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Multichannel EEG abnormalities during the first 6 hours in
infants with mild hypoxic–ischaemic encephalopathy
Aisling A. Garvey1,2, Andreea M. Pavel1,2, John M. O’Toole1,2, Brian H. Walsh1,2, Irina Korotchikova1,2, Vicki Livingstone1,2,
Eugene M. Dempsey1,2, Deirdre M. Murray1,2 and Geraldine B. Boylan1,2

BACKGROUND: Infants with mild HIE are at risk of significant disability at follow-up. In the pre-therapeutic hypothermia (TH) era,
electroencephalography (EEG) within 6 hours of birth was most predictive of outcome. This study aims to identify and describe
features of early EEG and heart rate variability (HRV) (<6 hours of age) in infants with mild HIE compared to healthy term infants.
METHODS: Infants >36 weeks with mild HIE, not undergoing TH, with EEG before 6 hours of age were identified from 4 prospective
cohort studies conducted in the Cork University Maternity Services, Ireland (2003–2019). Control infants were taken from a
contemporaneous study examining brain activity in healthy term infants. EEGs were qualitatively analysed by two neonatal
neurophysiologists and quantitatively assessed using multiple features of amplitude, spectral shape and inter-hemispheric
connectivity. Quantitative features of HRV were assessed in both the groups.
RESULTS: Fifty-eight infants with mild HIE and sixteen healthy term infants were included. Seventy-two percent of infants with mild
HIE had at least one abnormal EEG feature on qualitative analysis and quantitative EEG analysis revealed significant differences in
spectral features between the two groups. HRV analysis did not differentiate between the groups.
CONCLUSIONS: Qualitative and quantitative analysis of the EEG before 6 hours of age identified abnormal EEG features in mild HIE,
which could aid in the objective identification of cases for future TH trials in mild HIE.
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IMPACT:

● Infants with mild HIE currently do not meet selection criteria for TH yet may be at risk of significant disability at follow-up.
● In the pre-TH era, EEG within 6 hours of birth was most predictive of outcome; however, TH has delayed this predictive value.
● 72% of infants with mild HIE had at least one abnormal EEG feature in the first 6 hours on qualitative assessment.
● Quantitative EEG analysis revealed significant differences in spectral features between infants with mild HIE and healthy term

infants.
● Quantitative EEG features may aid in the objective identification of cases for future TH trials in mild HIE.

INTRODUCTION
Hypoxic–ischaemic encephalopathy (HIE) accounts for 1–3 per
1000 live births per year1 and is the leading cause of acquired
brain injury in term infants. It is clinically graded as mild, moderate
and severe. Adverse long-term neurodevelopmental outcome is
correlated with increasing severity of encephalopathy.2–5

Therapeutic hypothermia (TH) has become standard of care for
infants with moderate-to-severe HIE.6 To be effective, TH must be
commenced early, within 6 hours of birth.7–9 However, it can often
be difficult to differentiate clinically between mild and moderate
encephalopathy in this short timeframe.10,11 TH is not currently
indicated for infants with mild HIE. Previously, these infants were
considered to have normal outcomes2,12,13 and so were omitted
from TH trials due to the perceived low risk of disability. However,
more recent studies highlight significant levels of disability at
follow-up.14–17 A systematic review by Conway et al. found that
25% of infants with mild HIE had poor neurodevelopmental
outcome.18 Their pattern of disability appears different to those

with moderate to severe HIE. Infants with mild HIE have less motor
difficulties but have an increased risk of learning disabilities,
emotional and behavioural issues, with 35% requiring school and/
or behavioural support at 5 years.15 This rate is similar to previous
cohorts of infants with moderate HIE who were not cooled.15

Despite the lack of appropriate evidence, there has been a drift
in practice with some centres providing TH to infants clinically
categorised as mild HIE.19–21 This is fuelled by fear of both
misdiagnosis and litigation.22 Trials evaluating TH in infants with
mild HIE are required but identification of such infants can be
challenging clinically. Disagreement exists regarding both the
method and timing of assessment.2,23 Clinical and electroence-
phalography (EEG) assessment tools validated for use at 24 hours
are no longer appropriate.6 Objective parameters are required to
aid in early decision-making in the immediate postnatal period.
EEG plays an important role in caring for newborns with HIE, not

only in seizure identification but also in prognostication. EEG
findings can evolve rapidly in the first 6 hours of life. Healthy term
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infants should demonstrate mixed-frequency continuous EEG with
regular sleep–wake cycling (SWC) from birth and absence of SWC
has been associated with poor neurodevelopmental outcome.24,25

Very little information exists about the EEG features in mild
encephalopathy. In the pre-TH era, amplitude integrated EEG
(aEEG) within 6 hours of birth was the most useful tool for
predicting outcome in infants with HIE26; however, TH has delayed
the predictive ability of aEEG to 48 hours of life.27–29 A normal
continuous EEG in the first 6 hours of life predicts a normal
outcome at 2 years of age.30

Heart rate variability (HRV) can be assessed from simultaneous
electrocardiography (ECG) recordings. It provides a measure of
autonomic function by assessing the difference in time between
heartbeats, denoted as either the RR (inter-beat) or NN (“normal”
inter-beat) interval. HRV between 12 and 48 hours after birth has
the ability to differentiate between grades of encephalopathy and
correlate with neurodevelopmental outcome at 2 years,31 but no
study has examined the ability of early HRV to determine grade of
encephalopathy or its early use in mild HIE.
The aim of this study is to identify and describe features of early

(before 6 hours of age) EEG and HRV in infants with mild HIE
compared to a healthy term group.

METHODS
This was a retrospective study of infants with mild HIE and healthy
term infants recruited as part of previous prospective studies in
Cork, Ireland between 2003 and 2019. Each study was approved
by the Cork Research Ethics Committee. From these cohorts,
infants who had EEG recordings before 6 hours of age were
identified.

Cohorts
The non-HIE group was from a previous study examining brain
activity in healthy term infants recruited between October 2005
and August 2008.32 EEG was recorded on the postnatal ward.
Inclusion criteria included infants >37 weeks who did not require
resuscitation at birth, had normal cord pH values and had an
Apgar score of >8 at 5 min. Sixteen infants had EEG recordings
before 6 hours of age.
Infants with HIE were recruited as part of the four prospective

cohort studies in the Unified Cork Maternity Services, Cork, Ireland
between May 2003 and June 2019. From these cohorts, we
identified infants with a clinical diagnosis of mild HIE who had EEG
recordings commenced before 6 hours of age. Infants with
evidence of perinatal asphyxia (defined as one or more of the
following; cord or first postnatal pH <7.1; cord or first postnatal
base deficit >16; lactate >9mmol within the first hour of life;
Apgar score <5 at 5 min of life; on-going need for resuscitation at
10min of life (intermittent positive pressure ventilation or
intubation)) were assessed for the presence of HIE using a
modified Sarnat exam by experienced clinicians in each cohort
(Supplementary Table 1). Mild HIE was defined using the criteria
set out by Chalak et al. in the PRIME Study17,33 and re-affirmed in a
recent expert review.34 Specifically, if an infant had any (≥1)
abnormality in any of the six domains of the modified Sarnat score
but did not meet the criteria for moderate or severe encephalo-
pathy (i.e. ≥3 domains that were categorised as either moderate or
severe), they were defined as mild HIE. Multichannel EEG was
recorded for between 6 and 72 hours. Inclusion and exclusion
criteria of the individual studies are outlined in Table 1. The EEG
was recorded from frontal, central, temporal and posterior cortical
regions.

EEG analysis
Qualitative. First, all continuous EEG data available before 6
hours of age for the HIE and non-HIE groups were visually
assessed, and the background pattern was graded as normal or

mildly abnormal background by two neonatal EEG reviewers
independently with complete agreement for both grades. As
slightly different EEG recording locations were used in the HIE and
non-HIE groups, it was not possible to fully blind the reviewers to
study group (in the non-HIE group, posterior electrodes were
located over the right and left parietal regions rather than occipital
regions). Our group has previously developed a standardised
grading scheme to analyse EEG features of preterm EEG35 and we
extended this for the term EEG using seminal works from Lamblin,
Andre, d’Allest and others.36,37 One EEG reviewer then identified
specific qualitative features in both groups according to this
assessment scheme.
Qualitative analysis of the EEG was divided into three main

categories. Category 1 describes temporal organisation (SWC and
features of continuity). Category 2 identifies if abnormal waves are
present (immature or deformed waves, sharp waves or diffuse
delta waves) and Category 3 describes abnormal features of a
term EEG (asymmetry, asynchrony, discontinuity, seizures or low
voltage activity). EEGs were reviewed and the presence or absence
or the various features were noted.

Quantitative. All EEGs were then included in the quantitative
analysis. One-hour epochs of each EEG assessed in the qualitative
analysis before 6 hours of age were selected to include a full sleep
cycle if present and as little artefact as possible. Remaining
artefacts were annotated and removed. EEGs were quantitatively
assessed using multiple features of amplitude, spectral shape, and
inter-hemispheric connectivity using the NEURAL (Neonatal Eeg
featURe set in mAtLab) software package (version 0.4.3).38

Measures of spectral shape included spectral power, spectral
flatness (a measure of spectral entropy) and spectral difference (a
measure of difference in spectral shape over time).
As different EEG or aEEG machines use different algorithms to

generate an aEEG channel, we use the range-EEG (rEEG) as an
alternative. This filtered and time-compressed representative of
EEG is similar to the aEEG but has a unique definition, which
therefore allows for standard quantitative measures.38

Heart rate variability. HRV was computed from the same 1-hour
epochs used for quantitative EEG analysis in both the HIE and non-
HIE groups. R-peaks were automatically identified using a HRV
software application (HRV Analysis, University College Cork, Cork,
Ireland) and then visually inspected and corrected if necessary.
Artefacts were annotated and removed. Quantitative HRV features
were extracted from the R-R interval39 including both time-
domain and frequency-domain features. These features are
consistent with previous neonatal studies.31,39

Statistical analysis
Statistical analysis was performed using IBM SPSS Statistics
(version 24.0, IBM Corp, Armonk, NY, U.S.A.). Continuous variables
were described using the mean and standard deviation (SD) or the
median and interquartile range (IQR) and categorical variables
using frequency and percentage. For comparisons between the
two groups (mild HIE, non-HIE), the Mann–Whitney test was used
for continuous variables and Fisher’s exact test for categorical
variables. Receiver operator characteristic (ROC) curve analysis was
used to assess the predictive ability of quantitative EEG and HRV
features and qualitative EEG features in identifying mild HIE. All
tests were two sided and a p value <0.05 was considered
statistically significant.

RESULTS
Population
Non-HIE. Sixteen healthy term infants were included in the non-
HIE group. Mean birth weight was 3497 g (SD 381 g) and median
gestational age was 39.3 weeks (IQR 38.9–40.6 weeks). Fifty
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percent (n= 8) were born by elective lower section caesarean
section (LSCS) and 31% (n= 5) were born by spontaneous vaginal
delivery (Table 2).

Mild HIE. Fifty-eight infants with mild HIE were included. Mean
birth weight was 3467 g (SD 527 g) and median gestational age at
birth was 40.4 weeks (IQR 39.2–41.3 weeks). Forty-seven percent
(n= 27) were born by instrumental assisted vaginal delivery and
26% (n= 15) were born by emergency LSCS (Table 2).

Qualitative analysis
Qualitative analysis of the EEG was divided into three main
categories as described above: temporal organisation, abnormal
waves, and abnormal features. The main results are displayed in
Table 3.

Non-HIE group. Infants in the non-HIE group demonstrated
normal SWC with continuous mixed-frequency activity with
absence of abnormal waves and features.

Mild HIE. On assessing temporal organisation, 53% demon-
strated clear SWC. Approximately 34% had prolonged inter-burst
intervals in quiet sleep. Regarding abnormal waves and features,
48% had diffuse slow waves and 29% had excessive sharp waves.
21% were noted to have low voltage recording and 19% were
excessively discontinuous with 24% of the EEGs showing periods
of discontinuity (<50% of the recording).
Overall, 72% of the infants with mild HIE had at least one

abnormal EEG feature in the first 6 hours of age, including
absent or abnormal SWC, intermittent discontinuity, diffuse slow
wave activity or excessive sharp waves. The most striking
difference visually was the high frequency of slow and sharp
waves, periods of excessive discontinuity and lower amplitude.
ROC analysis revealed that the absence of SWC or presence of
diffuse slow waves were the features that were most predictive of
mild HIE.

Quantitative analysis
Epochs were analysed at a median time of 0.6 hours (IQR 0.3–1.2
hours) after the start of EEG recording. Quantitative analysis
revealed significant differences in spectral features between

Table 2. Demographics and mode of delivery of the infants included.

Non-HIE
n= 16

Mild HIE
n= 58

Gestational age at birth (weeks)
[median (IQR)]

39.3 (38.9–40.6) 40.4 (39.2–41.3)

Birth weight (g) [mean (SD)] 3497 (381) 3467 (527)

Mode of delivery [n (%)]

SVD 5 (31) 14 (24)

Instrumental 1 (6) 27 (47)

Emergency LCSC 2 (13) 15 (26)

Elective LCSC 8 (50) 1 (2)

Not documented 0 (0) 1 (2)

IQR interquartile range, SD standard deviation, SVD spontaneous vaginal
delivery, LCSC lower section caesarean section.

Table 3. Qualitative EEG features of infants with mild HIE and infants in the non-HIE group.

Non-HIE
n= 16
n (%)

Mild HIE
n= 58
n (%)

p Value* AUC (95% CI)

Group 1 (temporal organisation)

Normal sleep–wake cycling 16 (100) 31 (53) <0.001 0.73 (0.67–0.80)

Predominant continuous activity 16 (100) 47 (81) 0.107 0.59 (0.54–0.65)

Group 2 (abnormal waves)

Diffuse delta waves 0 28 (48) <0.001 0.74 (0.68–0.81)

Sharps (diffuse/excessive/focal/negative) 0 17 (29) 0.016 0.65 (0.59–0.71)

Deformed waves 0 6 (10) 0.329 0.55 (0.51–0.59)

Immature waves 0 5 (9) 0.579 0.54 (0.51–0.58)

Mechanical brushes 0 2 (3) 1 0.52 (0.49–0.54)

Positive temporal sharp waves 0 2 (3) 1 0.52 (0.49–0.54)

Positive rolandic sharp waves 0 0

Group 3 (abnormal features)

Periods of discontinuity 0 14 (24) 0.031 0.62 (0.57–0.68)

Low voltage 0 12 (21) 0.058 0.60 (0.55–0.66)

BIRDs 0 2 (3) 1 0.52 (0.49–0.54)

Asymmetry 0 2 (3) 1 0.52 (0.49–0.54)

Asynchrony 0 1 (2) 1 0.51 (0.49–0.53)

Burst suppression 0 0

Isoelectric 0 0

Periodic lateralised epileptiform discharges 0 0

Seizures 0 0

Status 0 0

Statistically significant p < 0.05 values are in bold.
*p Value from Fisher’s exact test.
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infants with mild HIE and those without (Table 4). 91% of spectral
power in the EEGs of infants with mild HIE was in the delta band
(<4 Hz), with 95% total power <5 Hz. Both spectral flatness and
spectral difference were significantly lower in the delta and theta
frequency bands for the mild HIE group compared with the non-
HIE group. ROC analysis revealed that these features were also
most predictive of mild HIE.

There were no differences between groups in quantitative
measures of amplitude (which included rEEG measures), and no
differences in measures of inter-hemispheric coherence.

Heart rate variability
There were no differences between infants with mild HIE and non-
HIE groups (Table 5).

Table 4. Quantitative EEG features of infants with mild HIE compared with the non-HIE group.

Non-HIE [med (IQR)]
n= 16

Mild HIE [med (IQR)]
n= 58

p Value* AUC (95% CI)

Amplitude

Spectral power FB1a (µV2) 282.1 (224.9, 386.0) 332.9 (238.0, 637.1) 0.309 0.59 (0.47–0.70)

Spectral power FB2 (µV2) 17.5 (15.1, 23.9) 18.5 (13.7, 25.8) 0.940 0.51 (0.39–0.63)

Spectral power FB3 (µV2) 9.1 (8.1, 11.6) 8.2 (5.9, 10.8) 0.162 0.62 (0.50–0.73)

Spectral power FB4 (µV2) 4.7 (4.1, 5.7) 5.0 (3.5, 8.4) 0.748 0.53 (0.41–0.65)

rEEG median (µV) 52.1 (44.0, 55.1) 47.4 (42.4, 54.9) 0.379 0.57 (0.45–0.69)

rEEG lower margin (µV) 27.0 (22.2, 31.1) 26.1 (22.1, 30.9) 0.667 0.54 (0.41–0.65)

rEEG upper margin (µV) 94.6 (91.3, 97.1) 90.7 (76.7, 103.9) 0.350 0.58 (0.45–0.69)

Spectral shape

Spectral edge frequency (Hz) 6.3 (5.3, 6.7) 5.2 (3.6, 5.9) 0.008 0.72 (0.61–0.82)

Spectral relative power FB1 (%) 89.3 (88.0, 91.1) 91.0 (89.6, 93.0) 0.023 0.69 (0.58–0.80)

Spectral relative power FB2 (%) 5.8 (5.2, 6.7) 4.9 (3.7, 5.9) 0.021 0.69 (0.58–0.80)

Spectral relative power FB3 (%) 3.0 (2.5, 3.4) 2.2 (1.8, 2.5) 0.001 0.77 (0.65–0.86)

Spectral relative power FB4 (%) 1.7 (1.4, 1.9) 1.4 (1.1, 1.8) 0.371 0.42 (0.31–0.55)

Spectral flatness FB1 0.47 (0.41, 0.52) 0.42 (0.29, 0.48) 0.035 0.68 (0.57–0.79)

Spectral flatness FB2 0.89 (0.88, 0.90) 0.88 (0.86, 0.89) 0.007 0.73 (0.61–0.82)

Spectral flatness FB3 0.89 (0.87, 0.90) 0.89 (0.87, 0.91) 0.440 0.57 (0.44–0.68)

Spectral flatness FB4 0.76 (0.71, 0.77) 0.78 (0.72, 0.82) 0.139 0.63 (0.51–0.74)

Spectral difference FB1 0.010 (0.008, 0.011) 0.007 (0.004, 0.009) 0.003 0.75 (0.64–0.85)

Spectral difference FB2 0.026 (0.024, 0.029) 0.023 (0.021, 0.026) 0.007 0.73 (0.61–0.82)

Spectral difference FB3 0.021 (0.018, 0.022) 0.020 (0.018, 0.022) 0.875 0.49 (0.36–0.60)

Spectral difference FB4 0.010 (0.009, 0.012) 0.011 (0.009, 0.013) 0.179 0.61 (0.50–0.73)

Inter-hemisphere connectivity

Coherence FB1 0.172 (0.122, 0.195) 0.118 (0.088, 0.202) 0.379 0.43 (0.31–0.55)

Coherence FB2 0.073 (0.054, 0.084) 0.049 (0.035, 0.084) 0.128 0.37 (0.26–0.49)

Coherence FB3 0.048 (0.044, 0.068) 0.046 (0.035, 0.079) 0.562 0.45 (0.34–0.57)

Coherence FB4 0.036 (0.032, 0.045) 0.038 (0.030, 0.074) 0.647 0.54 (0.41–0.65)

Statistically significant p < 0.05 values are in bold.
*p Value from Mann–Whitney test.
aFB1= 0.5–4 Hz; FB2= 4–7 Hz; FB3= 7–13 Hz; FB4= 13–30 Hz.

Table 5. Quantitative HRV features of infants with mild HIE compared with control population.

Feature Non-HIE [med (IQR)]
n= 16

Mild HIE [med (IQR)]
n= 47

p Value* AUC (95% CI)

Mean NN (msec) 504.6 (477.0–537.6) 490.5 (465.4–520.9) 0.347 0.58 (0.46–0.71)

SDNN (msec) 29.0 (13.9–34.7) 20.8 (15.2–29.2) 0.294 0.59 (0.46–0.71)

VLF power (msec2) 4142.5 (1017.3–6295.0) 1888.5 (950.5–3419.6) 0.076 0.65 (0.52–0.77)

LF power (msec2) 487.2 (158.1–1051.8) 323.8 (146.8–615.1) 0.227 0.60 (0.47–0.72)

HF power (msec2) 8.9 (3.0–32.8) 10.1 (3.5–31.9) 0.906 0.49 (0.36–0.62)

LF/HF ratio 50.2 (26.2–74.4) 34.4 (14.1–65.4) 0.102 0.64 (0.50–0.75)

TINN (msec) 82.0 (58.6–101.6) 54.7 (46.9–76.2) 0.102 0.64 (0.50–0.75)

SD standard deviation, NN normalised RR interval, VLF very low frequency, LF low frequency, HF high frequency, TINN triangular interpolation of the NN interval
histogram.
*p Value from Mann–Whitney test.
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DISCUSSION
This is the first detailed study describing multichannel EEG and
HRV in infants with mild HIE within 6 hours of birth. We have
found significant differences between the EEG features of infants
with mild HIE and healthy term infants. Our qualitative analysis
identified the presence of specific abnormal EEG features in the
HIE group. SWC should be present from birth40 and the absence of
SWC is associated with poor neurodevelopmental outcome.24,25

Good quality sleep is crucial for an infant’s development and
studies have shown disruptions in both the presence and
composition of the SWC in term infants post asphyxia injury,
specifically a decrease in the proportion of active sleep and an
increase in the amount of quiet and indeterminate sleep within
the sleep cycle.41–44 Almost half of the infants with mild HIE had
absent or poor SWC in the first 6 hours, active sleep was absent in
35% and quiet sleep was abnormal, as it contained prolonged
inter-burst intervals, in 34%. It is important to consider the effect
that interventions in the neonatal unit may have on SWC;
however, it is our practice to only perform necessary procedures
and cares on admission and nurse these infants in incubators with
minimal handling thereafter. We have also previously shown that
normal continuous SWC activity is present from birth in healthy
control infants without perinatal asphyxia.40 As well as altered
SWC, we also found that 24% of the EEGs in infants with mild HIE
had periods of excessive discontinuity and 19% were predomi-
nantly discontinuous. Excessive sharp waves were seen in 29%.
Qualitative analysis demonstrated excessive slow waves in infants
with mild HIE, which was also confirmed on quantitative analysis.
Previous studies have shown altered HRV features with

increasing grade of encephalopathy31,39; however, no study to
date has assessed HRV before 6 hours of age. Animal studies have
found an increased variability in the HRV (increased SDNN) in
preterm foetal sheep between 4 and 6 hours post occlusion with
severe hypoxia–ischaemia compared with those with mild
hypoxia–ischaemia or controls.45 In this study, we found no
differences in measures of HRV in infants with mild HIE compared
with healthy term infants in the first 6 hours.
There is a growing body of evidence that infants with mild HIE

have significant levels of disability at follow-up, yet no current
evidence or guidance exists regarding potential therapeutic
interventions in this group. This, coupled with the medico-legal
implications of not offering TH to infants who may have
benefitted, leads to unease and difficulty for clinicians in objective
decision-making regarding treatment. In addition, there is
therapeutic creep and many centres are now cooling infants with
mild HIE.19–21

Although TH has a wide margin of safety, it is not without
consequences. Inappropriate TH has a number of potential adverse
consequences. Animal studies have suggested that induced
hypothermia in a normal brain may lead to apoptosis.46 TH results
in a prolonged neonatal intensive care unit (NICU) stay, separation
from mother, delayed breastfeeding initiation, risks associated with
sedative medications, risk of coagulopathy and pulmonary
hypertension and ultimately increased health care economic
costs.6,47 Sedation is often required in infants undergoing TH due
to the discomfort associated with a low core temperature.
Concerns have been raised about commonly used drugs such as
morphine as it may contribute to neuronal and microglial
apoptosis. Tolerance has also been described requiring increased
doses and problems with withdrawal on discontinuation.48–50

Therefore, it seems logical that a randomised trial of TH in
infants with mild HIE is now required.51 However, consensus must
be reached on how we identify these infants. Improved
identification and selection of infants who may potentially benefit
from TH would limit the numbers required to power such a study.
Our current methods of identifying infants are flawed as the

primary and most widely available assessment is based on clinical
examination, which is highly subjective.52 Although several studies

have assessed different scoring tools,3,4,53,54 it is often difficult to
clinically differentiate between mild and moderate grades of
HIE.10,11 Furthermore, it is based on a modified Sarnat score, which
was initially validated to examine infants repeatedly and at 24
hours.2 Many centres now use the Thompson score. Initially
developed as a quick and easy tool to assess infants with
encephalopathy, it was also developed to examine infants on a
daily basis and is most predictive of outcome on days 3–4.3 Early
EEG has been shown to be superior to clinical examination alone
for the prediction of outcome.31,55

aEEG is preferred in many neonatal units as it can be easily
applied and interpreted through pattern recognition. In the pre-
TH era, aEEG within 6 hours of birth was the best predictor of
outcome and aEEG was incorporated into many of the TH
randomised controlled trials as an inclusion criteria for randomisa-
tion. As mentioned, different EEG or aEEG machines use slightly
different algorithms to generate an aEEG channel. For quantitative
analysis, we used rEEG, which has a standard definition.38 This
allowed us to assess the ability of aEEG to distinguish between
infants with mild HIE and those without HIE in our study. In our
cohort, rEEG features alone such as median amplitude, upper and
lower margins did not distinguish infants with mild HIE from the
non-HIE group. Studies have previously shown a discrepancy in
HIE grade between continuous multichannel EEG and aEEG in the
same infants.56 This is likely due to the fact that the raw EEG is
uncompressed and specific features such as sharp and slow
waves, short periods of discontinuity, asymmetry and asynchrony
can be easily seen but these are lost in the compressed or
summarised aEEG. Nonetheless, aEEG is very useful for the visual
identification of SWC, a feature that was absent or poorly defined
in our cohort of infants with mild HIE. While continuous
multichannel EEG may not be available in all the neonatal units,
most aEEG devices allow visualisation of at least some raw EEG
channels that can provide richer information and a more
enhanced aEEG interpretation.
Multichannel EEG does require expert interpretation and many

units do not have 24 hour access to a neonatal neurophysiologist
or neurologist. Quantitative EEG analysis of multichannel EEG
provides an automated objective description of the EEG without
the need for expert interpretation. It also has the potential to
detect more subtle differences, which may not be easily identified
on visual assessment alone. In this cohort, quantitative analysis
demonstrated significant differences in all measures of spectral
shape at the lower frequency bands when compared to the non-
HIE group. These features of the EEG would be very difficult, if not
impossible, to detect visually. Quantitative EEG features provides a
scalable, continuous and objective assessment of the EEG that
may be useful in the future to improve our identification of at-risk
infants. It is also easily applied to a smaller number of EEG
channels.
Our study is limited by the fact that it was a retrospective

analysis of data; however, EEGs of infants with HIE were collected
over different cohorts in both the TH and pre-TH era capturing
the clinical variability in presentation. In addition, it was not
possible to completely blind the neurophysiologists conducting
the qualitative analysis to study group; however, their findings
were remarkably consistent with the objective quantitative
analysis. Outcome data is currently unavailable for the entire
population; however, neurodevelopmental follow-up is underway.
We plan to clinically follow these infants to 5 years of age to
determine which, if any, of these abnormal features correlate with
outcome. We do know from previous studies that a proportion of
infants with mild HIE will have cognitive or behavioural disability
on follow-up; however, these difficulties may not be evident until
5 years of age or later.15

Mild HIE is not “normal” as previously thought2,12,13; these
infants have an encephalopathy and may have significant
learning, behavioural and emotional difficulties on follow-up yet
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have largely been ignored by research to date.15,16,18 Our current
criteria of identifying infants at risk of long-term developmental
issues is clearly inadequate as many infants who have significant
disability on follow-up currently fall outside the current criteria for
intervention.
In conclusion, this is the first study to describe early multi-

channel EEG findings (<6 hours of age) in infants with mild HIE
and compare them with healthy term infants at the same time
point. There are clear differences between the EEGs of infants with
mild HIE and healthy term infants. Visual analysis shows that 72%
of infants with mild HIE have some abnormal EEG features such as
sleep cycle disruption or excessive sharp and slow waves within 6
hours of birth, which cannot all be attributed to the difficult sleep
environment of the NICU. Quantitative analysis of the EEG reveals
significant differences in spectral measures of the lower frequency
bands. The challenge now is to correlate these features with
outcome and determine the importance of each feature.
Incorporation of early quantitative EEG features could be useful
for future trials of TH in infants with mild HIE to aid in the early and
objective identification of cases.
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