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Sex-specific alterations in hepatic cholesterol metabolism in
low birth weight adult guinea pigs
Ousseynou Sarr1, Katherine E. Mathers1, Christina Vanderboor1, Kristina Wiggers1, Aditya Devgan1, Daniel B. Hardy1,2,3, Lin Zhao1 and
Timothy R. H. Regnault1,2,3

BACKGROUND: Intrauterine growth restriction and low birth weight (LBW) have been widely reported as an independent risk
factor for adult hypercholesterolaemia and increased hepatic cholesterol in a sex-specific manner. However, the specific impact of
uteroplacental insufficiency (UPI), a leading cause of LBW in developed world, on hepatic cholesterol metabolism in later life, is ill
defined and is clinically relevant in understanding later life liver metabolic health trajectories.
METHODS: Hepatic cholesterol, transcriptome, cholesterol homoeostasis regulatory proteins, and antioxidant markers were studied
in UPI-induced LBW and normal birth weight (NBW) male and female guinea pigs at 150 days.
RESULTS: Hepatic free and total cholesterol were increased in LBW versus NBW males. Transcriptome analysis of LBW versus NBW
livers revealed that “cholesterol metabolism” was an enriched pathway in LBW males but not in females. Microsomal triglyceride
transfer protein and cytochrome P450 7A1 protein, involved in hepatic cholesterol efflux and catabolism, respectively, and catalase
activity were decreased in LBW male livers. Superoxide dismutase activity was reduced in LBW males but increased in LBW females.
CONCLUSIONS: UPI environment is associated with a later life programed hepatic cholesterol accumulation via impaired
cholesterol elimination in a sex-specific manner. These programmed alterations could underlie later life cholesterol-induced hepatic
lipotoxicity in LBW male offspring.
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IMPACT:

● Low birth weight (LBW) is a risk factor for increased hepatic cholesterol.
● Uteroplacental insufficiency (UPI) resulting in LBW increased hepatic cholesterol content, altered hepatic expression of

cholesterol metabolism-related genes in young adult guinea pigs.
● UPI-induced LBW was also associated with markers of a compromised hepatic cholesterol elimination process and failing

antioxidant system in young adult guinea pigs.
● These changes, at the current age studied, were sex-specific, only being observed in LBW males and not in LBW females.
● These programmed alterations could lead to further hepatic damage and greater predisposition to liver diseases in UPI-induced

LBW male offspring as they age.

INTRODUCTION
Cholesterol is a critical biological molecule, acting as a precursor
for the synthesis of steroid hormones, bile acids, and vitamin D,
and also being critical as a central modulator of cell membrane
proteins, receptor trafficking, signal transduction, and cell
membrane fluidity.1 In mammals, the liver is the central organ
regulating cholesterol homoeostasis through it actions in choles-
terol uptake, export, conversion into bile acids, biosynthesis, and
storage.2–7 When cholesterol homoeostasis is disrupted, large
concentrations of cholesterol accumulate in the liver resulting in a
lipotoxic state associated with oxidative stress and can culminate
in nonalcoholic steatohepatitis (NASH).8–14

An increase in the consumption of dietary cholesterol and/or
genetic susceptibility to hypercholesterolaemia can underlie
impaired cholesterol homoeostasis, cholesterol accumulation,

and a lipotoxic state in the liver.10,15,16 However, it is now
becoming apparent that insults early in the life cycle, such as in
prenatal life can also contribute, in a sex-specific manner, to
aberrant cholesterol metabolism and hepatic cholesterol overload
in adulthood. Animal studies have indicated that a wide variety of
experimental in utero insult/stress situations (maternal protein
undernutrition, dietary restriction, hypoxia, or prenatal nicotine)
resulting in intrauterine growth restriction (IUGR)/Low Birth
Weight (LBW) lead to increased serum and/or hepatic cholesterol
in weaned and adult male rat offspring.17–20 Transcriptome
analysis in the liver of prenatal maternal food restricted-adult
IUGR rat offspring revealed that activated cholesterol biosynthesis
and down-regulated bile acid biosynthesis pathways are main
targets for intrauterine reprogramming.21 Studies have high-
lighted that IUGR models such as maternal protein undernutrition,
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bilateral uterine vessel ligation, or intrauterine stress induced via
‘sham’ surgery, yield different phenotypes and specific transcrip-
tional patterns in organs such as placenta and kidney.22,23

Therefore, understanding in utero insult-specific mechanisms is
key to identifying both conserved pathways and model-specific
alterations which increase our understanding and applicability of
how these modifications in organ systems and phenotype
manifest. Collectively, this will allow for development of better-
informed target interventions.
Observational human studies have reported that impaired in

utero growth and the resulting LBW are associated with
differentially increased serum concentrations of total and low-
density lipoprotein (LDL) cholesterol in men and women in later
life with sex difference by age groups in adults.24–29 Although,
Uteroplacental Insufficiency (UPI) is the leading cause of IUGR/
LBW in the developed world,30,31 investigations attempting to
understand the specific impact of UPI-induced IUGR/LBW on later
life hepatic cholesterol metabolism and cholesterolemia are
currently limited to rat models.32,33 New reports have begun to
examine the molecular pathways that may underly the association
between abnormal foetal growth in utero and later life cholesterol
metabolism dysregulation in humans, but to date they are limited
to the analysis of cord blood plasma of IUGR at birth,34 with
limited follow-up on hepatic cholesterol metabolism and asso-
ciated pathways.
In the present study, we sought to unravel the hepatic

metabolic pathways underlying the specific impact of UPI on
hepatic cholesterol metabolism in young adult female and male
LBW offspring. We have chosen to use the well-established pre-
clinical animal model of UPI-induced IUGR/LBW in guinea pigs,35

especially given the close similarities between humans and guinea
pigs with respect to uteroplacental development and function36

and later life hepatic and whole-body trafficking and processing of
cholesterol.37 With the use of transcriptome analysis, we
postulated that LBW offspring, in a sex-specific manner, would
display increased hepatic cholesterol by young adulthood in
association with alterations in key regulators of cholesterol
metabolism.

METHODS
Animals
All animal procedures were conducted in accordance with
guidelines and standards of the Canadian Council on Animal
Care. Animal Use Protocol (AUP-#2009-229) was approved and
post approval monitoring conducted by the Western University
Animal Care Committee. All investigators understood and
followed the ethical principles outlined by Grundy,38 and study
design was informed by ARRIVE guidelines.39

Time-mated pregnant Dunkin-Hartley guinea pigs (Charles River
Laboratories, Wilmington, MA) were housed in 12 h light and dark
cycles in a temperature (20 ± 2 °C) and humidity (30–40%)-
controlled environment, with access to guinea pig chow (LabDiet
diet 5025) and tap water ad libitum. All pregnant guinea pigs
underwent uterine artery ablation35,40 at mid-gestation (~32 days,
term ~69 days) and sows delivered spontaneously. At the end of
the experimental pupping period, male and female pups were
defined as normal birth weight (NBW) or low birth (LBW) as per
previously reported criteria.40,41 At weaning (postnatal day 15),
pups were housed individually in clear perplex containers and fed
ad libitum a normal diet (TD.110239; Harlan Laboratories, Madison,
WI) until young adulthood (postnatal day 150). Only one LBW and
NBW pup of each sex, from a single litter, was used in order to
minimize compounding effects of litter. At postnatal day (PND)
150, NBW (n= 8) and LBW (n= 8) offspring of each sex were
fasted overnight, euthanized via CO2 inhalation42 in the morning
(~10 a.m.) of the following day. The whole liver was removed and
weighed immediately and the right lobe liver was frozen in liquid

nitrogen and stored at −80 °C for later biochemical and molecular
analyses.

Hepatic biochemical analysis
Hepatic triglycerides were measured using 50mg of frozen liver
and following the Triglyceride Colorimetric Assay Kit (Item No.
10010303; Cayman Chemical, Ann Arbor, MI). Liver content of total
cholesterol, free cholesterol, and cholesteryl esters was measured
as previously described.43,44 Enzymatic reagents for total choles-
terol (WAKO Diagnostics: Cholesterol E (CHOD-DAOS method)
#439-17501) and free cholesterol (WAKO Diagnostics: Free
cholesterol (COD-DAOS) method #435-35801) were used as per
the manufacturer’s instructions. Cholesteryl ester was determined
as the difference between total cholesterol and free cholesterol.

RNA isolation
Total RNA for microarray analysis was isolated from a subcohort of
five NBW and five LBW livers of each sex at the Genome Québec
Innovation Centre (Montreal, QC, Canada) while independent
validation of microarray data was performed using RNA extracted
from all NBW and LBW animals of the experiment, including the
microarray cohort. For the microarray analysis, 50 mg of frozen
liver was homogenized in 1 mL of Trizol (Invitrogen, Burlington,
ON, Canada). The homogenate was treated with 100 μL of gDNA
eliminator solution and then shaken vigorously and maintained at
room temperature for 2–3min. The homogenate was centrifu-
gated at 12,000g for 15min at 4 °C. RNA in the aqueous phase was
then extracted using the RNeasy Plus Universal Mini Kit (Qiagen,
Toronto, ON, Canada). Total RNA for validation of microarray data
was isolated from frozen ground liver (100mg) using Trizol
reagent and the Purelink RNA Mini Kit according to the
manufacturer’s instructions (Invitrogen). The quantity and quality
of extracted RNA was assessed using a Nanodrop spectro-
photometer (Thermo Fisher Scientific, Waltham, MA) and an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA),
respectively. RNA samples with RNA Integrity Number (RIN) above
7 were considered of high integrity and considered for microarray
and quantitative reverse transcription PCR (RT-qPCR) analyses.45

RNA labelling, microarray hybridization, scanning, and processing
A Whole-Transcript Expression Analysis Gene Titan was conducted
(Genome Québec Innovation Centre). Sense-strand cDNA was
synthesized from 100 ng of total RNA, and fragmentation and
labelling were performed to produce ss-cDNA with the GeneChip®
WT Terminal Labeling Kit according to the manufacturer’s
instructions (Thermo Fisher Scientific). After fragmentation and
labelling, 2.1 μg cDNA was hybridized onto Guinea Pig Gene 1.1 ST
Array Plate (Thermo Fisher Scientific) and processed on the
GeneTitan® Instrument (Thermo Fisher Scientific) for Hyb-Wash-
Scan automated workflow. The microarray scanned images were
imported into the Transcriptome Analysis Console (TAC) (version
4.0) (Life Technologies, Carlsbad, CA) and the raw microarray data
(.CEL files) were normalized using the Robust Multiple-Array
Averaging (RMA) method. Differentially expressed genes were
identified using the TAC Expression (Gene) analysis method.
Microarray data have been deposited in the National Center for
Biotechnology information Gene Expression Omnibus (GEO;
accession number GSE161124).

Quantitative reverse transcription PCR
Independent validation of microarray data was performed by
examining levels of selected differentially expressed transcripts
using RT-qPCR as previously described.46 Detailed information for
primer sequences is provided in Supplementary Table 1. Gene
expression analysis was performed with the CFX Maestro software
(Bio-rad, Mississauga, ON, Canada) using the 2−ΔΔCt method and
GAPDH and beta actin as reference genes. GAPDH and beta actin
were classified as acceptable reference genes by GeNorm algorithm
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in the CFX Maestro software with a calculated expression stability
value (M) of 0.57 for both genes. Threshold (Ct) values were also
consistent between the NBW and LBW groups.

Immunoblot analysis
Proteins were extracted from frozen ground liver (50 mg) in
radioimmunoprecipitation assay buffer as previously described.46

Equal amounts of total proteins (20 μg) were separated on a 7.5 or
10% SDS-polyacrylamide gel and transferred onto PVDF mem-
branes. Membranes were then blocked with 5% non-fat milk in
0.1% TBS-Tween-20 and probed with primary and secondary
antibodies (Supplementary Table 2). The chemiluminescence
signal was captured with the ChemiDoc MP Imaging System
(Bio-Rad), and protein band densitometry was determined using
the Image Lab software (Bio-Rad). Ponceau staining was used as
the loading control, as previously published.47,48

SOD, CAT, GSH, and GSSG assays
Superoxide dismutase (SOD; kit no. 706002, Cayman Chemical)
and catalase (CAT; kit no. 707002, Cayman Chemical) enzyme
activities, reduced (GSH), and oxidized (GSSG) glutathione (kit no.
703002, Cayman Chemical) in livers were measured following the
kit instructions.

Statistical analysis
Non-microarray data. A Shapiro–Wilks test was used to determine if
data were normally distributed. The few of the data sets that did not
pass the normality test and comparing four experimental groups
(birth weight, abdominal circumference, CRL, naso-anal length and
Lee index at birth, liver:body weight ratio and free cholesterol at
PND 150) were thus Box−Cox-transformed before ANOVA. A two-way
ANOVA was used to determine the main effect of birth weight, sex,
and possible interactions, followed by Bonferroni post hoc test using
GraphPad 8 (GraphPad Software, San Diego, CA). When comparing

NBW and LBW only, a Student’s t-test was used for normally
distributed and a Mann–Whitney was performed on non-normally
distributed data. Data are presented as mean ± SEM and a probability
of 5% (p< 0.05) was considered significant for all analyses.

Microarray data. Only genes that met the criteria of |fold change|≥2
and p value <0.05 were defined as differentially expressed. To explore
biological processes and pathways associated with the differentially
expressed genes, we performed gene ontology (GO) biological
process term enrichment (adjusted p< 0.05) using human as target
organism and the g:GOSt functional profiling in g:Profiler web server
(https://biit.cs.ut.ee/gprofiler/gost).

RESULTS
Phenotypic traits
By using diathermy partial ablation of branches of the uterine
artery, UPI was induced to generate LBW, as described pre-
viously.35 Those pups that at birth were <85 g, were classified as
LBW and as a group weighed less than sex-matched NBW pups
(p < 0.0001; Table 1). At birth, crown–rump length (CRL) tended to
decrease (p < 0.090) and biparietal diameter (BPD) as well as body
weight over naso-anal length (BW:length) decreased (p < 0.01) in
LBW offspring (Table 1). In addition, at birth, Lee index (body
weight × 0.33:naso-anal length), a measure of fatness,49 decreased
in both male and female LBW offspring (p < 0.01; Table 1). At the
time of tissue collection (PND 150; Table 1), LBW and NBW
offspring had similar mean body and absolute and relative liver
weights within each sex group. However, at this age, females
displayed overall lower body, absolute and relative liver weights
than males, independent of the birth weight (p < 0.05; Table 1).
Male offspring overall exhibited higher hepatic free cholesterol
and total cholesterol than females (p < 0.01; Table 1). Interestingly,
hepatic-free cholesterol and total cholesterol contents were

Table 1. Phenotypic traits of the offspring.

Males Females P value

Characteristics at birth NBW LBW NBW LBW BW Sex (S) BW × S

Birth weight (BW; g) 110.43 ± 2.56 79.04 ± 1.30**** 105.75 ± 4.28 69.50 ± 2.81**** <0.0001 0.318 0.710

BPD (mm) 25.18 ± 1.74 21.53 ± 0.44* 21.13 ± 0.65 19.61 ± 0.57 0.008 0.003 0.240

AC (mm) 108.80 ± 5.78 106.71 ± 4.09 122.83 ± 1.92 110.00 ± 7.37 0.170 0.130 0.310

CRL (mm) 148.40 ± 11.66 137.86 ± 4.21 145.33 ± 7.42 131.03 ± 7.20 0.090 0.509 0.935

Length (mm) 181.96 ± 17.09 178.24 ± 4.52 193.35 ± 6.81 166.43 ± 12.68 0.223 0.656 0.882

BW: length 0.641 ± 0.08 0.441 ± 0.01*** 0.555 ± 0.02 0.336 ± 0.01*** <0.0001 0.007 0.778

Lee index 0.212 ± 0.03 0.145 ± 0.00** 0.183 ± 0.01 0.142 ± 0.01** <0.0001 0.180 0.967

Characteristics at postnatal day (PND) 150

Body weight (g) 802.20 ± 46.63 737.75 ± 32.57 652.75 ± 27.25 5.99.86 ± 33.04 0.111 <0.001 0.872

Liver weight (g) 30.85 ± 2.27 28.85 ± 2.17 20.90 ± 1.30 19.78 ± 0.94 0.393 <0.001 0.807

Liver:body weight 0.04 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.712 0.011 0.512

Free cholesterol (mg/g wet liver) 2.48 ± 0.13 3.05 ± 0.18* 1.89 ± 0.17 2.30 ± 0.19 0.005 <0.001 0.156

Cholesteryl ester (mg/g wet liver) 0.43 ± 0.06 0.74 ± 0.17 0.58 ± 0.17 0.65 ± 0.13 0.175 0.827 0.402

Total cholesterol (mg/g wet liver) 2.90 ± 0.13 3.79 ± 0.29* 2.44 ± 0.32 2.96 ± 0.27 0.012 0.020 0.485

Triglycerides (mg/g wet liver) 0.03 ± 0.00 0.039 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.143 0.721 0.896

Birth weight (BW), biparietal diameter (BPD), abdominal circumference (AC), crown–rump length (CRL), naso-anal length, BW:naso-anal length and Lee index
(BW*0.33:naso-anal length) at birth, body and liver weights, hepatic content of different cholesterol types and triglycerides at postnatal day 150 in male and
female offspring are displayed. n= 8 NBW and 8 LBW for each sex group with the exception of BPD, AC, CRL, naso-anal length, BW:naso-anal length ratio, and
Lee index where n= 5–7 for each birth weight/sex group. All data were checked for normality using a Shapiro–Wilk test. Data that were not normally
distributed, including birth weight, AC, naso-anal length, CRL, Lee index, liver:body ratio, and free cholesterol, were Box–Cox-transformed prior to ANOVA.
Displayed data are mean ± SEM of untransformed data. The main effect of birth weight (BW), sex and BW and sex interaction, using a two-way ANOVA, are
displayed. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 when comparing NBW/Males versus LBW/Males or NBW/females versus LBW/females by Bonferroni
post hoc test.
Bolded p values indicate statical significance.
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increased in LBW males compared to NBW males (p < 0.01;
Table 1). No significant difference was observed for hepatic-free
cholesterol and total cholesterol content in NBW or LBW females
(Table 1). Birth weight or sex at PND 150 had no impact upon
hepatic cholesteryl ester and triglyceride contents (Table 1).

Hepatic transcriptome
Analysis of whole hepatic transcriptome results identified that
between LBW and NBW offspring livers, 51 (29 up-regulated and
22 down-regulated), and 31 (8 up-regulated and 23 down-
regulated) genes were differentially expressed (|fold change| ≥ 2
and p value <0.05) in males and females respectively (Fig. 1
and Supplementary Tables 3 and 4). The Venn diagram (Fig. 1a),
the volcano plots (Fig. 1b, c), and 2D hierarchical clustering chart/
heat maps (Fig. 2a, b) indicate the degree of separation among the
LBW and NBW groups in males and females. Only two genes
encoding thioredoxin pseudogene and small nucleolar RNA
SNORA2/SNORA34 family transcripts were differentially expressed
between LBW and NBW in both male and female offspring
(Fig. 1a).

Functional analysis of the hepatic transcriptomic profile and
validation of microarray data
In the biological process analysis of the differentially expressed
genes in LBW versus NBW males, 18 enriched GO biological
processes were observed, with positive regulation of hepatic fatty
acid metabolism process, lipid transport, lipid localization,

regulation of fatty acid biosynthetic process and positive
regulation of lipid metabolic process being the five top ranked
processes (Fig. 3a and Table 2). No significant changes to GO
biological processes were observed in LBW females (Fig. 3b). The
KEGG functional enrichment analysis identified that cholesterol
metabolism was a significantly enriched pathway in LBW males
(adjusted p < 0.05, Fig. 3a). Specifically, in LBW males, the reverse
cholesterol transport-related genes (Apoa1 and Angplt4) were up-
regulated while Ldlr gene associated with the internalizing of
circulating LDL cholesterol was down-regulated (Table 2 and
Supplementary Table 3).
The PPAR signalling pathway was also an up-regulated pathway

in LBW versus NBW offspring (adjusted p < 0.05, Fig. 3a). This latter
pathway included Adipoq in addition to Apoa1 and Angplt4
(Table 2 and Supplementary Table 3). FoxO signalling pathway
was the only significantly enriched pathway for differentially
expressed genes in LBW females (adjusted p < 0.05, Fig. 3B). This
pathway included down-regulated Bcl6 and Gadd45g (Table 2 and
Supplementary Table 4).
Genes involved in cholesterol metabolism, PPAR and FoxO

signalling pathways and other differentially expressed genes not
related to these pathways were selected to be validated by RT-qPCR
independent RNA samples (Fig. 4). Apoa1 gene was increased 4.76-
fold (p= 0.037) in LBW relative to NBW males, similar to the fold
change in the microarray data of 2.92-fold (p= 0.037). Angplt4 was
also confirmed to be increased by 3.7 (p= 0.023) similar to
microarray fold change of 2.84 and 1.2 (p= 0.011). In LBW versus
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NBW males, Ldlr and Gstt2 genes were also confirmed to be
decreased by −2.16 and −3.05-fold (p= 0.008 and 0.020) and
similar to microarray fold changes of −2.39 and −2.44, respectively
(p= 0.021 and 0.041). Inhba, which was −2.82-fold lower in the
microarray data (p= 0.036), was relatively lower in the LBW male
livers by 2.89-fold (p= 0.061). Although not significant, Anxa1, which
was 2.18-fold higher in the microarray data (p= 0.015), was relatively
higher in the LBW male livers by 1.72-fold (p= 0.721). Lbp was
significantly lower by −2.28-fold in the LBW female livers in the
validation cohort (p= 0.038), similar to the −2.96-fold decreased in
the LBW microarray female cohort (p= 0.026). Lastly, while down-
regulated in LBW females in the microarray data, Lcn2 tended to
decrease in the validation cohort (p= 0.105).

Hepatic content of proteins related to cholesterol metabolism
Selected proteins were studied on a priori based on their known
biological role in hepatic cholesterol metabolism. The levels of
hepatic proteins involved in cholesterol uptake (Ldlr, Apoe),
biosynthesis (Srebp2), catabolism (Cyp7a1), efflux into bile acids
(Abcg8), and export to blood (Fas, Acc, Abca1, and Mtp) were
determined in LBW and NBW livers (Fig. 5). Female livers displayed
significantly higher levels of Ldlr and Srebp2 protein than males
(p < 0.01). Neither birth weight nor sex impacted Apoe protein.
Females displayed lower Mtp and Acc protein levels than males
(p < 0.01) and Fas protein levels were not affected by birth weight
nor sex. Cyp7a1 and Mtp protein levels were both reduced in male
LBW compared to male NBW livers.
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Hepatic antioxidant systems
As elevated hepatic cholesterol is associated with oxidative
stress,9,10 we quantified markers of this latter. The protein levels
and activities of antioxidant enzymes SOD and CAT, as well as GSH
and GSSG concentrations were determined in LBW and NBW
livers. Sex had a significant effect on SOD1 protein level, which
were lower in females than in males (p < 0.0001; Fig. 6a). While
hepatic CAT protein was not impacted by birth weight nor sex,
hepatic CAT activity was lower in male LBW (p < 0.05) (Fig. 6a, b).
SOD activity was decreased in male LBW but increased in female
LBW (Fig. 6c). GSH activity was not significantly affected by birth
weight or sex (Fig. 6d). While the concentration of GSSG was
significantly reduced in male LBW compared to male NBW (p <
0.05; Fig. 6e), the ratio of GSH:GSSG was not significantly impacted
by birth weight or sex (Fig. 6f).

DISCUSSION
An adverse environment during in utero life has been associated
with gene reprogramming and modification of organ functions that
can persist throughout the entire lifespan and are associated with an
increased risk of developing the metabolic syndrome.50 Using a pre-
clinical guinea pig animal model of UPI, we demonstrated that LBW
is associated with increased hepatic cholesterol content and
aberrant expression of cholesterol metabolism-related signalling
pathway genes in young adulthood (PND150) liver. These changes
occur in conjunction with markers of a compromised hepatic
cholesterol elimination process and indications of antioxidant stress

in young adults. Interestingly, these changes, at the current age
studied, were sex-specific, only being observed in LBW males.
The impact of an adverse in utero environment on cholesterol

metabolism has been mostly studied using mouse and rat models
of IUGR arising from maternal protein undernutrition, in utero
dietary restriction, prenatal hypoxia, or nicotine exposure.17–20

These different species and intrauterine insults collectively lead to
elevated serum or hepatic cholesterol levels at weaning or in the
adulthood in male offspring, similar to what was observed in this
current study. The specific aetiology of the IUGR insult is of critical
importance in determining the adult metabolic outcomes and
phenotype22,23 and hence in the current study, UPI was
investigated as it is the most common in utero insult associated
with IUGR and LBW in developed world.51,52 Moreover, the guinea
pig was utilized given its greater similarities with human
pregnancy and outcomes, including a relatively long gestation,
haemomonochorial placenta, luteo‐placental shift in hormone
production, foetal development of metabolic tissues, and pre-
cocial offspring.36 The reported outcomes here are similar to the
observed increased in blood total cholesterol at 15 weeks of age
observed in UPI-induced IUGR male rat offspring.32 Additionally,
the observed increase in hepatic cholesterol without increased
hepatic triglycerides in male LBW offspring is also in alignment
with other species studies that report IUGR-induced alterations in
the cholesterol metabolizing pathway, without changes in hepatic
fatty acid metabolism.17,33 The current work highlights not only
that the UPI environment is associated with programming of later
life hepatic cholesterol metabolic dysfunction, but also validates
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the experimental in utero insults/stress situations used in other
species. Collectively, this provides external validation for the
central nature of this pathway and later life cholesterol metabolic
dysregulation across species when subjected to in utero environ-
ments associated with LBW outcomes.
The present study also highlights that cholesterol metabolism and

PPAR signalling pathways are impacted and associated genes are
differentially expressed in LBW versus NBW male offspring, but not
in females. Hepatic Apoa1, Angplt4, and Adipoq genes, components
of both cholesterol metabolism and PPAR signalling pathways, were
up-regulated exclusively in LBW males. Apoa1 is the main
apolipoprotein of high-density lipoprotein (HDL), playing a key role
in regulating lipid transport and in the process of reverse cholesterol
transport acting through promotion of the efflux of excess
cholesterol from peripheral tissues and returning it to the liver for
biliary excretion.53 Hepatic ApoA-1 gene expression is up-regulated
in liver disease states,54,55 and ApoA-1 protein among other liver-
specific proteins in extracellular vesicles, has been suggested to
potentially serve as a specific biomarker for hepatotoxicity in drug-
and alcohol-mediated hepatic injury.56 Additionally, Angptl4 and
Adipoq, like ApoA-1, collectively serve a number of important roles
in cholesterol metabolism. Angptl4 is present in HDLs physically
protecting HDLs from endothelial lipase hydrolysis,57 and upregu-
lates cholesterol synthesis in liver secondary to inhibition of
lipoprotein lipase- and hepatic lipase-dependent hepatic cholesterol
uptake.58 In addition, Adipoq accelerates reverse cholesterol

Table 2. Gene ontology (GO) terms and KEGG pathways overrepresented among differentially expressed genes in livers of LBW versus NBW
offspring.

Sex Source Term name Adjusted p value Genes

Male GO:BP Positive regulation of fatty acid metabolic
process

0.0001 Midlip1, Anxa1, Adipoq, ApoA1

GO:BP Lipid transport 0.0003 Inhba, Ldlr, Midlip1, Anxa1, Ace, Adipoq, ApoA1

GO:BP Lipid localization 0.0006 Inhba, Ldlr, Midlip1, Anxa1, Ace, Adipoq, ApoA1

GO:BP Regulation of fatty acid biosynthetic process 0.0009 Midlip1, Anxa1, Adipoq, ApoA1

GO:BP Positive regulation of lipid metabolic
process

0.0015 Ldlr, Midlip1, Anxa1, Adipoq, ApoA1

GO:BP Regulation of multicellular organismal
development

0.0022 Inhba, Serpine2, Ldlr, Nell1, Nedd4l, Anxa1, Ace, Angptl4,
Adipoq, Apoa1, Hey1, Nrep

GO:BP Positive regulation of fatty acid biosynthetic
process

0.0036 Midlip1, Anxa1, ApoA1

GO:BP Positive regulation of lipid biosynthetic
process

0.0053 Ldlr, Midlip1, Anxa1, ApoA1

GO:BP Regulation of fatty acid metabolic process 0.0067 Midlip1, Anxa1, Adipoq, ApoA1

GO:BP Regulation of lipid biosynthetic process 0.0071 Ldlr, Midlip1, Anxa1, Adipoq, ApoA1

GO:BP Regulation of lipid metabolic process 0.0157 Ldlr, Midlip1, Anxa1,Angptl4, Adipoq, ApoA1

GO:BP Regulation of developmental process 0.0250 Inhba, Serpine2, Ldlr, Nell1, Nedd4l, Anxa1, Ace, Angptl4,
Adipoq, Apoa1, Hey1, Nrep

GO:BP Positive regulation of small molecule
metabolic process

0.0285 Midlip1, Anxa1, Adipoq, ApoA1

GO:BP Regulation of cell differentiation 0.0332 Inhba, Serpine2, Ldlr, Nell1, Nedd4l, Anxa1, Adipoq, Apoa1,
Hey1, Nrep

GO:BP Cell development 0.0343 Inhba, Serpine2, Inhbe, Ldlr, Nedd4l, Tubb3, Adipoq, Apoa1,
Hey1, Nrep

GO:BP Negative regulation of macrophage
differentiation

0.0365 Inhba, Adipoq

GO:BP Cell differentiation 0.0423 Inhba, Serpine2, Inhbe, Ldlr, Krtap12-1, Nell1, Nedd4l,Tubb3,
Anxa1, Ace, Adipoq, Apoa1, Hey1, Nrep

GO:BP Regulation of cell development 0.0492 Serpine2, Ldlr, Nedd4l, Adipoq, Apoa1, Hey1, Nrep.

KEGG pathway Cholesterol metabolism 0.0080 Ldlr, Angptl4, Apoa1

KEGG pathway PPAR signalling pathway 0.0277 Angptl4, Adipoq, Apoa1

Female KEGG pathway FoxO signalling pathway 0.0366 Bcl6, Gadd45g
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transport by increasing HDL assembly through enhanced ApoA-1
synthesis in the liver.59 Conversely, the decreased Ldlr gene
expression and unaltered Ldlr protein in LBW males may reflect
an unaltered LDL cholesterol uptake into these livers. In agreement
with this assumption, it is well established that overaccumulation of
cholesterol in the liver supresses Ldlr gene transcription and
accelerates its mRNA decay.60 Finally, the intersection of cholesterol
and PPAR pathways is of note given the relationship between PPARs
in the regulation of bile acid and cholesterol homoeostasis.61

Therefore, the current changes in gene expression and the
previously observed unchanged serum cholesterol levels in this
model62 collectively emphasize a potential increased HDL assembly
and/or reverse cholesterol transport. This likely occurs in conjunction
with an unaltered LDL uptake in LBW male liver, which may underly
the higher hepatic cholesterol content observed, though this remain
to be more thoroughly investigated.
Although unaltered at transcriptional level, hepatic Cyp7a1 and

Mtp were reduced at the protein level in LBW males. The Cyp7a1

enzyme catalyses the initial step in cholesterol catabolism and bile
acid synthesis and decreased Cyp7a1 gene expression and protein
levels have been reported in conjunction with increased hepatic
cholesterol in adult IUGR male rats from protein-restricted
mothers.17 Further, Cyp7a1-deficient mice are observed to have
elevated hepatic and serum cholesterol and decreased total bile
acids,63 supporting the concept that Cyp7A1 acts in a similar
manner in guinea pigs and rats and that alterations in its level/
activity impact hepatic cholesterol content. It is of further interest
to note that the human CYP7A1 mutation results in substantial
cholesterol accumulation in the liver as well as decreased classic
bile acid synthesis.64 Our current findings are in line with the
concept that Cypa7a1 is critical in the control of hepatic
cholesterol homoeostasis and provide evidence that Cyp7a1-
induced cholesterol catabolism appears sensitive to changes in
the intrauterine environment, specifically those associated with
UPI such as hypoxia and altered nutrient supply.17,19 The parallel
decrease in Mtp protein is of great interest considering that Mtp
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catalyses the assembly of cholesterol, triglycerides, and apolipo-
protein B to VLDL for their export outside of the liver.65 Therefore,
this impairment in hepatic cholesterol catabolism/efflux-related
proteins could reflect a lower elimination rate of hepatic
cholesterol, programmed by an adverse in utero environment,
which culminates in increased cholesterol content in LBW males
born from pregnancies complicated by UPI.
Antioxidant enzyme defense and non-enzymatic antioxidant

defense systems are critical in reducing oxidative stress and
maintaining redox homoeostasis within liver.66 SOD reduces the
radical superoxide to form hydrogen peroxide and oxygen67 and
CAT catalytically decomposes hydrogen peroxide into water and
oxygen.68 At the same time, glutathione peroxidase (GPx) also
reduces hydrogen peroxide to water while converting GSH to
GSSG.69 During oxidative stress there is decrease in levels of GSH
and increase in levels of GSSG and thus GSH/GSSG ratio
decreases.70 Liver oxidative injury and abnormal activities of
hepatic antioxidant enzymes are reported in male neonates from
IUGR pregnancies.71,72 In the current report, UPI-induced LBW

male offspring displayed a significantly depressed CAT activity,
and a reduced total SOD activity, a result not observed in the LBW
female livers. The ratio of GSH to GSSG was however not reduced
in the livers of LBW males. Collectively, these data suggest that
whereas female offspring appear to have functional postnatal
hepatic oxidative stress recovery mechanisms, the in utero defects
in male offspring appear to persist, and this could manifest with
the altered hepatic cholesterol metabolic pathways observed.
Indeed, in adult animal cholesterol feeding studies, elevated
hepatic cholesterol is associated with oxidative stress.9,10 It is then
possible that alterations in the functional postnatal hepatic
oxidative stress of male LBW start at the level of SOD and CAT
enzymes and may later extend to the glutathione redox couple
GSH/GSSG system, as previously highlighted.70 This notion maybe
supported by the observed reduction in the expression of inhba
and Gstt2 genes, involved in hepatocyte regeneration and
antioxidant system, respectively.73,74 Therefore, our current
observations point to a lower antioxidant capacity in young adult
LBW male offspring born from UPI pregnancies, which may
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promote the development of liver diseases in later life, especially
when challenged with an elevated cholesterol environment.
In the current study, we observed lower body and liver weights

at young adulthood in females than males, independent of the
birth weight. Previous studies have also reported a sexual
dimorphism in guinea pig with males consistently larger than
females in skeletal measurements and body weight.75,76 It has
been proposed that rapid and early growth in males leads to male-
biased sexual dimorphism in these cases. In conjunction with these
growth differences, we report sexual dimorphism in hepatic Ldlr,
Srebp2, Mtp, Acc, and SOD1 proteins as well as liver cholesterol
content, irrespective of birth weight, but also sex-specific
programming of Apoa1, Angplt4, and ldlr genes and Cyp7a1 and
Mtp proteins in male LBW offspring. Epidemiologic studies have
demonstrated that LBW predisposes to adult onset hypercholes-
terolaemia in men,26–28 and women29 with sex difference by age
groups in adults.24 In the current study, male offspring displayed
higher hepatic free cholesterol and total cholesterol than females,
despite higher protein abundance of Ldlr and Srebp2 and reduced
Mtp and Acc proteins in female livers. We speculate that
oestrogens levels may be protective for cholesterol overaccumula-
tion within livers of female guinea pigs, given that physiological
levels of oestrogen increased CYP7A1 activity along with small
transient increases in bile acid production in hepatocytes.77 These
results also indicate that protective compensatory mechanisms of
elevated Ldlr and Srebp2 protein in males and reduced Mtp and
Acc protein in females occurs.
A limitation of our study is that the concentrations of sex

steroids in the serum as well as the steroid receptors in the liver
were not measured. Cholesterol is the precursor for endogenous
sex steroid biosynthesis.1 Furthermore, testosterone replacement
therapy enhances liver cholesterol uptake, suppressing cholesterol
removal, and promoting cholesterol storage.78 Oestrogen
together with oestrogen receptor-α also plays a role in preventing
liver malfunctioning and reducing liver damage.79 Thus, a role of
serum sex steroids and downstream signalling on the observed
hepatic outcomes cannot be ruled out. Future work should also
examine serum concentrations of triglycerides and cholesterol
types in order to better characterize uptake/export of these lipids
from livers of LBW animals.
In conclusion, the present study demonstrates that LBW

occurring as a result of UPI results in increased hepatic cholesterol
content, likely through compromised hepatic cholesterol elimina-
tion in young male, but not female, guinea pigs. The mechanisms
underlying this potential programing effect and continued
postnatal presentation of the defect are yet to be fully delineated.
Certainly UPI is associated with hypoxia80 and foetal hypoxia is
associated with promoted oxygenated blood flow to the heart and
reduced umbilical blood supply to foetal liver, an adaption which is
understood to reprogramme liver carbohydrate and lipid metabo-
lism in utero81–84 likely through altered epigenetic regulation of
hepatic metabolism.17 Furthermore, the observed disrupted
hepatic cholesterol metabolism may contribute to permanent
alterations in hepatic oxidative stress defense system, ultimately
leading to further hepatic damage and greater predisposition to
liver diseases in UPI-induced LBW male offspring as they age.
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