Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A neonatal neuroNICU collaborative approach to neuromonitoring of posthemorrhagic ventricular dilation in preterm infants

Abstract

Morbidity and mortality in prematurely born infants have significantly improved due to advancement in perinatal care, development of NeuroNICU collaborative multidisciplinary approaches, and evidence-based management protocols that have resulted from a better understanding of perinatal risk factors and neuroprotective treatments. In premature infants with intraventricular hemorrhage (IVH), the detrimental secondary effect of posthemorrhagic ventricular dilation (PHVD) on the neurodevelopmental outcome can be mitigated by surgical intervention, though management varies considerably across institutions. Any benefit derived from the use of neuromonitoring to optimize surgical timing and technique stands to improve neurodevelopmental outcome. In this review, we summarize (1) the approaches to surgical management of PHVD in preterm infants and outcome data; (2) neuromonitoring modalities and the effect of neurosurgical intervention on this data; (3) our resultant protocol for the monitoring and management of PHVD. In particular, our protocol incorporates cerebral near-infrared spectroscopy (NIRS) and transcranial doppler ultrasound (TCD) to better understand cerebral physiology and to enable the hypothesis-driven study of the management of PHVD.

Impact

  • Review of the published literature concerning the use of near-infrared spectroscopy (NIRS) and a cerebral Doppler ultrasound to study the effect of cerebrospinal fluid drainage on infants with posthemorrhagic ventricular dilation.

  • Presentation of our institution’s evidence-based protocol for the use of NIRS and cerebral Doppler ultrasound to study the optimal neurosurgical treatment of posthemorrhagic ventricular dilation, an as yet inadequately studied area.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PHVD monitoring protocol.
Fig. 2: Surgical management of PHVD.

References

  1. 1.

    Robinson, S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts: a review. J. Neurosurg. Pediatr. 9, 242–258 (2012).

    PubMed  Article  Google Scholar 

  2. 2.

    Plessis, A. Jdu The role of systemic hemodynamic disturbances in prematurity-related brain injury. J. Child Neurol. 24, 1127–1140 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Christian, E. A. et al. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000-2010. J. Neurosurg. Pediatr. 17, 260–269 (2016).

    PubMed  Article  Google Scholar 

  4. 4.

    Horbar, J. D. et al. Trends in mortality and morbidity for very low birth weight infants, 1991-1999. Pediatrics 110, 143–151 (2002).

    PubMed  Article  Google Scholar 

  5. 5.

    Murphy, B. P. et al. Posthaemorrhagic ventricular dilatation in the premature infant: Natural history and predictors of outcome. Arch. Dis. Child. Fetal Neonatal Ed. 87, F37–F41 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Whitelaw, A. & Aquilina, K. Management of posthaemorrhagic ventricular dilatation. Arch. Dis. Child. Fetal Neonatal Ed. 97, 229–233 (2012).

    Article  Google Scholar 

  7. 7.

    Leijser, L. M. et al. Posthemorrhagic ventricular dilatation in preterm infants When best to intervene? Neurology 90, E698–E706 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    El-Dib, M. et al. Management of post-hemorrhagic ventricular dilatation in the infant born preterm. J. Pediatr. 226, 16–27.e3 (2020).

    Article  Google Scholar 

  9. 9.

    Whitelaw, A., Pople, I., Cherian, S., Evans, D. & Thoresen, M. Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation, and fibrinolytic therapy. Pediatrics 111, 759–766 (2003).

    PubMed  Article  Google Scholar 

  10. 10.

    Noori, S., McCoy, M., Anderson, M. P., Ramji, F. & Seri, I. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J. Pediatr. 164, 264–270.e3 (2014).

    PubMed  Article  Google Scholar 

  11. 11.

    Luyt, K. et al. Drainage, irrigation and fibrinolytic therapy (DRIFT) for posthaemorrhagic ventricular dilatation: 10-year follow-up of a randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 105, 466–473 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Behrens, P. et al. Neurodevelopmental outcome at 2 years after neuroendoscopic lavage in neonates with posthemorrhagic hydrocephalus. J. Neurosurg. Pediatr. 26, 465–602 (2020).

  13. 13.

    D’Arcangues, C. et al. Extended experience with neuroendoscopic lavage for posthemorrhagic hydrocephalus in neonates. World Neurosurg. 116, e217–e224 (2018).

    PubMed  Article  Google Scholar 

  14. 14.

    Whitelaw, A. et al. Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125, e852–e858 (2010).

  15. 15.

    Wellons, J. C. I. et al. Shunting outcomes in posthemorrhagic hydrocephalus: results of a Hydrocephalus Clinical Research Network prospective cohort study. J. Neurosurg. Pediatr. 20, 19–29 (2017).

    PubMed  Article  Google Scholar 

  16. 16.

    Koschnitzky, J. E. et al. Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids Barriers CNS 15, 1–22 (2018).

    Article  CAS  Google Scholar 

  17. 17.

    Papile, L. A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J. Pediatr. 92, 529–534 (1978).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Brouwer, A. et al. Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J. Pediatr. 152, 648–654 (2008).

    PubMed  Article  Google Scholar 

  19. 19.

    Laurence, K. M. & Coates, S. The natural history of hydrocephalus: detailed analysis of 182 unoperated cases. Arch. Dis. Child. 37, 345–362 (1962).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Weller, R. O. & Shulman, K. Infantile hydrocephalus: clinical, histological, and ultrastructural study of brain damage. J. Neurosurg. 36, 255–265 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Mazzola, C. A. et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: Management of posthemorrhagic hydrocephalus in premature infants. J. Neurosurg. Pediatr. 14, 8–23 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Bauer, D. F. et al. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Treatment of Pediatric Hydrocephalus: update of the 2014 guidelines. Neurosurgery 87, 1071–1075 (2020).

    Article  Google Scholar 

  23. 23.

    Schulz, M., Buḧrer, C., Pohl-Schickinger, A., Haberl, H. & Thomale, U. W. Neuroendoscopic lavage for the treatment of intraventricular hemorrhage and hydrocephalus in neonates: clinical article. J. Neurosurg. Pediatr. 13, 626–635 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Taylor, A. G. & Peter, J. C. Advantages of delayed VP shunting in post-haemorrhagic hydrocephalus seen in low-birth-weight infants. Child’s Nerv. Syst. 17, 328–333 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    James, H. E. et al. Ventriculoperitoneal shunts in high risk newborns weighing under 2000 grams: a clinical report. Neurosurgery 15, 198–202 (1984).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Zaben, M., Finnigan, A., Bhatti, M. I. & Leach, P. The initial neurosurgical interventions for the treatment of posthaemorrhagic hydrocephalus in preterm infants: a focused review. Br. J. Neurosurg. 30, 7–10 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Christian, E. A., Melamed, E. F., Peck, E., Krieger, M. D. & McComb, J. G. Surgical management of hydrocephalus secondary to intraventricular hemorrhage in the preterm infant. J. Neurosurg. Pediatr. 17, 278–284 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Shankaran, S. et al. Outcomes following post-hemorrhagic ventricular dilatation among infants of extremely low gestational age. J. Pediatr. 226, 36–44.e3 (2020).

  29. 29.

    Brouwer, A. J. et al. Cognitive and neurological outcome at the age of 5-8 years of preterm infants with post-hemorrhagic ventricular dilatation requiring neurosurgical intervention. Neonatology 101, 210–216 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Willis, B. et al. Ventricular reservoirs and ventriculoperitoneal shunts for premature infants with posthemorrhagic hydrocephalus: an institutional experience. J. Neurosurg. Pediatr. 3, 94–100 (2009).

    PubMed  Article  Google Scholar 

  31. 31.

    Warf, B. C., Campbell, J. W. & Riddle, E. Initial experience with combined endoscopic third ventriculostomy and choroid plexus cauterization for post-hemorrhagic hydrocephalus of prematurity: The importance of prepontine cistern status and the predictive value of FIESTA MRI imaging. Child’s Nerv. Syst. 27, 1063–1071 (2011).

    Article  Google Scholar 

  32. 32.

    Chamiraju, P., Bhatia, S., Sandberg, D. I. & Ragheb, J. Endoscopic third ventriculostomy and choroid plexus cauterization in posthemorrhagic hydrocephalus of prematurity. J. Neurosurg. Pediatr. 13, 433–439 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Whitelaw, A. & Lee-Kelland, R. Repeated lumbar or ventricular punctures in newborns with intraventricular haemorrhage. Cochrane Database Syst. Rev. 4, CD000216 (2017).

  34. 34.

    Vries, L. S. De et al. Treatment thresholds for intervention in posthaemorrhagic ventricular dilation: a randomised controlled trial. Arch. Dis. Child Fetal Neonatal Ed. 104, F70–F75 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Cizmeci, M. N. et al. Randomized controlled early versus late intervention study in posthemorrhagic ventricular dilation: outcome at 2 years. J. Pediatr. 226, 28–e35.3 (2020).

    Article  Google Scholar 

  36. 36.

    Cizmeci, M. N. et al. Assessment of brain injury and brain volumes after posthemorrhagic ventricular dilatation: a nested substudy of the randomized controlled ELVIS trial. J. Pediatr. 208, 191–197.e2 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Whitelaw, A. et al. Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brain-washing versus tapping fluid. Pediatrics 119, e1071–e1078 (2007).

  38. 38.

    Doctor, B. A. et al. Clinical outcomes of neonatal meningitis in very-low-birth-weight infants. Clin. Pediatr. 40, 473–480 (2001).

    CAS  Article  Google Scholar 

  39. 39.

    Mapstone, T. B. et al. Relationship of CSF shunting and IQ in children with myelomeningocele: a retrospective analysis. Childs Brain 11, 112–118 (1984).

    CAS  PubMed  Google Scholar 

  40. 40.

    Wellons, J. C. et al. The assessment of bulging fontanel and splitting of sutures in premature infants: An interrater reliability study by the Hydrocephalus Clinical Research Network - Clinical article. J. Neurosurg. Pediatr. 11, 12–14 (2013).

    PubMed  Article  Google Scholar 

  41. 41.

    Ingram, M. C. E., Huguenard, A. L., Miller, B. A. & Chern, J. J. Poor correlation between head circumference and cranial ultrasound findings in premature infants with intraventricular hemorrhage: clinical article. J. Neurosurg. Pediatr. 14, 184–189 (2014).

    PubMed  Article  Google Scholar 

  42. 42.

    Levene, M. I. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch. Dis. Child. 56, 900–904 (1981).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Evans, W. A. Jr An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch. Neurol. Psychiatry 47, 931–937 (1942).

    Article  Google Scholar 

  44. 44.

    Davies, M. W., Swaminathan, M., Chuang, S. L. & Betheras, F. R. Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch. Dis. Child. Fetal Neonatal Ed. 82, 218–223 (2000).

    Article  Google Scholar 

  45. 45.

    Brouwer, M. J. et al. New reference values for the neonatal cerebral ventricles. Radiology 262, 224–233 (2012).

    PubMed  Article  Google Scholar 

  46. 46.

    Levene, M. I. & Starte, D. R. A longitudinal study of post-haemorrhagic ventricular dilatation in the newborn. Arch. Dis. Child. 56, 905–910 (1981).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Radhakrishnan, R. et al. Frontal occipital and frontal temporal horn ratios: comparison and validation of head ultrasound- derived indexes with MRI and ventricular volumes in infantile ventriculomegaly. Am. J. Roentgenol. 213, 925–931 (2019).

    Article  Google Scholar 

  48. 48.

    Kulkarni, A. V., Drake, J. M., Armstrong, D. C. & Dirks, P. B. Measurement of ventricular size: Reliability of the frontal and occipital horn ratio compared to subjective assessment. Pediatr. Neurosurg. 31, 65–70 (1999).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Ibrahim, J., Mir, I. & Chalak, L. Brain imaging in preterm infants < 32 weeks gestation: a clinical review and algorithm for the use of cranial ultrasound and qualitative brain MRI. Pediatr. Res. 84, 799–806 (2018).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Hanlo, P. W. et al. Value of transcranial Doppler indices in predicting raised ICP in infantile hydrocephalus: a study with review of the literature. Child’s Nerv. Syst. 11, 595–603 (1995).

    CAS  Article  Google Scholar 

  51. 51.

    Cardim, D. et al. Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: is it possible? Neurocrit. Care 25, 473–491 (2016).

  52. 52.

    Taylor, G. A. & Madsen, J. R. Neonatal hydrocephalus: Hemodynamic response to fontanelle compression—correlation with intracranial pressure and need for shunt placement. Radiology 201, 685–689 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Sanker, P., Richard, K. E., Weigl, H. C., Klug, N. & van Leyen, K. Transcranial Doppler sonography and intracranial pressure monitoring in children and juveniles with acute brain injuries or hydrocephalus. Child’s Nerv. Syst. 7, 391–393 (1991).

    CAS  Article  Google Scholar 

  54. 54.

    Kidokoro, H., Neil, J. J. & Inder, T. E. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. Am. J. Neuroradiol. 34, 2208–2214 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Omizzolo, C. et al. Hippocampal volume and memory and learning outcomes at 7 years in children born very preterm. J. Int. Neuropsychol. Soc. 19, 1065–1075 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Glass, H. C. & Wusthoff, C. J. Amplitude integrated EEG: the child neurologist’s perspective. J. Child Neurol. 28, 1342–1350 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Rakshasbhuvankar, A. et al. for detection of neonatal seizures: a systematic review. Seizure 33, 90–98 (2015).

    PubMed  Article  Google Scholar 

  58. 58.

    Chandrasekaran, M., Chaban, B., Montaldo, P. & Thayyil, S. Predictive value of amplitude-integrated EEG (aEEG) after rescue hypothermic neuroprotection for hypoxic ischemic encephalopathy: a meta-analysis. J. Perinatol. 37, 684–689 (2017).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Klebermass-Schrehof, K. et al. Can neurophysiological assessment improve timing of intervention in posthaemorrhagic ventricular dilatation? Arch. Dis. Child. Fetal Neonatal Ed. 98, 291–297 (2013).

    Article  Google Scholar 

  60. 60.

    De Vries, L. S., Brouwer, A. J. & Groenendaal, F. Posthaemorrhagic ventricular dilatation: When should we intervene? Arch. Dis. Child. Fetal Neonatal Ed. 98, 284–285 (2013).

    Article  Google Scholar 

  61. 61.

    Shepherd, A. J., Saunders, K. J., McCulloch, D. L. & Dutton, G. N. Prognostic value of flash visual evoked potentials in preterm infants. Dev. Med. Child Neurol. 41, 9–15 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Behmanesh, B. et al. First clinical experience with the new noninvasive transfontanelle ICP monitoring device in management of children with premature IVH. Neurosurg. Rev. 43, 681–685 (2019).

  63. 63.

    Hanlo, P. W. et al. Relationship between anterior fontanelle pressure measurements and clinical signs in infantile hydrocephalus. Child’s Nerv. Syst. 12, 200–209 (1996).

    CAS  Article  Google Scholar 

  64. 64.

    Rhee, C. J. et al. Neonatal cerebrovascular autoregulation. Pediatr. Res. 84, 602–610 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Dempsey, E. M., Kooi, E. M. W. & Boylan, G. It’s all about the brain—neuromonitoring during newborn transition. Semin. Pediatr. Neurol. 28, 48–59 (2019).

    Article  Google Scholar 

  66. 66.

    Lloyd-Fox, S., Blasi, A. & Elwell, C. E. Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 34, 269–284 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    O’Leary, H. et al. Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage. Pediatrics 124, 302–309 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Vesoulis, Z. A., Liao, S. M. & Mathur, A. M. Delayed cord clamping is associated with improved dynamic cerebral autoregulation and decreased incidence of intraventricular hemorrhage in preterm infants. J. Appl. Physiol. 127, 103–110 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Sortica da Costa, C. et al. Complexity of brain signals is associated with outcome in preterm infants. J. Cereb. Blood Flow. Metab. 37, 3368–3379 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Cimatti, A. G. et al. Cerebral oxygenation and autoregulation in very preterm infants developing IVH during the transitional period: a pilot study. Front. Pediatr. 8, 1–8 (2020).

    Article  Google Scholar 

  71. 71.

    Sortica da Costa, C. et al. Changes in hemodynamics, cerebral oxygenation and cerebrovascular reactivity during the early transitional circulation in preterm infants. Pediatr. Res. 86, 247–253 (2019).

    PubMed  Article  Google Scholar 

  72. 72.

    Khanafer-Larocque, I. et al. Intraventricular hemorrhage: risk factors and association with patent ductus arteriosus treatment in extremely preterm neonates. Front. Pediatr. 7, 1–9 (2019).

    Article  Google Scholar 

  73. 73.

    Arman, D. et al. The association between NIRS and Doppler ultrasonography in preterm infants with patent ductus arteriosus. J. Matern. Neonatal Med. 33, 1245–1252 (2020).

    Article  Google Scholar 

  74. 74.

    Vesoulis, Z. A., Whitehead, H. V., Liao, S. M. & Mathur, A. M. The hidden consequence of intraventricular hemorrhage: persistent cerebral desaturation after IVH in preterm infants. Pediatr. Res. 1–9, https://doi.org/10.1038/s41390-020-01189-5 (2020).

  75. 75.

    Howarth, C. et al. Cerebral oxygenation in preterm infants with necrotizing enterocolitis. Pediatrics 146, e20200337 (2020).

  76. 76.

    Oliveira, S. R. De et al. Near-infrared spectroscopy as an auxiliary tool in the study of child development. Rev. Paul. Pediatr. 33, 230–240 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Hansen, M. L. et al. Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: a protocol for the SafeBoosC randomised clinical phase III trial. Trials 20, 1–11 (2019).

    Article  Google Scholar 

  78. 78.

    Katheria, A. C. et al. The neu-prem trial: neuromonitoring of brains of infants born preterm during resuscitation—a prospective observational cohort study. J. Pediatr. 198, 209–213.e3 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Chock, V. Y. et al. Cerebral oxygenation and autoregulation in preterm infants (Early NIRS Study). J. Pediatr. 227, 94–100.e1 (2020).

  80. 80.

    Haataja, L. et al. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J. Pediatr. 135, 153–161 (1999).

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Dubowitz, L., Dubowitz, V., Palmer, P. & Verghote, M. A new approach to the neurological assessment of the preterm and full-term newborn infant. Brain Dev. 2, 3–14 (1980).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Lester, B. M., Tronick, E. Z. & Brazelton, T. B. The neonatal intensive care unit network neurobehavioral scale (NNNS): introduction. Pediatrics 113, 641–667 (2004).

    PubMed  Google Scholar 

  83. 83.

    Einspieler, C. & Prechtl, H. F. R. Prechtl’s assessment of general movements: a diagnostic tool for the functional assessment of the young nervous system. Ment. Retard. Dev. Disabil. Res. Rev. 11, 61–67 (2005).

    PubMed  Article  Google Scholar 

  84. 84.

    Spittle, A. J. et al. Neurobehaviour and neurological development in the first month after birth for infants born between 32-42 weeks’ gestation. Early Hum. Dev. 96, 7–14 (2016).

    PubMed  Article  Google Scholar 

  85. 85.

    Bayley, N. & Aylward, G. P. Bayley Scales of Infant and Toddler Development (2019).

  86. 86.

    Elliot, C. & Smith, P. British Ability Scales (2012).

  87. 87.

    Griffiths, R. The abilities of young children: a comprehensive system of mental measurement for the first eight years of life (1984).

  88. 88.

    Wechsler, D. Wechsler Intelligence Scale for Children (2003).

  89. 89.

    Achenbach, T. & Rescorla, L. Manual for the ASEBA Preschool Forms & Profiles (2000).

  90. 90.

    Kochan, M. et al. Changes in cerebral oxygenation in preterm infants with progressive posthemorrhagic ventricular dilatation. Pediatr. Neurol. 73, 57–63 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Norooz, F. et al. Decompressing posthaemorrhagic ventricular dilatation significantly improves regional cerebral oxygen saturation in preterm infants. Acta Paediatr. Int. J. Paediatr. 104, 663–669 (2015).

    CAS  Article  Google Scholar 

  92. 92.

    van Alfen-van der Velden, A. A. E. M. et al. Cerebral hemodynamics and oxygenation after serial CSF drainage in infants with PHVD. Brain Dev. 29, 623–629 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    McLachlan, P. J. et al. Investigating the effects of cerebrospinal fluid removal on cerebral blood flow and oxidative metabolism in infants with post-hemorrhagic ventricular dilatation. Pediatr. Res. 82, 634–641 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Rajaram, A. et al. Perfusion and metabolic neuromonitoring during ventricular taps in infants with post-hemorrhagic ventricular dilatation. Brain Sci. 10, 1–13 (2020).

    Article  CAS  Google Scholar 

  95. 95.

    Broyles, R. S. et al. Comprehensive follow-up care and life-threatening illnesses among high-risk infants, a randomized controlled trial. JAMA 284, 2070–2076 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Benninger, K. L. et al. Perspectives from the Society for Pediatric Research. Neonatal encephalopathy clinical trials: developing the future. Pediatr. Res. 89, 74–84 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Maitre, N. L. et al. Network implementation of guideline for early detection decreases age at cerebral palsy diagnosis. Pediatrics 145, e20192126 (2020).

  98. 98.

    Novak, I. et al. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr. 171, 897–907 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Spittle, A., Orton, J., Anderson, P. J., Boyd, R. & Doyle, L. W. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst. Rev. 11, CD005495 (2015).

  100. 100.

    Ventriculomegaly Trial Group. Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation. Arch. Dis. Child 65, 3–10 (1990).

    Article  Google Scholar 

  101. 101.

    Ventriculomegaly Trial Group. Randomised trial of early tapping in neonatal post haemorrhagic ventricular dilatation: results at 30 months. Arch. Dis. Child. Fetal Neonatal Ed. 70, F129–F136 (1994).

    Article  Google Scholar 

  102. 102.

    Kulkarni, A. V. et al. Endoscopic third ventriculostomy and choroid plexus cauterization in infants with hydrocephalus: a retrospective Hydrocephalus Clinical Research Network study. J. Neurosurg. Pediatr. 14, 224–229 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Srinivasakumar, P. et al. Posthemorrhagic ventricular dilatation-impact on early neurodevelopmental outcome. Am. J. Perinatol. 30, 207–213 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.C. is supported by NIH grant 1R01NS102617-01.

Author information

Affiliations

Authors

Contributions

B.A.W.: conception, design, acquisition and interpretation of information, drafting and revision, and final approval. D.M.S.: critical revision and final approval. J.T.: drafting and critical revision, and final approval. L.C.: conception, design, acquisition and interpretation of information, drafting and revision, and final approval.

Corresponding author

Correspondence to Brett A. Whittemore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Whittemore, B.A., Swift, D.M., M. Thomas, J. et al. A neonatal neuroNICU collaborative approach to neuromonitoring of posthemorrhagic ventricular dilation in preterm infants. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01406-9

Download citation

Search

Quick links