogenous activity.>®> Ascending thalamic afferents penetrate the
subplate and deeper cortical layers at around 24-26 weeks
GA,”>** reaching their final destinations in cortical layer IV during
the following month. The six cytoarchitectonic layers of the cortex
continue to develop until about the 34th week of gestation, and
long cortico-cortical connections, including interhemispheric
callosal projections, are mostly established by 35 weeks GA.>

These major events in structural development are intimately
linked to functional brain development.>? Endogenous activity, or
spontaneously occurring brain activity, provides the temporal and
spatial cues needed to link fibers from distant brain areas.”>>® For
instance, during the primary organization of thalamocortical
circuitry, spontaneous activity in the sensory organs, such as the
retina or cochlea, provides input to sensory cortices. This activity-
dependent, but experience-independent period differs from later
experience-dependent fine-tuning of cortical networks, whereby
sensory organ responses to environmental stimuli drive cortical
activation.>

Very early cortical activity can be detected by electroencepha-
lography (EEG), which measures spontaneously occurring elec-
trical signals via scalp electrodes, even from the earliest viable
preterm infants younger than 24 weeks GA.>” This early cortical
activity is discontinuous (tracé discontinue), characterized by
periods of relative quiescence interspersed with self-organizing,
locally generated bursts (spontaneous activity transients,
SATs).>®>° Early SATs are crucial for neuronal survival and for
guiding the activity-dependent/experience-independent growth
of brain networks, both in utero (endogenous activity) and ex utero
(exogenous activity).”®® In preterm infants around 30 weeks GA,
brain-wide synchrony in bursting activity can be detected via EEG,
before the emergence of cortico-cortical connections, suggesting
that the occurrence of brain-wide bursts is orchestrated by deep
subcortical  structures®® The growth of cortico-cortical
connections>**? is paralleled by the emergence of functional
interhemispheric and intra-hemispheric synchronization, which
increase rapidly from about the 30th to 35th week GA.®° However,
the relative maturity or functional brain age®' can be affected by
many events, including the process of birth itself®> and medical
adversities.5'3

Development of sleep states. Sleep states in the human fetus are
expressed as different behavioral states during the very earliest
weeks of development,®”%* driven by activity from deeper brain
structures.®®> Over time, vigilance states become behaviorally and
on EEG more distinct (Table 1). From the 30th week GA, following
the growth of long-range brain connections, EEG activity patterns
begin to fluctuate more clearly between sleep states in the
preterm infant (Fig. 2).5765

In the newborn, infant sleep is divided into two distinct states,
active sleep (AS) and quiet sleep (QS).5%%” These are often thought
of as precursors to REM and non-REM sleep, respectively, and are
characterized by a constellation of EEG and behavioral patterns.®®
After birth, newborn EEG phenomena persist for only a few weeks.
First, the intermittent EEG activity of QS is replaced by a slow-wave
activity, and then sleep spindles emerge. The phenomenology of
neonatal EEG lasts up to about 45-50 wks post-menstrual age,
which is about 1-2 months after term age.®® Some authors also
recognize an intermediate state,°®° which shows less clearly
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Fig. 2 The parallel development of sleep, functional networks, and structural networks in the developing brain. Each row provides
approximate time points of major markers in sleep, structural, and functional development. These three processes develop concurrently and
interdependently, such that impairments in any one of these processes may potentially affect the development of the other two.

differentiated patterns of either sleep state. AS and QS are
primarily used to describe behavioral features of sleep, but they
are less well understood from the perspective of brain network
dynamics.3*>7°

Control of sleep-state cycling. Sleep-state cycling (or sleep-wake
cycling, SWQ) refers to the natural fluctuations between the wake
and sleep states. SWC is controlled by three major systems in the
brain: (1) the circadian rhythm,”" (2) sleep pressure from
adenosine buildup in the basal forebrain,”> and (3) brain stem-
based mechanisms that drive ultradian fluctuations in vigilance
states.”>”* Circadian rhythms emerge with the development of
the suprachiasmatic nucleus (SCN), the site of the circadian
pacemaker®’, and clock gene oscillations.”> Brain stem structures,
particularly in the upper pons,’® are fundamental for SWC via their
brain-wide projections, which in turn also make them important
for the dynamics of large-scale FCNs. In infants, SWC is mostly
driven by ultradian rhythms and brain stem regulation, as
circadian rhythms only develop during the first few months after
term age.”” Brain stem-based regulation of infants’ SWC have
been previousléy investigated as a measure for assessing global
brain function.®>”®

The impact of preterm birth on sleep ontogenesis
Studies suggest that preterm birth is independently associated
with impaired structural brain development.”?2 Preterm born
infants also demonstrate impaired sleep architecture, decreased
sleep efficiency, and abnormal sleep patterns relative to their
term-born counterparts at birth,%*> at comparable post-conceptual
ages,®* as older infants,®358¢ and as children.'#”~%? However, one
study has reported no difference in sleep behavior over time.*®
These observed impaired sleep patterns in preterm infants may
be due to a variety of factors. These infants often spend their
earliest days of life in NICUs, where stressful conditions may
interfere with spontaneous fluctuation through sleep states.'”
Procedures in the NICU, such as changing light or sound levels,
and medical testing (e.g., line insertion, blood sampling, clinical
examination, and radiological procedures) can all affect infant

SPRINGERNATURE

sleep.”>'® Handling of infants can lead to arousal and disturb
respiration, particularly during AS.'® Some NICUs have implemen-
ted clustered care protocols to minimize these burdens,”*? and
others have aimed to provide various kinds of sensory enrichment,
such as physical contact.'® Moreover, pathology associated with
prematurity, such as bronchopulmonary dysplasia or severe
intraventricular hemorrhage, may also affect sleep behavior.”>*

It is clear that prematurity impacts both sleep architecture and
neurodevelopment, but the nature of their causal or multi-
dimensional relationships is poorly understood (Fig. 1). Studies of
FC in the newborn brain have shed some light on how sleep states
may influence brain function, and how this process may differ for
infants born prematurely.

NEONATAL FUNCTIONAL CONNECTIVITY

Basic principles of measuring functional connectivity

Identifying FCNs. ~ FCNs are identified from temporal correlations
of neurophysiological events between spatially remote regions of
the brain. Functional magnetic resonance imaging (fMRI) or
functional near-infrared spectroscopy (fNIRS) can be used to
measure fluctuations in regional brain blood flow and oxygena-
tion.>2 fMRI assesses changes in regional blood flow via changes in
the blood oxygen level-dependent (BOLD) signal,”> while fNIRS
relies on near-infrared light (650-950 nm) and the wavelength-
dependent absorption characteristics of hemoglobin to measure
regional changes in cortical oxygenation levels.®®®” Alternatively,
as stated above, EEG can measure correlations in electrical cortical
activity.>*73® FCNs are well documented in adult fMRI studies and
are named according to their functional entities: motor function,
visual processing, executive functioning, auditory processing,
memory, and the default-mode network (DMN).?®7'%°  fMRI
studies have also highlighted the emergence of primary functional
systems very early on in utero,'°’"'% in term-born and preterm
infants*®*> as well as the development of some higher-order
functional systems (e.g., the DMN) after birth.'”” FCNs can be
identified during task-based studies or during rest. FCNs identified
during rest are referred to as resting-state networks (RSNs). Many

Pediatric Research (2022) 91:771-786
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Fig. 3

Identifying, analyzing, and interpreting FCNs. The choice of modality determines whether a hemodynamic or an electrical response

will be recovered. From recordings, functional connectivity matrices are computed from statistical relationships between each possible
pairwise combination of signals. Network analysis can then be performed to describe statistical relationships between brain areas in terms of
networks.3*'%%116 Graph theoretical modeling is shown here as an example. In this method, each brain region/cortical area is considered a
node, and the relationship between regions (i.e., EEG phase coherence) is considered an edge.'® More highly weighted edges represent
stronger functional connections. All nodes and edges in the brain together form a topological network that can be characterized in terms of

local and global attributes.

infant fMRI studies use the term RSNs or resting-state functional
connectivity (RSFC) to describe infant FC, given that infant fMRI
can only be performed during sleep.

Analyzing and interpreting FCNs. At the most basic level, FCNs are
obtained by computing statistical relationships between all pairs
of time-series signals (Fig. 3). The resulting FC matrices are then
analyzed using a variety of higher-level statistical techniques to
summarize network information. One recently popular approach
to compress various aspects of network structure is graph
theoretical measures,®""'%'% as previously applied to neuroima-
ging/EEG studies involving infants.>% %1192 However, it is often
difficult to interpret their results physiologically,' > particularly
given the maturational changes in physiology and anatomy in the
newborn.''® Other network metrics have been recently intro-
duced,""®""® and have been shown to provide novel insight into
human infant studies.>® Importantly, these network metrics make
network neuroscience clinically useful as they allow comparison to
brain structures, physiological states, or clinical information.
There are many complex challenges in the analysis and
interpretation of FCN results: First, the choice of neuroimaging
modality (EEG vs. fMRI vs. fNIRS), as well as the analysis pipeline
applied to the data, will significantly impact the results."'®'2° As
such, FCNs identified with different modalities or different analytic
pipelines are difficult to compare physiologically. Second, an FCN
typically consists of thousands of interactions in an individual, and
a large number of co-existing networks can be identified within an
individual (e.g., different coupling modes, and different frequen-
cies®). It is therefore often useful to reduce the dimensions of
information by extracting summary metrics, which may, however,
reduce the importance of certain features in the data. Third, FCNs
are usually reported as static phenomena, yet studies suggest that
they are highly dynamic, changing at a sub-second scale and with

Pediatric Research (2022) 91:771-786

multiple different networks (“multiplex networks”) concurrently
active,'?'124

Challenges to studying FCNs in newborns
In the newborn, FCNs are most commonly studied during sleep, as
data obtained during wakefulness is usually corrupted by move-
ment artifacts. Recent evidence shows, however, that the typical
practice of recording infants during “natural sleep” or “unsedated
sleep” (Tables 2 and 3) may not be appropriate, since newborn
sleep is physiologically heterogeneous and each sleep state is
associated with a different FCN structure.>>°%7° |n addition, FCN
changes between sleep states might represent a developmentally
important marker in itself,>* perhaps reflecting the brain’s
flexibility, or ability, to switch network configurations between
sleep states. FCN structure is also affected by prematurity,'?>~'°
and these changes are further dependent on sleep state.>

For studies that do consider the effects of sleep, studies often
differ in the criteria they use to characterize sleep. For instance,
some EEG studies rely on purely behavioral criteria,*64%'3%13!
while others use more comprehensive approaches of polygraphic
channels (EEG, EMG, ECG, EOG).”>"7° fNIRS studies have used EEG
to distinguish between sleep states,** but other studies have also
assessed infants during “natural sleep” or described infants as
“behaviorally inactive”.'*>'3** To date, no fMRI studies have
distinguished between sleep states.

PRETERM BIRTH AND SLEEP STATE-RELATED CHANGES IN FC
Review of studies

fMRI studies. To date, all newborn fMRI studies have examined FC
during the physiologically heterogeneous state of “natural sleep”
or “unseated sleep”, rather than considering AS and QS separately.
As such, this article will only comment on some fMRI studies
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conducted during sleep to provide a reader with an overview of
the current state of the field.

Prior fMRI studies carried out during “natural sleep” or
“unseated sleep” have reported weaker FCN strength (i.e., lower
spatial correlations between brain areas) in preterm born infants
compared to term-born controls. Brain areas that were reported to
have weaker FCNs are diverse, ranging from areas involved in
motor function,** to regions associated with motor, cognitive,
language, and executive functions,’?® or frontal cortex and basal
ganglia.'*” These findings may be linked to the motor or other
impairments observed in preterm infants without structural brain
lesion,*>™"37 or linked to changes in microstructural connectivity
in the preterm brain.'*®"3° Network analysis using graph-
theoretical measures’'®® (Fig. 3) have shown many additional
effects of prematurity. For instance, studies have shown that
prematurity may affect functional segregation (which reflects local
information processing and amount of nodal clustering),’*® small-
world topology (a measure of the balance between the
segregation of nodes into distinct clusters vs. integration of nodes
into more globally efficient networks),'?*'?® modular organization
(modules consist of functionally related nodes that serve similar
roles, modular organization implies dense intra-modular and
sparse intra-modular connectivity),'?® and rich club measures
(highly connected regions of the brain are more highly connected
to one another).'°*'?® However, there is a notable spatial diversity
in the reported findings, and even opposite effects have been
reported.'' This suggests that more studies are needed to fully
establish the effects of prematurity on fMRI-derived networks, and
perhaps investigate the effect different sleep states may have on
these networks.

EEG studies. Infant FCN studies using EEG have shown robust
differences in FCN structure between sleep states,>® irrespective of
coupling mode (phase synchrony vs. amplitude correlation) or
level of inspection (sensor vs. cortex level signals). Comparison of
infants born preterm vs. term have shown a development-
dependent shift from functionally integrated networks to func-
tionally segregated networks,>®''? frequency-specific effects on
coherence,* and changes in frontally projecting FCNs as a result
of prematurity'*? or NICU care interventions (Table 3)."*' Studies
employing graph measures to summarize infant FCNs have shown
a relationship between network organization and GA or brain
injury,''® as well as the later neurodevelopmental outcome.'™®
More advanced methods of network-based statistics have shown
that prematurity affects the FCN dynamics in a frequency-specific
and spatially selective manner, and the sleep state-related
dynamics of these networks also correlate with later neurodeve-
lopmental outcomes.**

fNIRS studies. Several prior studies have used fNIRS to investigate
infant FCNs.'2%134143-1%5 Of the three prior studies that assessed
for the effects of sleep on FCNs using fNIRS, two did not
distinguish between AS and QS."*%"** Only one study assessed for
the effects of neonatal sleep states on FC, using a used a
combined fNIRS-EEG system with fNIRS to assess FC and EEG to
assess sleep state.3* Stronger interhemispheric FC was observed
during AS than QS, whereas within hemisphere short-range FC
was enhanced during QS relative to AS.

Current needs and challenges

Despite recent progress in understanding the dependency of
FCNs on sleep states, several challenges prevent a more detailed
investigation into the immediate and long-term effects of preterm
birth, impairments in FC, and disrupted sleep ontogenesis, as well
as how they relate to each other.

Challenges in methods to assess sleep. All recording modalities
have their own significant drawbacks.*® While EEG is a direct
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measure of neural activity with a high temporal resolution, it
suffers from lower spatial resolution, although this may be
improved by increasing electrode count and transforming signals
into cortical sources.>*'*? The blood flow-dependent measures
fMRI and fNIRS have higher spatial resolution than EEG, but their
temporal resolution is lower, as their signals reflect the slower
vascular response.'” Both methods assume that regional blood
flow is consistently linked to neuronal activity (neurovascular
coupling, NVC), an assumption that may not hold in early
infancy.'*®'*° Physiological measures have also been employed
to assess sleep states, including heart rate-based indices, breath-
ing patterns, and motion."*'~">* However, very few studies have
attempted to validate these methods in classifying preterm infant
sleep in NICU environments.'>* Moreover, behavioral measures to
assess sleep states require significant human resources and also
have limited feasibility in longer-term sleep monitoring. Poly-
somnography may provide a more cohesive picture of sleep
states, yet it requires long periods of time and is often difficult to
perform in vulnerable populations. Overall, there is no consensus
or gold standard for assessing sleep states in the NICU, and studies
tend to consider what measures are most appropriate to their
unique circumstances.

Methodological challenges unique to infants. Additional practical
challenges arise within the infant population. First, FCN studies
require long-duration recordings, which may not be feasible using
fMRI in vulnerable neonatal populations. Second, subject motion,
which often occurs in infants, even while sleeping, can make data
interpretation difficult.’> In some cases, light sedation may be
used,'®® but these may have unknown effects on sleep networks.
EEG is more feasible in infants, but primarily for low-density
systems, which cannot fully capture whole-brain functional
interactions. Finally, the varied neurovascular response in the
developing brain presents a particular challenge to interpreting
FCN results from infant fMRI or fNIRS studies.*'"**'>” Preterm
infants demonstrate altered relationships in neurovascular
coupling,'*®1%° especially when affected by brain injury,'®'%°
making it difficult to draw inferences from results.

Challenges in comparability across methods. As noted above, the
lack of comparability across modalities, and even across studies
using the same recording modality, presents major challenges.
The fundamental difference in brain mechanisms underlying EEG
and fMRI/fNIRS-based FCNs makes their direct comparison
difficult. Moreover, the analytical pipelines in generating FCNs
are convoluted, and changes in analytical parameters may have
impact results. Such technical instability might be a source of
significant variability across studies (see the section “Preterm birth
and sleep state-related changes in FC”).

Challenges to longitudinal studies of FCN and natural sleep. There
is currently a limited number of longitudinal and cross-sectional
studies assessing FCNs and sleep in preterm and term-born infants
(Tables 1 and 2). Such studies are logistically challenging, yet they
provide much-needed insight into individual developmental
trajectories. These data can overcome issues related to the high
interindividual variability of FCN studies, while also allowing for an
improved understanding of the long-term clinical course of
abnormalities in sleep behavior and their related FCNs.

Challenges in defining causal links between sleep, FCN, and early
development. It is clear that the development of sleep and FCNs,
and the effects of prematurity are related (Fig. 2). The results of
current studies suggest that this relationship poses a “chicken-
and-egg” problem, where one cannot exist and develop without
the other, but studying such causal links is not possible by using
standard experimental paradigms. For clinicians, it is perhaps
more important to focus on studying how these co-existing
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developmental processes may become derailed during early life
medical adversities, how these impairments can lead to long-term
problems in neurocognitive development, and how improving
sleep in NICU settings may improve outcomes.

Needed research and future prospects

Techniques to detect and classify infant sleep states. Continuous
long-term EEG monitoring is a feasible method to monitor SWC in
intensive care units, particularly when using amplitude-integrated
EEG (aEEG).’®'%%1% SWC patterns in aEEG trends can be
recognized from just a single EEG channel when clearly expressed
in a term age infant. However, aEEG cannot be used to distinguish
AS from wake, even though it is effective in distinguishing QS
from the rest, or for recognizing SWC.'®* Additional challenges
arise when examining the aEEG of early-preterm infants or infants
with acute neurological problems.'®> Moreover, measuring
cyclicity in EEG by visual inspection is difficult,'®® although
quantitative tools have been recently introduced to assist in
measuring cyclicity.®” Recently, several studies have described
machine learning-based and deep-learning-based methods to
classify epochs of EEG into AS and QS states.''"""%%'%° Automated
sleep-state detections can also be achieved using computational
features of respiration,’>* ECG,'”%'”" or their combination.3>”°

Multimodal techniques. Future investigations should consider
multimodal approaches, in which neuronal and neurovascular
activity are assessed simultaneously to overcome challenges in
making comparisons across modalities. These approaches will
allow for an improved understanding of how sleep states
concurrently affect both rapid neuronal effects and slower
hemodynamic effects. For example, this could include a combina-
tion of fNIRS and EEG. fNIRS has previously been used in
conjunction with EEG in neurologically compromised infants,'”?
and high-density fNIRS systems (known as diffuse optical
tomography) have demonstrated applicability to infant popula-
tions.'”® Another possibility to consider is fMRI-EEG, which has
been previously been demonstrated to be safe and feasible in
newborn infants.'’#17>

Sleep states as a contextual framework. Overall, the current
literature suggests that studies investigating infant FCNs must
control for both age and sleep state, even if the main purpose of
the study is not to investigate infant sleep. Future investigations
are also needed on the transition between sleep states,> how
FCNs change during transitions, and how these transitions may
change with development. These all may prove to be important
biomarkers for healthy neurodevelopment, and their assessment
may thus have a significant clinical impact.

Integrating into clinical practice. In order to make FCN studies
part of evidence-based medicine, the key tasks for future studies
to address these challenges are to establish methodological
pipelines that (i) are feasible to carry out in the given target
population (intensive care, vulnerable neonates, different hospitals
and recording machines), (ii) are technically stable (i.e, show
tolerable intra-session and test-retest variability), (iii) possess well
documented open-access analytical toolboxes, and (iv) are able to
be used in a large number of subjects over time to account for
biological interindividual variance and developmental trajectories.

CONCLUSIONS

The development of sleep and the FC networks supporting it are
crucial for healthy brain development. These processes are often
disrupted in preterm infants, yet the nature of the relation-
ship between preterm birth, sleep, and FC remains poorly
understood. Research in this area is in its infancy; gaps in our
current knowledge include the best method to assess sleep states
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in newborns, the best method to compare term and preterm
infant brain networks, and the best method to link measures of FC
to measures of neurodevelopment. Nonetheless, the literature
suggests that there are indeed differences in FC between sleep
states, and that preterm-born infants differ from their term-born
counterparts in brain FC patterns, as well as sleep-state dynamics.
More mixed methodological techniques are needed that account
for both cortical hemodynamic and neuronal activity. Future
studies need to understand the limitations of modalities and how
this affects the interpretation of results, further explore how brain
network dynamics themselves may be developmentally important
markers, and consider sleep state as a context for analyzing and
interpreting infant FCNs.
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