Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Early diagnosis and targeted approaches to pulmonary vascular disease in bronchopulmonary dysplasia

Abstract

Pulmonary hypertension has emerged as a life-threatening disease in preterm infants suffering from bronchopulmonary dysplasia (BPD). Its development is closely linked to respiratory disease, as vasculogenesis and alveologenesis are closely interconnected. Once clinically significant, BPD-associated pulmonary hypertension (BPD-PH) can be challenging to manage, due to poor reversibility and multiple comorbidities frequently associated. The pulmonary vascular disease process underlying BPD-PH is the result of multiple innate and acquired factors, and emerging evidence suggests that it progressively develops since birth and, in certain instances, may begin as early as fetal life. Therefore, early recognition and intervention are of great importance in order to improve long-term outcomes. Based on the most recent knowledge of BPD-PH pathophysiology, we review state-of-the-art screening and diagnostic imaging techniques currently available, their utility for clinicians, and their applicability and limitations in this specific population. We also discuss some biochemical markers studied in humans as a possible complement to imaging for the detection of pulmonary vascular disease at its early stages and the monitoring of its progression. In the second part, we review pharmacological agents currently available for BPD-PH treatment or under preclinical investigation, and discuss their applicability, as well as possible approaches for early-stage interventions in fetuses and neonates.

Impact

  • BPD-associated PH is a complex disease involving genetic and epigenetic factors, as well as environmental exposures starting from fetal life.

  • The value of combining multiple imaging and biochemical biomarkers is emerging, but requires larger, multicenter studies for validation and diffusion.

  • Since “single-bullet” approaches have proven elusive so far, combined pharmacological regimen and cell-based therapies may represent important avenues for research leading to future cure and prevention.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Simplified molecular pathways involved in pulmonary vascular tone regulation and remodeling.

References

  1. 1.

    Stoll, B. J. et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314, 1039–1051 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Stensvold, H. J. et al. Neonatal morbidity and 1-year survival of extremely preterm infants. Pediatrics 139, e20161821 (2017).

    PubMed  Article  Google Scholar 

  3. 3.

    Abman, S. H. et al. Interdisciplinary care of children with severe bronchopulmonary dysplasia. J. Pediatr. 181, 12–28 e1 (2017).

    PubMed  Article  Google Scholar 

  4. 4.

    Khemani, E. et al. Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 120, 1260–1269 (2007).

    PubMed  Article  Google Scholar 

  5. 5.

    Lagatta, J. M. et al. The impact of pulmonary hypertension in preterm infants with severe bronchopulmonary dysplasia through 1 year. J. Pediatr. 203, 218–24 e3 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Bhat, R., Salas, A. A., Foster, C., Carlo, W. A. & Ambalavanan, N. Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics 129, e682–e689 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Kim, D. H. et al. Risk factors for pulmonary artery hypertension in preterm infants with moderate or severe bronchopulmonary dysplasia. Neonatology 101, 40–46 (2012).

    PubMed  Article  Google Scholar 

  8. 8.

    Mourani, P. M. et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 191, 87–95 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Levy, P. T., Patel, M. D., Choudhry, S., Hamvas, A. & Singh, G. K. Evidence of echocardiographic markers of pulmonary vascular disease in asymptomatic infants born preterm at one year of age. J. Pediatr. 197, 48–56 e2 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Baker, C. D., Abman, S. H. & Mourani, P. M. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Pediatr. Allergy Immunol. Pulmonol. 27, 8–16 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Krishnan, U. et al. Evaluation and management of pulmonary hypertension in children with bronchopulmonary dysplasia. J. Pediatr. 188, 24–34 e1 (2017).

    PubMed  Article  Google Scholar 

  12. 12.

    Steurer, M. A. et al. Mortality in infants with bronchopulmonary dysplasia: data from cardiac catheterization. Pediatr. Pulmonol. 54, 804–813 (2019).

    PubMed  Article  Google Scholar 

  13. 13.

    Newth, C. J., Gow, R. M. & Rowe, R. D. The assessment of pulmonary arterial pressures in bronchopulmonary dysplasia by cardiac catheterization and M-mode echocardiography. Pediatr. Pulmonol. 1, 58–62 (1985).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Singh, A., Feingold, B., Rivera-Lebron, B., Weiner, D. & Drant, S. Correlating objective echocardiographic parameters in patients with pulmonary hypertension due to bronchopulmonary dysplasia. J. Perinatol. 39, 1282–1290 (2019).

    PubMed  Article  Google Scholar 

  15. 15.

    Nawaytou, H. et al. Clinical utility of echocardiography in former preterm infants with bronchopulmonary dysplasia. J. Am. Soc. Echocardiogr. 33, 378–388 e1 (2020).

    PubMed  Article  Google Scholar 

  16. 16.

    Di Maria, M. V. et al. Maturational changes in diastolic longitudinal myocardial velocity in preterm infants. J. Am. Soc. Echocardiogr. 28, 1045–1052 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Murase, M. & Ishida, A. Serial pulsed Doppler assessment of pulmonary artery pressure in very low birth-weight infants. Pediatr. Cardiol. 21, 452–457 (2000).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Ehrmann, D. E. et al. Echocardiographic measurements of right ventricular mechanics in infants with bronchopulmonary dysplasia at 36 weeks postmenstrual age. J. Pediatr. 203, 210–7 e1 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Mourani, P. M., Sontag, M. K., Younoszai, A., Ivy, D. D. & Abman, S. H. Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease. Pediatrics 121, 317–325 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    McCrary, A. W. et al. Differences in eccentricity index and systolic-diastolic ratio in extremely low-birth-weight infants with bronchopulmonary dysplasia at risk of pulmonary hypertension. Am. J. Perinatol. 33, 57–62 (2016).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Levy, P. T. et al. Pulmonary artery acceleration time provides a reliable estimate of invasive pulmonary hemodynamics in children. J. Am. Soc. Echocardiogr. 29, 1056–1065 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Patel, M. D. et al. Echocardiographic assessment of right ventricular afterload in preterm infants: maturational patterns of pulmonary artery acceleration time over the first year of age and implications for pulmonary hypertension. J. Am. Soc. Echocardiogr. 32, 884–94 e4 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Gaulton, J. S. et al. Relationship between pulmonary artery acceleration time and pulmonary artery pressures in infants. Echocardiography 36, 1524–1531 (2019).

    PubMed  Article  Google Scholar 

  24. 24.

    Levy, P. T. et al. Right ventricular function in preterm and term neonates: reference values for right ventricle areas and fractional area of change. J. Am. Soc. Echocardiogr. 28, 559–569 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Koestenberger, M. et al. Systolic right ventricular function in preterm and term neonates: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 258 patients and calculation of Z-score values. Neonatology 100, 85–92 (2011).

    PubMed  Article  Google Scholar 

  26. 26.

    Levy, P. T. et al. Maturational patterns of systolic ventricular deformation mechanics by two-dimensional speckle-tracking echocardiography in preterm infants over the first year of age. J. Am. Soc. Echocardiogr. 30, 685–98 e1 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Erickson, C. T. et al. Persistence of right ventricular dysfunction and altered morphometry in asymptomatic preterm Infants through one year of age: cardiac phenotype of prematurity. Cardiol. Young 29, 945–953 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Ligon, R. A., Vaiyani, D. & Deshpande, S. Right ventricular myocardial performance index in pediatric patients with bronchopulmonary dysplasia-related pulmonary hypertension. Echocardiography 36, 1353–1356 (2019).

    PubMed  Google Scholar 

  29. 29.

    Blanca, A. J. et al. Right ventricular function in infants with bronchopulmonary dysplasia and pulmonary hypertension: a pilot study. Pulm. Circ. 9, 2045894018816063 (2019).

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Malowitz, J. R. et al. Right ventricular echocardiographic indices predict poor outcomes in infants with persistent pulmonary hypertension of the newborn. Eur. Heart J. Cardiovasc. Imaging 16, 1224–1231 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Seo, Y. H. & Choi, H. J. Clinical Utility of echocardiography for early and late pulmonary hypertension in preterm infants: relation with bronchopulmonary dysplasia. J. Cardiovasc. Ultrasound 25, 124–130 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Cameli, M. et al. Speckle tracking echocardiography: a practical guie]. G Ital. Cardiol. 18, 253–269 (2017).

    Google Scholar 

  33. 33.

    Patel, N. & Kipfmueller, F. Cardiac dysfunction in congenital diaphragmatic hernia: Pathophysiology, clinical assessment, and management. Semin. Pediatr. Surg. 26, 154–158 (2017).

    PubMed  Article  Google Scholar 

  34. 34.

    Gorter, T. M., Willems, T. P. & van Melle, J. P. Ventricular interdependence in pulmonary arterial hypertension: providing small pieces of a complex puzzle. Eur. J. Heart Fail. 17, 1–2 (2015).

    PubMed  Article  Google Scholar 

  35. 35.

    Motoji, Y. et al. Interdependence of right ventricular systolic function and left ventricular filling and its association with outcome for patients with pulmonary hypertension. Int. J. Cardiovasc. Imaging 31, 691–698 (2015).

    PubMed  Article  Google Scholar 

  36. 36.

    Buckberg, G. D., Hoffman, J. I., Coghlan, H. C. & Nanda, N. C. Ventricular structure-function relations in health and disease: part I. The normal heart. Eur. J. Cardiothorac. Surg. 47, 587–601 (2015).

    PubMed  Article  Google Scholar 

  37. 37.

    Massolo, A. C. et al. Ventricular dysfunction, interdependence, and mechanical dispersion in newborn infants with congenital diaphragmatic hernia. Neonatology 116, 68–75 (2019).

    PubMed  Article  Google Scholar 

  38. 38.

    Bokiniec, R., Wlasienko, P., Borszewska-Kornacka, M. & Szymkiewicz-Dangel, J. Evaluation of left ventricular function in preterm infants with bronchopulmonary dysplasia using various echocardiographic techniques. Echocardiography 34, 567–576 (2017).

    PubMed  Article  Google Scholar 

  39. 39.

    James, A. T. et al. Longitudinal assessment of left and right myocardial function in preterm infants using strain and strain rate imaging. Neonatology 109, 69–75 (2016).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Nagiub, M., Lee, S. & Guglani, L. Echocardiographic assessment of pulmonary hypertension in infants with bronchopulmonary dysplasia: systematic review of literature and a proposed algorithm for assessment. Echocardiography 32, 819–833 (2015).

    PubMed  Article  Google Scholar 

  41. 41.

    Mirza, H. et al. Pulmonary hypertension in preterm infants: prevalence and association with bronchopulmonary dysplasia. J. Pediatr. 165, 909–14 e1 (2014).

    PubMed  Article  Google Scholar 

  42. 42.

    Morrow, L. A. et al. Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants. Am. J. Respir. Crit. Care Med. 196, 364–374 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Lio, A. et al. Fetal Doppler velocimetry and bronchopulmonary dysplasia risk among growth-restricted preterm infants: an observational study. BMJ Open 7, e015232 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Azpurua, H. et al. Acceleration/ejection time ratio in the fetal pulmonary artery predicts fetal lung maturity. Am. J. Obstet. Gynecol. 203, 40 e1–40 e8 (2010).

    Article  Google Scholar 

  45. 45.

    Moety, G. A., Gaafar, H. M. & El Rifai, N. M. Can fetal pulmonary artery Doppler indices predict neonatal respiratory distress syndrome? J. Perinatol. 35, 1015–1019 (2015).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Fuke, S. et al. Antenatal prediction of pulmonary hypoplasia by acceleration time/ejection time ratio of fetal pulmonary arteries by Doppler blood flow velocimetry. Am. J. Obstet. Gynecol. 188, 228–233 (2003).

    PubMed  Article  Google Scholar 

  47. 47.

    Broth, R. E. et al. Prenatal prediction of lethal pulmonary hypoplasia: the hyperoxygenation test for pulmonary artery reactivity. Am. J. Obstet. Gynecol. 187, 940–945 (2002).

    PubMed  Article  Google Scholar 

  48. 48.

    Done, E. et al. Maternal hyperoxygenation test in fetuses undergoing FETO for severe isolated congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 37, 264–271 (2011).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Triebwasser, J. E. & Treadwell, M. C. Prenatal prediction of pulmonary hypoplasia. Semin. Fetal Neonatal Med. 22, 245–249 (2017).

    PubMed  Article  Google Scholar 

  50. 50.

    Beghetti, M. et al. Diagnostic evaluation of paediatric pulmonary hypertension in current clinical practice. Eur. Respir. J. 42, 689–700 (2013).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Hansmann, G. et al. Executive summary. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 102, ii86–ii100 (2016).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Ivy, D. Pulmonary hypertension in children. Cardiol. Clin. 34, 451–472 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Frank, B. S. et al. Acute vasoreactivity testing during cardiac catheterization of neonates with bronchopulmonary dysplasia-associated pulmonary hypertension. J. Pediatr. 208, 127–133 (2019).

    PubMed  Article  Google Scholar 

  54. 54.

    Taylor, C. J., Derrick, G., McEwan, A., Haworth, S. G. & Sury, M. R. Risk of cardiac catheterization under anaesthesia in children with pulmonary hypertension. Br. J. Anaesth. 98, 657–661 (2007).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    O’Byrne, M. L., Kennedy, K. F., Kanter, J. P., Berger, J. T. & Glatz, A. C. Risk factors for major early adverse events related to cardiac catheterization in children and young adults with pulmonary hypertension: an analysis of data from the IMPACT (Improving Adult and Congenital Treatment) Registry. J. Am. Heart Assoc. 7, e008142 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Kumar, V. H. S. Diagnostic approach to pulmonary hypertension in premature neonates. Children 4, 75 (2017).

    PubMed Central  Article  PubMed  Google Scholar 

  57. 57.

    Lamers, L. J. et al. Multicenter assessment of radiation exposure during pediatric cardiac catheterizations using a novel imaging system. J. Inter. Cardiol. 2019, 7639754 (2019).

    Article  Google Scholar 

  58. 58.

    Zampi, J. D. & Whiteside, W. Innovative interventional catheterization techniques for congenital heart disease. Transl. Pediatr. 7, 104–119 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Kang, S. L. & Benson, L. Recent advances in cardiac catheterization for congenital heart disease. F1000Res 7, 370 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Latus, H. et al. Cardiac MR and CT imaging in children with suspected or confirmed pulmonary hypertension/pulmonary hypertensive vascular disease. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 102, ii30–ii35 (2016).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Hahn, A. D. et al. Pulmonary MRI of neonates in the intensive care unit using 3D ultrashort echo time and a small footprint MRI system. J. Magn. Reson. Imaging 45, 463–471 (2017).

    PubMed  Article  Google Scholar 

  62. 62.

    Higano, N. S. et al. Neonatal pulmonary magnetic resonance imaging of bronchopulmonary dysplasia predicts short-term clinical outcomes. Am. J. Respir. Crit. Care Med. 198, 1302–1311 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Forster, K. et al. Altered relaxation times in MRI indicate bronchopulmonary dysplasia. Thorax 75, 184–187 (2020).

    PubMed  Article  Google Scholar 

  64. 64.

    Voskrebenzev, A. & Vogel-Claussen, J. Proton MRI of the lung: how to tame scarce protons and fast signal decay. J. Magn. Reson. Imaging 27122 (2020).

  65. 65.

    Critser, P. J. et al. Cardiac magnetic resonance imaging evaluation of neonatal bronchopulmonary dysplasia-associated pulmonary hypertension. Am. J. Respir. Crit. Care Med. 201, 73–82 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Casserly, B. & Klinger, J. R. Brain natriuretic peptide in pulmonary arterial hypertension: biomarker and potential therapeutic agent. Drug Des. Dev. Ther. 3, 269–287 (2009).

    CAS  Google Scholar 

  67. 67.

    Yasue, H. et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 90, 195–203 (1994).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Nagaya, N. et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 31, 202–208 (1998).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Montgomery, A. M. et al. Biochemical screening for pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Neonatology 109, 190–194 (2016).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Cuna, A., Kandasamy, J. & Sims, B. B-type natriuretic peptide and mortality in extremely low birth weight infants with pulmonary hypertension: a retrospective cohort analysis. BMC Pediatr. 14, 68 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Behere, S., Alapati, D. & McCulloch, M. A. Screening echocardiography and brain natriuretic peptide levels predict late pulmonary hypertension in infants with bronchopulmonary dysplasia. Pediatr. Cardiol. 40, 973–979 (2019).

    PubMed  Article  Google Scholar 

  72. 72.

    Amdani, S. M., Mian, M. U. M., Thomas, R. L. & Ross, R. D. NT-pro BNP-A marker for worsening respiratory status and mortality in infants and young children with pulmonary hypertension. Congenit. Heart Dis. 13, 499–505 (2018).

    PubMed  Article  Google Scholar 

  73. 73.

    Reynolds, E. W., Ellington, J. G., Vranicar, M. & Bada, H. S. Brain-type natriuretic peptide in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatrics 114, 1297–1304 (2004).

    PubMed  Article  Google Scholar 

  74. 74.

    Steurer, M. A. et al. B-type natriuretic peptide: prognostic marker in congenital diaphragmatic hernia. Pediatr. Res. 76, 549–554 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Konig, K., Guy, K. J., Walsh, G., Drew, S. M. & Barfield, C. P. Association of BNP, NTproBNP, and early postnatal pulmonary hypertension in very preterm infants. Pediatr. Pulmonol. 51, 820–824 (2016).

    PubMed  Article  Google Scholar 

  76. 76.

    Choi, B. M. et al. Utility of rapid B-type natriuretic peptide assay for diagnosis of symptomatic patent ductus arteriosus in preterm infants. Pediatrics 115, e255–e261 (2005).

    PubMed  Article  Google Scholar 

  77. 77.

    Farombi-Oghuvbu, I., Matthews, T., Mayne, P. D., Guerin, H. & Corcoran, J. D. N-terminal pro-B-type natriuretic peptide: a measure of significant patent ductus arteriosus. Arch. Dis. Child Fetal Neonatal Ed. 93, F257–F260 (2008).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    McMahon, T. J. & Bryan, N. S. Biomarkers in pulmonary vascular disease: gauging response to therapy. Am. J. Cardiol. 120, S89–S95 (2017).

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Gien, J., Tseng, N., Seedorf, G., Kuhn, K. & Abman, S. H. Endothelin-1-Rho kinase interactions impair lung structure and cause pulmonary hypertension after bleomycin exposure in neonatal rat pups. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L1090–L1100 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    El Sayed, M. et al. Endothelin-1 and L-arginine in preterm infants with respiratory distress. Am. J. Perinatol. 28, 129–136 (2011).

    PubMed  Article  Google Scholar 

  81. 81.

    Niu, J. O., Munshi, U. K., Siddiq, M. M. & Parton, L. A. Early increase in endothelin-1 in tracheal aspirates of preterm infants: correlation with bronchopulmonary dysplasia. J. Pediatr. 132, 965–970 (1998).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Alvarez-Fuente, M. et al. Exploring clinical, echocardiographic and molecular biomarkers to predict bronchopulmonary dysplasia. PLoS ONE 14, e0213210 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. 83.

    Benzing, J. et al. Plasma pro-endothelin-1 and respiratory distress in newborn infants. J. Pediatr. 160, 517–519 (2012).

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Baumann, P. et al. Plasma proendothelin-1 as an early marker of bronchopulmonary dysplasia. Neonatology 108, 293–296 (2015).

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Stenmark, K. R. & Abman, S. H. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu. Rev. Physiol. 67, 623–661 (2005).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Mestan, K. K. et al. Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension. J. Pediatr. 185, 33–41 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Mestan, K. K. et al. Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension. Placenta 35, 570–574 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Kim, D. H. & Kim, H. S. Serial changes of serum endostatin and angiopoietin-1 levels in preterm infants with severe bronchopulmonary dysplasia and subsequent pulmonary artery hypertension. Neonatology 106, 55–61 (2014).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Bhatt, A. J. et al. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 164, 1971–1980 (2001).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Mourani, P. M., Sontag, M. K., Ivy, D. D. & Abman, S. H. Effects of long-term sildenafil treatment for pulmonary hypertension in infants with chronic lung disease. J. Pediatr. 154, 379–384 e1–2 (2009).

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Abounahia, F. F. et al. Prophylactic sildenafil in preterm infants at risk of bronchopulmonary dysplasia: a pilot randomized, double-blinded, placebo-controlled trial. Clin. Drug Investig. 39, 1093–1107 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Konig, K., Barfield, C. P., Guy, K. J., Drew, S. M. & Andersen, C. C. The effect of sildenafil on evolving bronchopulmonary dysplasia in extremely preterm infants: a randomised controlled pilot study. J. Matern. Fetal Neonatal Med. 27, 439–444 (2014).

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Samiee-Zafarghandy, S. et al. Sildenafil and retinopathy of prematurity risk in very low birth weight infants. J. Perinatol. 36, 137–140 (2016).

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Sabri, M. R. & Beheshtian, E. Comparison of the therapeutic and side effects of tadalafil and sildenafil in children and adolescents with pulmonary arterial hypertension. Pediatr. Cardiol. 35, 699–704 (2014).

    PubMed  Article  Google Scholar 

  95. 95.

    Shiva, A. et al. Oral Tadalafil in children with pulmonary arterial hypertension. Drug Res. 66, 7–10 (2016).

    CAS  Google Scholar 

  96. 96.

    Takatsuki, S., Calderbank, M. & Ivy, D. D. Initial experience with tadalafil in pediatric pulmonary arterial hypertension. Pediatr. Cardiol. 33, 683–688 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Yamamura, A. et al. Tadalafil induces antiproliferation, apoptosis, and phosphodiesterase type 5 downregulation in idiopathic pulmonary arterial hypertension in vitro. Eur. J. Pharm. 810, 44–50 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Russo, F. M. et al. Transplacental sildenafil rescues lung abnormalities in the rabbit model of diaphragmatic hernia. Thorax 71, 517–525 (2016).

    PubMed  Article  Google Scholar 

  99. 99.

    Russo, F. M. et al. Antenatal sildenafil administration to prevent pulmonary hypertension in congenital diaphragmatic hernia (SToP-PH): study protocol for a phase I/IIb placenta transfer and safety study. Trials 19, 524 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Pels, A. et al. STRIDER (Sildenafil TheRapy in dismal prognosis early onset fetal growth restriction): an international consortium of randomised placebo-controlled trials. BMC Pregnancy Childbirth 17, 440 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Sharp, A. et al. Maternal sildenafil for severe fetal growth restriction (STRIDER): a multicentre, randomised, placebo-controlled, double-blind trial. Lancet Child Adolesc. Health 2, 93–102 (2018).

    PubMed  Article  Google Scholar 

  102. 102.

    Groom, K. M. et al. STRIDER NZAus: a multicentre randomised controlled trial of sildenafil therapy in early-onset fetal growth restriction. BJOG 126, 997–1006 (2019).

    CAS  PubMed  Google Scholar 

  103. 103.

    Maki, S. et al. Safety evaluation of Tadalafil treatment for fetuses with early-onset growth restriction (TADAFER): results from the phase II trial. J Clin Med. 8, 856 (2019).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  104. 104.

    Dasgupta, A., Bowman, L., D’Arsigny, C. L. & Archer, S. L. Soluble guanylate cyclase: a new therapeutic target for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Clin. Pharm. Ther. 97, 88–102 (2015).

    CAS  Article  Google Scholar 

  105. 105.

    Ghofrani, H. A. et al. Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 369, 330–340 (2013).

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Rubin, L. J. et al. Riociguat for the treatment of pulmonary arterial hypertension: a long-term extension study (PATENT-2). Eur. Respir. J. 45, 1303–1313 (2015).

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Donda, K. et al. Riociguat prevents hyperoxia-induced lung injury and pulmonary hypertension in neonatal rats without effects on long bone growth. PLoS ONE 13, e0199927 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. 108.

    Spreemann, T., Bertram, H., Happel, C. M., Kozlik-Feldmann, R. & Hansmann, G. First-in-child use of the oral soluble guanylate cyclase stimulator riociguat in pulmonary arterial hypertension. Pulm. Circ. 8, 2045893217743123 (2018).

    PubMed  Article  CAS  Google Scholar 

  109. 109.

    Steinhorn, R. H. et al. Bosentan as adjunctive therapy for persistent pulmonary hypertension of the newborn: results of the randomized multicenter placebo-controlled exploratory trial. J. Pediatr. 177, 90–6 e3 (2016).

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Rugolotto, S. et al. Weaning of epoprostenol in a small infant receiving concomitant bosentan for severe pulmonary arterial hypertension secondary to bronchopulmonary dysplasia. Minerva Pediatr. 58, 491–494 (2006).

    CAS  PubMed  Google Scholar 

  111. 111.

    Takatsuki, S. et al. Clinical safety, pharmacokinetics, and efficacy of ambrisentan therapy in children with pulmonary arterial hypertension. Pediatr. Pulmonol. 48, 27–34 (2013).

    PubMed  Article  Google Scholar 

  112. 112.

    Wagenaar, G. T. et al. Ambrisentan reduces pulmonary arterial hypertension but does not stimulate alveolar and vascular development in neonatal rats with hyperoxic lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L264–L275 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Iglarz, M. et al. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist. J. Pharm. Exp. Ther. 327, 736–745 (2008).

    CAS  Article  Google Scholar 

  114. 114.

    Weiss, J. et al. Interaction profile of macitentan, a new non-selective endothelin-1 receptor antagonist, in vitro. Eur. J. Pharm. 701, 168–175 (2013).

    CAS  Article  Google Scholar 

  115. 115.

    Pulido, T. et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N. Engl. J. Med. 369, 809–818 (2013).

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Majed, B. H. & Khalil, R. A. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharm. Rev. 64, 540–582 (2012).

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Shivanna, B., Gowda, S., Welty, S. E., Barrington, K. J. & Pammi, M. Prostanoids and their analogues for the treatment of pulmonary hypertension in neonates. Cochrane Database Syst. Rev. 10, CD012963 (2019).

    PubMed  Google Scholar 

  118. 118.

    Olson, E., Lusk, L. A., Fineman, J. R., Robertson, L. & Keller, R. L. Short-term treprostinil use in infants with congenital diaphragmatic hernia following repair. J. Pediatr. 167, 762–764 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Carpentier, E. et al. Safety and tolerability of subcutaneous treprostinil in newborns with congenital diaphragmatic hernia and life-threatening pulmonary hypertension. J. Pediatr. Surg. 52, 1480–1483 (2017).

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Lawrence, K. M. et al. Treprostinil improves persistent pulmonary hypertension associated with congenital diaphragmatic hernia. J. Pediatr. 200, 44–49 (2018).

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Ferdman, D. J., Rosenzweig, E. B., Zuckerman, W. A. & Krishnan, U. Subcutaneous treprostinil for pulmonary hypertension in chronic lung disease of infancy. Pediatrics 134, e274–e278 (2014).

    PubMed  Article  Google Scholar 

  122. 122.

    Olave, N., Lal, C. V., Halloran, B., Bhandari, V. & Ambalavanan, N. Iloprost attenuates hyperoxia-mediated impairment of lung development in newborn mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 315, L535–L544 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Barst, R. J. et al. Beraprost therapy for pulmonary arterial hypertension. J. Am. Coll. Cardiol. 41, 2119–2125 (2003).

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Galie, N. et al. Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 39, 1496–1502 (2002).

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Beghetti, M. et al. Selexipag treatment for pulmonary arterial hypertension associated with congenital heart disease after defect correction: insights from the randomised controlled GRIPHON study. Eur. J. Heart Fail. 21, 352–359 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Geerdink, L. M., Bertram, H. & Hansmann, G. First-in-child use of the oral selective prostacyclin IP receptor agonist selexipag in pulmonary arterial hypertension. Pulm. Circ. 7, 551–554 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Rothman, A., Cruz, G., Evans, W. N. & Restrepo, H. Hemodynamic and clinical effects of selexipag in children with pulmonary hypertension. Pulm. Circ. 10, 2045894019876545 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  128. 128.

    Frost, A. et al. Safety and tolerability of transition from inhaled treprostinil to oral selexipag in pulmonary arterial hypertension: results from the TRANSIT-1 study. J. Heart Lung Transplant. 38, 43–50 (2019).

    PubMed  Article  Google Scholar 

  129. 129.

    Hansmann, G. et al. Selexipag for the treatment of children with pulmonary arterial hypertension: First multicenter experience in drug safety and efficacy. J. Heart Lung Transplant. 39, 695–706 (2020).

    PubMed  Article  Google Scholar 

  130. 130.

    Koo, R., Lo, J. & Bock, M. J. Transition from intravenous treprostinil to enteral selexipag in an infant with pulmonary arterial hypertension. Cardiol. Young 29, 849–851 (2019).

    PubMed  Article  Google Scholar 

  131. 131.

    Mous, D. S. et al. Treatment of rat congenital diaphragmatic hernia with sildenafil and NS-304, selexipag’s active compound, at the pseudoglandular stage improves lung vasculature. Am. J. Physiol. Lung Cell. Mol. Physiol. 315, L276–L285 (2018).

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Hansmann, G. et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation 115, 1275–1284 (2007).

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Rashid, J., Nozik-Grayck, E., McMurtry, I. F., Stenmark, K. R. & Ahsan, F. Inhaled combination of sildenafil and rosiglitazone improves pulmonary hemodynamics, cardiac function, and arterial remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol. 316, L119–L130 (2019).

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Gosemann, J. H. et al. Prenatal treatment with rosiglitazone attenuates vascular remodeling and pulmonary monocyte influx in experimental congenital diaphragmatic hernia. PLoS ONE 13, e0206975 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. 135.

    Dasgupta, C. et al. Hyperoxia-induced neonatal rat lung injury involves activation of TGF-{beta} and Wnt signaling and is protected by rosiglitazone. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L1031–L1041 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Katsi, V. et al. The role of statins in prevention of preeclampsia: a promise for the future? Front. Pharm. 8, 247 (2017).

    Article  CAS  Google Scholar 

  137. 137.

    Salaets, T. et al. Simvastatin attenuates lung functional and vascular effects of hyperoxia in preterm rabbits. Pediatr. Res. 87, 1193–1200 (2020).

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Makanga, M. et al. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L672–L682 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Wong, M. J., Kantores, C., Ivanovska, J., Jain, A. & Jankov, R. P. Simvastatin prevents and reverses chronic pulmonary hypertension in newborn rats via pleiotropic inhibition of RhoA signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L985–L999 (2016).

    PubMed  Article  Google Scholar 

  140. 140.

    Costantine, M. M. et al. Safety and pharmacokinetics of pravastatin used for the prevention of preeclampsia in high-risk pregnant women: a pilot randomized controlled trial. Am. J. Obstet. Gynecol. 214, 720 e1–e17 (2016).

    Article  CAS  Google Scholar 

  141. 141.

    Leong, Z. P., Okida, A., Higuchi, M., Yamano, Y. & Hikasa, Y. Reversal effects of low-dose imatinib compared with sunitinib on monocrotaline-induced pulmonary and right ventricular remodeling in rats. Vasc. Pharm. 100, 41–50 (2018).

    CAS  Article  Google Scholar 

  142. 142.

    Schermuly, R. T. et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 115, 2811–2821 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Hoeper, M. M. et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation 127, 1128–1138 (2013).

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Callahan, R. et al. Adjunct targeted biologic inhibition agents to treat aggressive multivessel intraluminal pediatric pulmonary vein stenosis. J. Pediatr. 198, 29–35 e5 (2018).

    PubMed  Article  Google Scholar 

  145. 145.

    Savai, R. et al. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat. Med. 20, 1289–1300 (2014).

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Mouchaers, K. T. et al. Fasudil reduces monocrotaline-induced pulmonary arterial hypertension: comparison with bosentan and sildenafil. Eur. Respir. J. 36, 800–807 (2010).

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Tamura, Y. et al. Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension. J. Clin. Invest. 128, 1956–1970 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Spiekerkoetter, E. et al. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur. Respir. J. 50, 1602449 (2016).

    Article  CAS  Google Scholar 

  149. 149.

    Chen, X. et al. Bone morphogenetic protein 9 protects against neonatal hyperoxia-induced impairment of alveolarization and pulmonary inflammation. Front. Physiol. 8, 486 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Balasubramaniam, V., Mervis, C. F., Maxey, A. M., Markham, N. E. & Abman, S. H. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L1073–L1084 (2007).

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Augustine, S. et al. Mesenchymal stromal cell therapy in bronchopulmonary dysplasia: systematic review and meta-analysis of preclinical studies. Stem Cells Transl. Med. 6, 2079–2093 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Chang, Y. S. et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J. Pediatr. 164, 966–72 e6 (2014).

    PubMed  Article  Google Scholar 

  153. 153.

    Powell, S. B. & Silvestri, J. M. Safety of intratracheal administration of human umbilical cord blood derived mesenchymal stromal cells in extremely low birth weight preterm infants. J. Pediatr. 210, 209–13 e2 (2019).

    PubMed  Article  Google Scholar 

  154. 154.

    Lim, R. et al. First-in-human administration of allogeneic amnion cells in premature infants with bronchopulmonary dysplasia: a safety study. Stem Cells Transl. Med. 7, 628–635 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Malhotra, A., Lim, R., Mockler, J. C. & Wallace, E. M. Two-year outcomes of infants enrolled in the first-in-human study of amnion cells for bronchopulmonary dysplasia. Stem Cells Transl. Med. 9, 289–294 (2020).

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Baker, E. K. et al. Human amnion cells for the prevention of bronchopulmonary dysplasia: a protocol for a phase I dose escalation study. BMJ Open 9, e026265 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Worthington, E. N. & Hagood, J. S. Therapeutic use of extracellular vesicles for acute and chronic lung disease. Int. J. Mol. Sci. 21, 2318 (2020).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  158. 158.

    Wang, Y. et al. Mesenchymal stem cell-derived secretomes for therapeutic potential of premature infant diseases. Biosci. Rep. 40, BSR20200241 (2020).

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Klinger, J. R. et al. Mesenchymal stem cell extracellular vesicles reverse sugen/hypoxia pulmonary hypertension in rats. Am. J. Respir. Cell Mol. Biol. 62, 577–587 (2020).

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Suzuki, T. et al. Mesenchymal stem/stromal cells stably transduced with an inhibitor of CC chemokine ligand 2 ameliorate bronchopulmonary dysplasia and pulmonary hypertension. Cytotherapy 22, 180–192 (2020).

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Mitsialis, S. A. The unsettling ambiguity of therapeutic extracellular vesicles from mesenchymal stromal cells. Am. J. Respir. Cell Mol. Biol. 62, 539–540 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Consortia

Contributions

C.H. and O.D. collaborated on the conception and writing of this review. A.G. and O.D. contributed to the pharmacology section. C.H., L.V., and A.C.M. contributed to the imaging section. F.P., B.V.G., and K.C. contributed to the redaction and revision of the manuscript. All authors critically reviewed and agreed upon the final version of the manuscript.

Corresponding author

Correspondence to Olivier Danhaive.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hocq, C., Vanhoutte, L., Guilloteau, A. et al. Early diagnosis and targeted approaches to pulmonary vascular disease in bronchopulmonary dysplasia. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01413-w

Download citation

Search

Quick links