Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human milk cholesterol is associated with lactation stage and maternal plasma cholesterol in Chinese populations

Abstract

Background

Milk cholesterol concentrations throughout lactation were analyzed, and the relationship between maternal plasma cholesterol and milk cholesterol in various Chinese populations was examined.

Methods

A sub-sample of 1138 lactating women was randomly selected from a large cross-sectional study in China (n = 6481). Milk cholesterol concentrations were determined by HPLC, and concentrations of maternal plasma lipids were determined by an automated biochemical analyzer.

Results

The mean cholesterol concentrations were 200, 171, and 126 mg/L for colostrum, transitional milk, and mature milk, respectively. Cholesterol concentrations differed significantly between stages of lactation (colostrum vs. transitional milk, colostrum vs. mature milk, transitional milk vs. mature milk, all p < 0.001). Concentrations of maternal plasma total cholesterol (TC) (p = 0.02) and low-density lipoprotein cholesterol (LDL-C) (p = 0.03) were significantly associated with milk cholesterol. Milk cholesterol concentrations varied among different ethnicities (Tibetan vs. Hui: 164 vs. 131 mg/L, p = 0.027) but not among different geographic regions.

Conclusions

The concentration of cholesterol in human milk changes dynamically throughout lactation. Milk cholesterol concentrations are significantly associated with maternal plasma concentrations of TC and LDL-C, and milk cholesterol concentrations vary across ethnicities in China.

Impact

  • Concentrations of milk cholesterol were measured in various Chinese populations.

  • Cholesterol concentrations differ significantly between stages of lactation.

  • Maternal plasma total cholesterol and low-density lipoprotein cholesterol are associated with milk cholesterol.

  • Milk cholesterol concentrations vary across ethnicities in China.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Flow diagram of study design.
Fig. 2: Milk cholesterol concentration changes at various lactation stages in Chinese populations.
Fig. 3: Maternal plasma lipid concentrations and association with milk cholesterol concentration.
Fig. 4: Maternal plasma TC and LDL-C concentrations.
Fig. 5: Milk cholesterol concentrations among various ethnicities in China.

References

  1. 1.

    Cerqueira, N. M. et al. Cholesterol biosynthesis: a mechanistic overview. Biochemistry 55, 5483–5506 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Dimova, L. G., Lohuis, M. A. M., Bloks, V. W., Tietge, U. J. F. & Verkade, H. J. Milk cholesterol concentration in mice is not affected by high cholesterol diet- or genetically-induced hypercholesterolaemia. Sci. Rep. 8, 8824 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Berger, S., Raman, G., Vishwanathan, R., Jacques, P. F. & Johnson, E. J. Dietary cholesterol and cardiovascular disease: a systematic review and meta-analysis. Am. J. Clin. Nutr. 102, 276–294 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Koletzko, B. Human milk lipids. Ann. Nutr. Metab. 69, 28–40 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Timby, N., Domellof, M., Lönnerdal, B. & Hernell, O. Supplementation of infant formula with bovine milk fat globule membranes. Adv. Nutr. 8, 351–355 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Zou, L., Pande, G. & Akoh, C. C. Infant formula fat analogs and human milk fat: new focus on infant developmental needs. Annu. Rev. Food Sci. Technol. 7, 139–165 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Li, F. et al. Improved neurodevelopmental outcomes associated with bovine milk fat globule membrane and lactoferrin in infant formula: a randomized, controlled trial. J. Pediatr. 215, 24–31 e28 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Brink, L. R. et al. Omics analysis reveals variations among commercial sources of bovine milk fat globule membrane. J. Dairy Sci. 103, 3002–3016 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Friedman, G. & Goldberg, S. J. Concurrent and subsequent serum cholesterol of breast- and formula-fed infants. Am. J. Clin. Nutr. 28, 42–45 (1975).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Shamir, R. et al. Serum levels of bile salt-stimulated lipase and breast feeding. J. Pediatr. Endocrinol. Metab. 16, 1289–1294 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Owen, C. G. et al. Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. Am. J. Clin. Nutr. 88, 305–314 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Singhal, A., Cole, T. J., Fewtrell, M. & Lucas, A. Breastmilk feeding and lipoprotein profile in adolescents born preterm: follow-up of a prospective randomised study. Lancet 363, 1571–1578 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Hui, L. L. et al. Breastfeeding in infancy and lipid profile in adolescence. Pediatrics 143, e20183075 (2019).

  14. 14.

    Plancoulaine, S. et al. Infant-feeding patterns are related to blood cholesterol concentration in prepubertal children aged 5-11 y: the Fleurbaix-Laventie Ville Sante study. Eur. J. Clin. Nutr. 54, 114–119 (2000).

  15. 15.

    Elias, P. K., Elias, M. F., D’Agostino, R. B., Sullivan, L. M. & Wolf, P. A. Serum cholesterol and cognitive performance in the Framingham Heart Study. Psychosom. Med. 67, 24–30 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Rueda, R. The role of complex lipids in attaining metabolic health. Curr. Cardiovasc. Risk Rep. 8, 371 (2014).

  17. 17.

    Haque, Z. U. & Mozaffar, Z. Importance of dietary cholesterol for the maturation of mouse brain myelin. Biosci. Biotechnol. Biochem. 56, 1351–1354 (1992).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Schoknecht, P. A. et al. Dietary cholesterol supplementation improves growth and behavioral response of pigs selected for genetically high and low serum cholesterol. J. Nutr. 124, 305–314 (1994).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Boleman, S. L. et al. Pigs fed cholesterol neonatally have increased cerebrum cholesterol as young adults. J. Nutr. 128, 2498–2504 (1998).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Scholtz, S. A., Gottipati, B. S., Gajewski, B. J. & Carlson, S. E. Dietary sialic acid and cholesterol influence cortical composition in developing rats. J. Nutr. 143, 132–135 (2013).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Picciano, M. F., Guthrie, H. A. & Sheehe, D. M. The cholesterol content of human milk. A variable constituent among women and within the same woman. Clin. Pediatr. 17, 359–362 (1978).

    CAS  Article  Google Scholar 

  22. 22.

    Hamosh, M., Bitman, J., Wood, L., Hamosh, P. & Mehta, N. R. Lipids in milk and the first steps in their digestion. Pediatrics 75, 146–150 (1985).

    CAS  PubMed  Google Scholar 

  23. 23.

    Mellies, M. J., Burton, K., Larsen, R., Fixler, D. & Glueck, C. J. Cholesterol, phytosterols, and polyunsaturated/saturated fatty acid ratios during the first 12 months of lactation. Am. J. Clin. Nutr. 32, 2383–2389 (1979).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hamdan, I. J. A. et al. Sterols in human milk during lactation: bioaccessibility and estimated intakes. Food Funct. 9, 6566–6576 (2018).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Quinn, E. A., Diki Bista, K. & Childs, G. Milk at altitude: human milk macronutrient composition in a high-altitude adapted population of Tibetans. Am. J. Phys. Anthropol. 159, 233–243 (2016).

    PubMed  Article  Google Scholar 

  26. 26.

    Neville, M. C. & Picciano, M. F. Regulation of milk lipid secretion and composition. Annu. Rev. Nutr. 17, 159–183 (1997).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Potter, J. M. & Nestel, P. J. The effects of dietary fatty acids and cholesterol on the milk lipids of lactating women and the plasma cholesterol of breast-fed infants. Am. J. Clin. Nutr. 29, 54–60 (1976).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Clark, R. M., Fey, M. B., Jensen, R. G. & Hill, D. W. Desmosterol in human milk. Lipids 18, 264–266 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Kamelska, A. M., Pietrzak-Fiecko, R. & Bryl, K. Variation of the cholesterol content in breast milk during 10 days collection at early stages of lactation. Acta Biochim. Pol. 59, 243–247 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Alvarez-Sala, A., Garcia-Llatas, G., Barbera, R. & Lagarda, M. J. Determination of cholesterol in human milk: an alternative to chromatographic methods. Nutr. Hosp. 32, 1535–1540 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hamdan, I. J. A., Sanchez-Siles, L. M., Matencio, E., Garcia-Llatas, G. & Lagarda, M. J. Cholesterol content in human milk during lactation: a comparative study of enzymatic and chromatographic methods. J. Agric. Food Chem. 66, 6373–6381 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Whatley, B. J., Green, J. B. & Green, M. H. Effect of dietary fat and cholesterol on milk composition, milk intake and cholesterol metabolism in the rabbit. J. Nutr. 111, 432–441 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Ballard, O. & Morrow, A. L. Human milk composition: nutrients and bioactive factors. Pediatr. Clin. North Am. 60, 49–74 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Butts, C. A. et al. Human milk composition and dietary intakes of breastfeeding women of different ethnicity from the Manawatu-Wanganui region of New Zealand. Nutrients 10, 1231 (2018).

  35. 35.

    Yin, S. A. & Yang, Z. Y. An on-line database for human milk composition in China. Asia Pac. J. Clin. Nutr. 25, 818–825 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kallio, M. J., Siimes, M. A., Perheentupa, J., Salmenpera, L. & Miettinen, T. A. Cholesterol and its precursors in human milk during prolonged exclusive breast-feeding. Am. J. Clin. Nutr. 50, 782–785 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Bitman, J., Wood, L., Hamosh, M., Hamosh, P. & Mehta, N. R. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am. J. Clin. Nutr. 38, 300–312 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Wei, W. et al. Phospholipid composition and fat globule structure I: comparison of human milk fat from different gestational ages, lactation stages, and infant formulas. J. Agric. Food Chem. 67, 13922–13928 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Michalski, M. C., Briard, V., Michel, F., Tasson, F. & Poulain, P. Size distribution of fat globules in human colostrum, breast milk, and infant formula. J. Dairy Sci. 88, 1927–1940 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Jones, P. J. et al. Dietary cholesterol feeding suppresses human cholesterol synthesis measured by deuterium incorporation and urinary mevalonic acid levels. Arterioscler. Thromb. Vasc. Biol. 16, 1222–1228 (1996).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Wong, W. W., Hachey, D. L., Insull, W., Opekun, A. R. & Klein, P. D. Effect of dietary cholesterol on cholesterol synthesis in breast-fed and formula-fed infants. J. Lipid Res. 34, 1403–1411 (1993).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Bayley, T. M. et al. Longer term effects of early dietary cholesterol level on synthesis and circulating cholesterol concentrations in human infants. Metabolism 51, 25–33 (2002).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Hibberd, C. M., Brooke, O. G., Carter, N. D., Haug, M. & Harzer, G. Variation in the composition of breast milk during the first 5 weeks of lactation: implications for the feeding of preterm infants. Arch. Dis. Child. 57, 658–662 (1982).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Long, C. A., Patton, S. & McCarthy, R. D. Origins of the cholesterol in milk. Lipids 15, 853–857 (1980).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Mellies, M. J. et al. Effects of varying maternal dietary cholesterol and phytosterol in lactating women and their infants. Am. J. Clin. Nutr. 31, 1347–1354 (1978).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Qi, G., Yin, S., Zhang, G. & Wang, X. Genetic and epigenetic polymorphisms of eNOS and CYP2D6 in mainland Chinese Tibetan, Mongolian, Uygur, and Han populations. Pharmacogenomics J 20, 114–125 (2019).

  47. 47.

    Yang, Z. et al. Concentration of lactoferrin in human milk and its variation during lactation in different Chinese populations. Nutrients 10, 1235 (2018).

  48. 48.

    Peng, W., Liu, Y., Liu, Y., Zhao, H. & Chen, H. Major dietary patterns and their relationship to obesity among urbanized adult Tibetan pastoralists. Asia Pac. J. Clin. Nutr. 28, 507–519 (2019).

    PubMed  Google Scholar 

  49. 49.

    Mohammad, M. A., Sunehag, A. L. & Haymond, M. W. Effect of dietary macronutrient composition under moderate hypocaloric intake on maternal adaptation during lactation. Am. J. Clin. Nutr. 89, 1821–1827 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Yahvah, K. M. et al. Elevated dairy fat intake in lactating women alters milk lipid and fatty acids without detectible changes in expression of genes related to lipid uptake or synthesis. Nutr. Res. 35, 221–228 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate Judith Hills for critical reading of the manuscript. The authors would like to thank all the mothers who attended this study and field workers who conducted the milk collections. This study was supported by Beijing Natural Science Foundation (S160002), the National Key R&D Program of China (2017YFD0400601), and the National High Technology Research and Development Program of China (863 Program) (2010AA023004).

Author information

Affiliations

Authors

Contributions

Z.Y., R.J., and B.L. drafted the manuscript; H.L. conducted the laboratory analyses; S.Y., Z.Y., J.L., J.W., and Y.D. supervised the field work; X.P., S.J., Y.B., H.Z., and S.W. did the sample selection; S.Y., Z.Y., and J.L. designed the study and are responsible for final content. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Jianqiang Lai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent

All study participants signed the consent form.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Jiang, R., Li, H. et al. Human milk cholesterol is associated with lactation stage and maternal plasma cholesterol in Chinese populations. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01440-7

Download citation

Search

Quick links