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Cardiovascular fetal-to-neonatal transition: an in silico model
Anneloes G. Munneke1, Joost Lumens1 and Tammo Delhaas1

BACKGROUND: Previous models describing the fetal-to-neonatal transition often lack oxygen saturation levels, homeostatic
control mechanisms, phasic hemodynamic signals, or describe the heart with a time-varying elastance model.
METHODS: We incorporated these elements in the adapted CircAdapt model with the one-fiber model for myocardial contraction,
to simulate the hemodynamics of the healthy term human fetal circulation and its transition during the first 24 h after birth. The
fetal-to-neonatal model was controlled by a time- and event-based script of changes occurring at birth, such as lung aeration and
umbilical cord clamping. Model parameters were based on and validated with human and animal data.
RESULTS: The fetal circulation showed low pulmonary blood flow, right ventricular dominance, and inverted mitral and tricuspid
flow velocity patterns, as well as high mean ductus venosus flow velocity. The neonatal circulation showed oxygen saturation levels
to gradually increase to 98% in the first 15 min after birth as well as temporary left ventricular volume overload.
CONCLUSIONS: Hemodynamics of the term fetus and 24-h-old neonate, as well as the events occurring directly after birth and the
transition during the first 24 h after birth, were realistically represented, allowing the model to be used for educational purposes
and future research.

Pediatric Research (2022) 91:116–128; https://doi.org/10.1038/s41390-021-01401-0

IMPACT:

● With the addition of oxygen saturation levels, homeostatic pressure-flow control mechanisms, and the one-fiber model for
myocardial contraction, a new closed-loop cardiovascular model was constructed to give more insight into the healthy term
human fetal circulation and its cardiovascular transition during the first 24 h after birth.

● Extensive validation confirmed that the hemodynamics of the term fetus and the fetal-to-neonatal transition were realistically
represented with the model.

● This well-validated and versatile model can serve as an education as well as a research platform for in silico investigation of
fetal-to-neonatal hemodynamic changes under a wide range of physiological and pathophysiological conditions.

INTRODUCTION
Most of our knowledge of the fetal circulation as well as the fetal-
to-neonatal transition at birth is based on animal studies. The
relative inaccessibility of the fetus and the extremely high
invasiveness of certain measurements are responsible for the lack
of human data. Although the human fetal circulation has been
studied extensively by Doppler ultrasound imaging, with empha-
sis on Doppler flow velocity waveforms and blood flow
estimates,1–3 most of the information regarding blood pressures
and oxygen saturation levels of the fetal circulation, as well as data
regarding the immediate events occurring at birth, have been
derived from sheep.4–6

Multiple mathematical models have been proposed as a tool to
study the fetal circulation and the cardiovascular fetal-to-neonatal
transition. Sá-Couto et al.7 were the first to shed light on the fetal-
to-neonatal transition by means of a lumped parameter model of
the cardiovascular system, although this model lacked the process
of gas exchange and homeostatic control mechanisms. Yigit et al.8

included a gas exchange in their model to investigate and
compare delayed and immediate cord clamping scenarios, yet
used an adaptation time of 10 min for all transitional vessels.

Similar to the fetal-to-neonatal transition models, the lumped
parameter models of the fetal circulation9–16 rarely include oxygen
saturation levels and homeostatic control mechanisms. Further-
more, both models either described hemodynamics only in terms
of mean values or relied on the time-varying elastance model of
myocardial contraction, thereby neglecting the phenomena
underlying contraction.
Given the issues mentioned above, the formulation of a

physically correct and detailed model of the fetal circulation and
its cardiovascular fetal-to-neonatal transition for the first 24 h after
birth, able to describe as many clinically relevant phasic
hemodynamic waveforms, appears crucial to a better under-
standing of the functioning of the fetal and early neonatal
cardiovascular system and its responses to stress and disease. The
aim of this study was, therefore, to adapt the well-validated and
versatile CircAdapt multi-scale model of the adult cardiovascular
system17,18 to construct a model of the fetal circulation and to
examine the normal hemodynamic transitions during the first 24 h
after birth. Build on physical and physiological principles,
the CircAdapt model of the human four-chamber heart and
closed-loop circulation enables fast and realistic simulation of
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beat-to-beat cardiovascular mechanics and hemodynamics in a
wide range of physiological loading conditions and cardiovascular
pathologies.17,19–22

METHODS
Multi-scale cardiovascular computational model
We adapted the closed-loop CircAdapt computational model of
the adult cardiovascular system17,18,23 (www.circadapt.org) to
simulate cardiovascular mechanics and hemodynamics of the
term fetal cardiovascular circulation. CircAdapt allows fast beat-to-
beat simulation of the human cardiovascular system for both
research and educational purposes24 and has been successfully
used for simulating various (congenital) cardiovascular diseases
like Tetralogy of Fallot,21 Fontan circulation,25 and pediatric
pulmonary arterial hypertension.26 Build on physiological and
physical principles, the CircAdapt model consists of a network of
modules, all representing components of the cardiovascular
system, such as atrial and ventricular walls and cavities, cardiac
valves, the pericardium, large blood vessels, and systemic and
pulmonary circulations. Altogether, they enable real-time simula-
tion of atrial and ventricular pressures and volumes, regional
myofiber stress and strain in the cardiac walls, flow across valves,
blood pressure wave propagation within the main arteries and
veins, and pulmonary and systemic resistances. Mean arterial
pressure (MAP) and cardiac output (CO) are regulated by adjusting
the systemic peripheral resistance and total circulating blood

volume, mimicking homeostatic control mechanisms (Appendix).
Detailed theoretical descriptions and validations of the various
modules have been published previously.17,18,23 In the next few
sections, we will describe the most relevant aspects of the
modules used in this study.
The fetal model parameters refer to a full-term fetus, when fetal

body weight and length are assumed to be ~3.5 kg and ~49 cm,27

respectively, whereas the neonatal model parameters refer to a
newborn infant at 24 h after birth. The level of detail in the present
model (e.g., the number of vessels and organs/tissues) was chosen
with the objective of describing as many clinically relevant sites of
the fetal cardiovascular system as possible. Figure 1a provides a
schematic representation of the modelled system.

Cardiac module
The atria and ventricles were modelled as contractile chambers with
the one-fiber model, relating local myofiber mechanics to global
pump mechanics under the assumption that myofiber tension is
homogeneously distributed throughout the cardiac walls28 (Fig. 1a).
Mechanical ventricular interaction was established by force equili-
brium in the junction of the three ventricular walls.18 The
pericardium was modelled as a nonlinearly compliant bag.
In this study, values of ventricular tissue parameters were manually

chosen so that CircAdapt reproduced experimental curves on fetal
lamb myocardium29,30 and human fetal velocity tracings,31–33 as well
as ventricular wall masses and dimensions of the full-term human
fetus,34–37 indicating right ventricular dominance in utero.
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Fig. 1 The CircAdapt model of the fetal cardiovascular system with predicted combined cardiac output distribution and oxygen
saturation levels. a In the general overview, the orange-colored tubes and valves as well as the placental arterio-venous element represent
connections that close during the fetal-to-neonatal transition. Simulated cycle-averaged b flow rate distribution as a percentage of combined
cardiac output shown in white, together with selected reference values in gray, and c oxygen saturation levels shown in white. The dashed
line indicates the midwall volume for the left ventricle (LV) and left atrium (LA) in red, right ventricle (RV) and right atrium (RA) in blue, and
septum (S) in green. The LV and RV are mechanically coupled at their junction (◦). The foramen ovale (FO) was modelled as unidirectional
valve, whereas the ductus arteriosus (DA) and the ductus venosus (DV) were modelled as inertias without valve leaflets. The arrows indicate
the direction of flow, whereas nodes (•) indicate locations of pressure and oxygen saturation calculation. AV aortic valve, BR brachial, CE celiac,
CR cerebral, DA ductus arteriosus, DV ductus venosus, FE femoral, FO foramen ovale, LA left atrium, LI liver, LV left ventricle, MV mitral valve, PL
placental, PV pulmonic valve, RA right atrium, RE renal, RV right ventricle, S septum, TV, tricuspid valve.
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Valve module
Valve pressure gradients are composed of a Bernoulli resistance
and an inertial term.38 Valve orifice areas of circular shape
calculated from valve diameter are listed in Table 1. The mitral,
tricuspid, aortic, and pulmonary valve were modelled as unidirec-
tional valves, whereas the veno-atrial orifices as well as the ductus
arteriosus (DA) and ductus venosus (DV) were modelled as open
orifices introducing inertia effects and allowing bidirectional flow.
The foramen ovale (FO) was modelled as a one-way valve,

assuming that it only permits right-to-left shunting.39,40

Av impedance module
The terminal end of a tube was coupled to a nonlinear three-
element arterial-venous (av) model, consisting of a pressure-
dependent resistive wave impedance, arterial compliance, and
peripheral resistance.41 An extensive description of the pulmonary
and systemic resistances can be found in the Appendix.
The fetal cardiovascular model, as presented in Fig. 1a, consists

of seven av elements, representing the vascular bed of tissues and
organs. The upper body circulation includes the cerebral (CR;
supplying the brains) and the brachial (BR; supplying the muscular
tissue of the upper trunk and extremities) circulations. The lower
body circulation consists of the celiac (CE; supplying the
intestines), renal (RE; supplying the kidneys), hepatic (LI; supplying
the liver), iliac (IL; supplying the muscular tissue of the pelvis and
lower extremities), and the umbilical-placental (PL; supplying the
placenta) circulations. The pulmonary circulation is represented by
the av-element PU.

The pulmonary and systemic resistances were set to ensure the
same combined CO (CCO) distribution as found in the term
human fetus (Table 1).
The geometrical properties (tube lengths) of the large arteries

and veins connecting the av elements to other elements or valves
were based on Reymond et al.42 and Müller and Toro43 for the
adult arterial and venous segments, respectively, and were scaled
according to the fetal–adult body proportions and lengths.44

Oxygen distribution
The dynamic behavior of the CircAdapt model allows forward and
backward blood flow through all cavities and vessels during the
complete cardiac cycle. Mixing of blood oxygen saturation in a
blood-filled cavity is determined by the in- and outflow of the
cavity and their respective oxygen saturations as follows:

dSO2;cav

dt
¼ 1

Vcav tð Þ
Xn
i¼1

max 0; qi tð Þð Þ SO2;i tð Þ � SO2;cav tð Þ� �� �
(1)

with SO2,cav the oxygen saturation of the cavity, SO2,i the oxygen
saturation of the inflow, qi the blood flow rate of the inflow,
and n the number of flows entering the cavity with volume
Vcav. The preferential streaming pattern of the umbilical venous
return through the DV and the FO45 was taken into account
(Appendix).
Neglecting the minor effect of dissolved oxygen, the oxygen

saturation at the venous end of an av element is dependent on
the oxygen consumption as follows:

SO2;ven tð Þ ¼ SO2;art tð Þ � VO2;av ´ 100
qavðtÞ ´ kO2 ´Hb

(2)

with SO2,art the oxygen saturation of the corresponding arterial
cavity, VO2,av the oxygen consumption of the av element, qav the
flow across the av element, kO2 the capacity of hemoglobin to
carry oxygen (set to 1.36 mL O2/g Hb,4,46), and Hb the hemoglobin
concentration in blood (set to 16 g/dL.4,46) Oxygen consumption
in the systemic and pulmonary tissues was derived from fetal lamb
data.4 Oxygen uptake in the placenta was assumed to render an
oxygen saturation of 65%.46–50

Transitions at birth
The proposed model was controlled by a time- and event-based
script of changes occurring at birth, such as lung aeration and
umbilical cord clamping, as well as the changes during the
transitory phase up to 24 h after birth (Table 2 and Supplementary
Figure S1).

Table 1. Major input parameter values.

Parameter Symbol Input Unit Source

Cycle time tc 414 ms

Mean arterial pressure MAP 48 mmHg 83,84

Combined cardiac output CCO 430 mL/min/kg 86,87,90

Cerebral (CR) qCR 20 % CCO 4,85

Brachial (BR) qBR 13 % CCO 4

Celiac (CE) qCE 4 % CCO

Renal (RE) qRE 8 % CCO

Placental (PL) qPL 22 % CCO 4,85,86

Iliac (IL) qIL 13 % CCO 4

Hepatic (LI) qLI 20 % CCO

Fetal resistance

Pulmonary vascular resistance PVR0 8.0 mmHg s/mL

Systemic vascular resistance SVR0 2.3 mmHg s/mL

Oxygen consumption

Cerebral (CR) VO2;CR 7.3 mL O2/min 4

Brachial (BR) VO2;BR 4.3 mL O2/min 4

Celiac (CE) VO2;CE 1.1 mL O2/min 4

Renal (RE) VO2;RE 1.5 mL O2/min 4

Iliac (IL) VO2;IL 4.3 mL O2/min 4

Hepatic (LI) VO2;LI 4.1 mL O2/min 4

Pulmonary (PU) VO2;PU 0.7 mL O2/min 4

Umbilical venous oxygen
saturation

SO2;PLven 65 % 46–50

Cross-sectional area / diameter

Aortic valve (AV) Aopen;AV 47|7.7 mm2|mm 78,81,90

Pulmonic valve (PV) Aopen;PV 59|8.7 mm2|mm 78,90

Mitral valve (MV) Aopen;MV 87|10.5 mm2|mm 89

Tricuspid valve (TV) Aopen;TV 92|10.8 mm2|mm 89

Foramen ovale (FO) Aopen;FO 31|6.3 mm2|mm 39,40

Ductus arteriosus (DA) ADA 20|5.0 mm2|mm 78,80,81

Ductus venosus (DV) ADV 2.0|1.6 mm2|mm 119–121

Table 2. Timeline of different parameter changes in the pulmonary,
systemic, and placental circulations.

Parameter Unit Fetus Neonate

0 s 30 s 1min 1 h 12 h 24 h

Pulmonary circulation

r (−) 0.0 0.5 1.0 1.0 1.0 1.0

PVR (mmHg s/mL) 8.0 7.8 7.6 4.7 3.3 1.8

Systemic circulation

DAD (mm) 5.0 5.0 5.0 3.8 0.5 0.0

MAPt (mmHg) 48.0 48.0 48.0 48.5 54.0 60.0

qsys (mL/min/kg) 250 250 250 250 250 250

VO2;sys (mL O2/min) 22.6 22.6 22.6 22.6 22.6 22.6

Placental circulation

qpl (mL/min/kg) 94.0 0.0 0.0 0.0 0.0 0.0

SO2;pl ven (%) 65.0 0.0 0.0 0.0 0.0 0.0
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Lung aeration. With the onset of breathing, blood is being
oxygenated in the lungs. The rise in oxygen saturation at the
venous end of the pulmonary av element (PUven) (SO2,PUven) was
described as:

dSO2;PUven

dt
¼ 1

VPUven tð Þ ðrðtÞmax 0; qPU tð Þð Þ 0:98� SO2;PUvenðtÞ
� �

þmin 0; qPUvenLA tð Þð Þ SO2;PUvenðtÞ � SO2;LAðtÞ
� �Þ

(3)

With r a function describing the fraction of pulmonary blood
flow (PBF) that is saturated, VPUven the volume of the
venous pulmonary cavity (PUven), qPU the flow through
the pulmonary av element (PU), SO2,LA the oxygen saturation
of the left atrium (LA), and qPUvenLA the retrograde flow from
the LA into the pulmonary vein. Note that the pulmonary
oxygen uptake is set to render a pulmonary venous oxygen
saturation of 98%.51 The function r(t) in Eq. (4) increases linearly
from zero at the onset of breathing to one when the lungs are
fully aerated:

r tð Þ ¼
0 if t < t0
t�t0
ts

if t0 � t � ts
1 else

8><
>: (4)

with t0 the onset of breathing and ts the time it takes to achieve
fully aerated lungs. The value of ts was set to 1 min, based on pre-
and post-ductal oxygen saturation levels measured in the first
minute after birth.52–61

After birth, lung aeration immediately triggers the decrease in
pulmonary vascular resistance (PVR) and increase in PBF.62 The
initial rapid decrease in PVR is followed by a more gradual
decline over the following days and weeks.63,64 An estimated
reduction in PVR of 74% was reported after the start of
ventilation in lambs.65 Based on lamb PVR4,5,65 and pulmonary
arterial pressure data,66–68 an exponential function was followed
by a linear function to mimic the initial rapid decrease in the
first 36 min after birth and the more gradual decline in PVR
thereafter:

PVR tð Þ ¼
PVR0 1� 0:42 1� e�8tð Þð Þ if 0 � t � 36min

PVR0 0:58� 0:016 t � 0:6ð Þð Þ if 36min< t � 12 h

PVR0 0:41� 0:0062 t � 12ð Þð Þ if 12 h< t � 24 h

8><
>:

(5)

with PVR0 the PVR in the full-term fetus.

Cord clamping. Thirty seconds after birth, umbilical vascular
resistance was instantly increased to infinity, mimicking umbilical
cord clamping.

DA closure. After birth, the DA gradually constricts, with
functional closure occurring between 12 and 48 h after birth in
the majority of newborn infants.69–77 Based on DA diameter (DAD)
data from several studies,72–74,78,79 an exponential function was
formulated to mimic the gradual constriction:

DAD tð Þ ¼ 1
2
DAD0 ´ e�0:43t þ 1

2
DAD0 ´ e�0:14t (6)

with DAD the diameter in meters and t the time in hours. The
diameter before birth (DAD0) was set to 0.0050m.78,80,81 The
resistance (DAR) was calculated under the assumption of
Poiseuille flow:

DAR tð Þ ffi 1

DAD4ðtÞ (7)

Mean arterial pressure. The gradual increase in MAP that occurs
after birth was modelled with a linear function:

MAP tð Þ ¼ MAPt �MAP0
24

� �
t þMAP0 (8)

with t the time in hours, and MAP0 and MAPt the reference and
target MAP (Appendix), which were set to 48 and 60mmHg,
respectively.66,73,82–84

Simulation protocol
Cardiac cycle length was set to 0.414 s (heart rate of 145 beats/
min). Absolute flow and oxygen consumption of the systemic
elements were kept the same throughout the entire fetal-to-
neonatal transition, even with loss of umbilical venous return
(Supplementary Figure S2). After DA closure at 24 h after birth, left
ventricle (LV) and right ventricle (RV) are forced to act in series
and, hence, to deliver an output of 250 mL/min/kg each. Major
input parameter values are presented in Table 1.

Numerical implementation
The set of differential equations describing pressure, volume, and
oxygen saturation were solved with a time step of 0.1 ms. All
simulations were implemented in MATLAB 2019a (The MathWorks,
Natick, MA) on a standard personal computer with an Intel®
CoreTM i7 processor and 16 GB RAM.

RESULTS
Validation
For the validation of the model, simulated CCO and distribution,
oxygen saturations, intra-cardiac, and arterial blood pressures, as
well as flow velocity waveforms, were compared to target data.
Target data were obtained from healthy infants before and after
birth, as well as from animal experiments, in case human data
were lacking. The next few sections (and Tables 1 and 3) give an
overview of the key findings. A more extensive description of the
results as well as a comparison of input and output values with
target data can be found in Supplemental Material.

Fetal endpoint
Figure 1b shows the simulated flow rate distribution as a
percentage of CCO, together with selected reference values for
direct comparison. The systemic and pulmonary resistances were
set to ensure the same CCO distribution as found in the human
term fetus.4,78,80,85–87 Simulated right-to-left output ratio was 1.4,
corresponding well with the reported range 1.0–1.5.30,33,78,80,87–93

Simulated oxygen saturation levels in the term fetus are shown
in Fig. 1c. Due to the scarcity of in utero human fetal blood oxygen
saturation measurements, validation of oxygen saturation levels
was restricted to umbilical saturation levels obtained in newborn
infants directly after birth. Umbilical arterial oxygen saturation of
33% is within 1 SD of human newborn target data46–50 (Table 3).
The higher oxygen saturation level in the LV compared to the RV
(LV: 37%; RV: 31%, is caused by the abundant volume of
oxygenated umbilical blood presented to the FO.4 As a
consequence, pre-ductal oxygen saturation levels exceed post-
ductal oxygen saturation levels.
Simulated and measured94 flow velocity waveforms of the fetal

shunts are presented in Fig. 2. Simulated cardiac and vascular
pressure waveforms, as well as flow velocity waveforms across the
cardiac valves and volumic changes of the fetal cardiac chambers,
are shown in Fig. 3a. Both ventricular SV (LV: 4.3 mL; RV: 6.1 mL)
and ejection fraction (LV: 63%; RV: 53%) correspond well with
clinical values,35–37,78,87,90,95 although RV values are slightly lower
than reported values (Table 3). An explanation can be attributed
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from various timings in gestational age in the reported measure-
ments together with a general decrease in RV dominance and
increase in PBF during the last trimester.4 In our study, pulmonary
flow fraction (20%) and right-to-left shunting across the FO (21%)
correspond with a full-term fetus, and hence may differ from
reported measurements, explaining the slightly lower RV values.
Simulated E and A wave velocities of mitral (E: 0.37 m/s; A: 0.39

m/s) and tricuspid (E: 0.46 m/s; A: 0.51 m/s) valve were in
agreement with clinical observations in the healthy term
fetus2,31,32,96 (Table 3). The wide variation found in reported
values can be explained by differences in e.g. gestational age, CO,
heart rate, orifice area, and fetal breathing movements, as well as
by the relatively small data sets.
Data regarding fetal cardiac and vascular pressures is limited

due to the extremely high invasiveness of the measurements.
However, both simulated mean atrial (LA: 4.5 mmHg; RA: 4.6 mm
Hg) and MAPs (aorta: 48 mmHg (set); pulmonary: 49 mmHg) are
within 1 SD of human97 and animal98–101 target data.
The high resistance ratio between the pulmonary and systemic

circulation is reflected in the direction of flow through the DA,
with continuous right-to-left shunting6,102,103 (Fig. 4a). This
provides the pulmonary arterial blood flow waveform with unique
characteristics in utero; pulmonary arterial blood flow is directed
towards the lungs during most of the systole, yet away from the
lungs throughout diastole (Fig. 4a).104 This phenomena is
consistent with fetal lamb data.6,105

Lung aeration
An overview of the simulated model parameter changes and
evolution of the modelled resistances, flow rates, pressures, and
oxygen saturation levels from the fetus to the 24-h-old neonate
are presented in Fig. 5, together with target data for direct
comparison. With the onset of breathing, the PVR starts to
decrease (Fig. 5a), resulting in a gradual increase in PBF (Fig. 5c).
As lung aeration causes oxygenation of pulmonary venous blood,
oxygen saturation levels considerably increase (Fig. 5e).

Umbilical cord clamping
With the clamping of the umbilical cord, loss of the low-resistance
placental bed primarily leads to ① an immediate increase in
systemic vascular resistance (SVR) of ~0.90 mmHg s/mL (Fig. 5a), ②
a decrease in LV CO, RV CO, and CCO of ~ 26%, 28%, and 27%,

Table 3. Major output parameter values for the fetal circulation.

Unit Literature Simulation

Ref. Value

Cardiac output

Left ventricle mL/min 86 476 625
87 554
78 912
89 820

Right ventricle mL/min 86 950 887
87 953
78 1165
89 915

Stroke volume

Left ventricle mL 87 4 4.3
78 5.7
90 5.2

Right ventricle mL 87 7 6.1
78 8.5
90 7.6

Ejection fraction

Left ventricle % 35 62 63
36 60
95 67

Right ventricle % 35 52 53
36 55
95 66

Atrial pressure

Mean left atrial pressure mmHg 75 3.4 4.5

Mean right atrial pressure mmHg 75 3.7 4.6

Systemic arterial pressure

Diastolic arterial pressure mmHg 83 38 38
83 39

Mean arterial pressure mmHg 84 45 48a

83 48
83 48

Systolic arterial pressure mmHg 83 64 61
83 65

Pulse pressure mmHg 84 29 23
84 26

Pulmonary arterial pressure

Mean pulmonary arterial pressure mmHg 99b 49 49
5c 53
68d 48

Umbilical pressure

Mean umbilical venous pressure mmHg 22 6.5 6.5
113 5.3

Mitral valve

A peak velocity m/s 96 0.42 0.39
31 0.52
32 0.36
2 0.40

E peak velocity m/s 96 0.34 0.37
31 0.41
32 0.31
2 0.32

A/E ratio –
2 1.26 1.07

E/A ratio 96 0.81 0.91
31 0.91
32 0.86

Table 3. continued

Unit Literature Simulation

Ref. Value

Tricuspid valve

A peak velocity m/s 96 0.50 0.51
31 0.63
2 0.45

E peak velocity m/s 96 0.38 0.46
31 0.51
2 0.35

A/E ratio –
2 1.31 1.10

E/A ratio 96 0.75 0.93
31 0.82

aMean arterial cardiac output is maintained due to homeostatic control
mechanisms implemented in the CircAdapt model.
bPlacental oxygen uptake equals the total oxygen consumption with a
birth weight of 3.5 kg.
cOxygen consumption in the late-gestation fetal lamb, downscaled to
match the placental oxygen consumption in the term human fetus.
dAssuming equal distribution between brachial and femoral circulations.
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respectively (Fig. 5b), and ③ a brief decay in pre- and post-ductal
oxygen saturation (Fig. 5e).
① The decrease in PVR and increase in SVR lead to a decrease in

the pressure gradient between the pulmonary and systemic
circulation (Fig. 4b). As a consequence, right-to-left DA flow
decreases.
② Atrial and ventricular pressure–volume curves are displayed

in Fig. 6. As venous return is not yet restored at 1 min after birth,
both RV and LV show a lower workload with an SV of 4.5 mL (fetus:
6.1 mL) and 3.3 mL (fetus: 4.3 mL), respectively.106

③With the onset of breathing before umbilical cord clamping and
rise in PBF, the sudden loss of oxygen uptake in the placenta is
replaced within a minute by the oxygen uptake in the lungs (Fig. 5e).
Time to reach 90% was ~6.7 and 9.6min for the pre- and post-ductal
sites, respectively.52–61 Pre- and post-ductal sites reached normal
adult value (98%) at ~12 and 15min after birth, respectively.52,54,57

Transitory phase (and ductus arteriosus closure)
DA flow becomes bidirectional at ~10min after birth and mainly
left-to-right shortly thereafter (Fig. 5c), due to the continuous
decrease in PVR (Fig. 5a). The reversed DA flow is counter-
productive, forming a short-circuit loop from the LV to the LA
through the pulmonary circulation. FO flow meanwhile decreases
(Fig. 5c), due to rising LA pressure, with functional FO closure
occurring at 15 min after birth. Hence, LA and LV workload
considerably increases (LV SV, 1 h: 8.7 mL; fetus: 4.3 mL), whereas
RV workload remains fairly similar to that in the fetus (RV SV, 1 h:
6.0 mL; fetus: 6.1 mL) (Fig. 6).

From 1 h after birth, LV output decreases (Fig. 5b), due to the
rise in DA resistance (Fig. 5a) and, hence, decrease in PBF.
Furthermore, the difference between aortic and pulmonary arterial
pressure increases (Fig. 4e), with mean pulmonary arterial pressure
50% of mean aortic pressure at 24 h after birth (Fig. 5d).66

The pressure, flow velocity, and volume waveforms of the left- and
right-sided heart for the neonatal endpoint are displayed in Fig. 3b.
The decreased A/E ratio for the mitral valve (fetus: 1.07; 24 h: 0.82)
and relatively unchanged A/E ratio for the tricuspid valve (fetus: 1.10;
24 h: 1.12) agree with reported values in healthy neonates at 24 h
after birth (mitral valve: 0.79; tricuspid valve: 1.12).107

Decreased mean pulmonary arterial pressure (fetus: 49 mmHg;
24 h: 30 mmHg) at near-constant RV output resulted in a leftward
shift in its pressure–volume curve (Fig. 6). For the LV, the increase
in mean aortic pressure (1 h: 49 mmHg; 24 h: 60 mmHg) and
decrease in PBF contribute to a substantial decrease in workload
(LV SV, 1 h: 8.7 mL; 24 h: 6.0 mL).

DISCUSSION
The CircAdapt computational model of the adult cardiovascular
circulation was adapted to simulate the fetal circulation as well
as its transition to the cardiovascular system of a 24-h-old
neonate. Although many mathematical models have been
developed to describe the fetal circulation9–16 or the cardiovas-
cular fetal-to-neonatal transition,7,8 they often lack oxygen
saturation levels, homeostatic control mechanisms, phasic
hemodynamic signals, or describe the heart with a time-
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varying elastance model. In this study, we identified relevant
changes in flow velocity and pressure waveforms, as well as the
distributions of blood flow and oxygen saturation levels
throughout the cardiovascular system, while mimicking homeo-
static pressure-flow control mechanisms.

Fetal endpoint
High mean flow velocity in the DV. In utero, the majority of the
blood effectively bypasses the lungs by right-to-left shunting
across the DA and FO, with the majority of the FO blood flow
coming from DV blood flow.105 In our simulations, the large
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pressure drop across the DV and the substantially smaller DV
cross-sectional area, compared to the DA and FO cross-sectional
areas, contribute to the high mean flow velocity (Fig. 2). We
hypothesize that this high kinetic energy enables blood to
preferentially pass through the FO.

Inverted mitral and tricuspid flow patterns. In contrast to what is
normally found in the adult, the fetal atrioventricular waveform is
characterized by a late filling peak (A wave) that is higher than the
early filling peak (E wave). Reed et al.2 reported an A/E ratio for the
tricuspid valve of 1.20 ± 0.12 at 36–39 weeks gestation (1.10 in our
model) and an A/E ratio for the mitral valve of 1.11 ± 0.17 at
36–39 weeks gestation (1.07 in our model) (Fig. 3a).2

Vasoconstriction of fetal vessels
With umbilical cord clamping taking place at 30 s after birth,
arterial oxygen saturations showed a brief drop of ~3% caused by
loss of the relatively high umbilical venous oxygen saturation and
flow rate (Fig. 5). However, the onset of breathing and
corresponding increase in arterial oxygen partial pressure may
facilitate gradual umbilical arterial constriction, with the cessation
of umbilical arterial flow usually within 45 s after birth.108,109 We
neglected these effects to achieve a simpler model. The rise in
arterial oxygen saturation, furthermore, promotes DA constric-
tion,75–77 which is mimicked with an exponential function in our
simulation. Hence, implementing vasoconstriction upon increases
in arterial oxygen saturation may slightly change blood flows as
well as oxygen saturation levels and would additionally allow for
the simulation of, for example, delayed cord clamping.

Postnatal time to reach oxygen saturation ≥90% is >5min
In agreement with observational studies,52–61,110 our simulation
demonstrates that newborns remain poorly saturated immediately

after birth, and that, although oxygen saturation levels improve
steadily, normal adult values are not to be expected within the
first 15 min after birth. Several studies reported time to reach an
oxygen saturation ≥90% of >5min,52–54,56–59 with slightly longer
times for post-ductal sites due to right-to-left shunting. The
combination of persistent right-to-left atrial and DA shunting,
and ventilation–perfusion mismatching most likely explain the
inability to saturate arterial blood with oxygen in the first minute
after birth.

Increased preload of the left ventricle in the early neonatal period
The simulation showed a decrease in CO with umbilical cord
clamping, DA-induced temporal increase in LV output afterwards (LV
output, fetus: 623mL/min; 30min: 1259mL/min), as well as a
gradual decrease from 1 h onwards. Various studies showed similar
trends,71,73,79,82,106,111–113 although magnitudes may vary. With heart
rate not significantly changed, a combination of increased PBF and a
widely patent DA with predominantly left-to-right shunting likely
explains the two-fold increase in LV output at 30min after birth.
Hence, the neonatal heart is working at a relatively high level of the
Frank–Starling curve in the early neonatal period.

Limitations and future work
Potential limitations of this simulation may result from the lack of
sufficient human physiological and experimental data to compare
simulation results with target data. This lack of sufficient data is,
for example, prominent in our assumption on constant oxygen
consumption as well as the homeostatic pressure-flow regulation
and FO valve function given their relatively crude way of
modelling. PBF may be underestimated in our model due to the
lack of LA volume overload-induced left-to-right FO shunting.
Despite the use of animal data for the decline in PVR, the
simulation results provide a good approximation of the transitory
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phase in different parts of the simulation. Other limitations
may arise from the timing of umbilical cord clamping as well as
lack of amnion fluid resorption and biomechanical responses
at birth.
Future work will include expansion of the model with

vasoconstriction and vasodilatation upon changes in arterial
oxygen saturation levels as well as left-to-right atrial shunting
due to LA volume overload. Incorporation of congenital heart
disease or pathologies that may occur during the transitional
period will further enhance this model’s potential educational and
scientific research impact. The current version of the CircAdapt
model and educational simulation tool can be downloaded free of
charge from www.circadapt.org.

CONCLUSION
The CircAdapt model of the adult cardiovascular circulation was
adapted to simulate the hemodynamics of the fetal circulation
and the fetal-to-neonatal transition. Simulation results were
validated using experimental and clinical data. Fetal and neonatal
endpoints, as well as the events occurring during and directly after
birth and the transition during the first 24 h after birth, were
realistically represented. The model can, therefore, be used as an
educational tool to demonstrate the hemodynamics of the
complex fetal circulation and fetal-to-neonatal transition. Further-
more, it can serve as a research platform for in silico investigation
of fetal-to-neonatal hemodynamic changes under pathological
conditions, for example, in the presence of congenital heart
diseases.
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APPENDIX

Pulmonary and systemic resistances
The CircAdapt model consists of a four-chamber heart connected to a closed-loop
cardiovascular system, with lumped pulmonary and systemic circulations. Assuming
that the peripheral flow depends on the cross-sectional area via the
Hagen–Poisseuille equation,114 the peripheral flow (qav) can be related to the av
pressure drop (Δpav) as follows:

qav tð Þ ¼ qav;0
Δpav tð Þj j
Δpav;0

V2
av tð Þ
V2
av;0

 !kav

sgnðΔpavðtÞÞ (A1)

with the subscript 0 referring to the reference situation, and Vav the volume of the av
element. The signum function (sgn) extracts the sign of the av pressure drop (Δpav),
thereby determining whether the blood flows forward or backward through the av
element.

In the CircAdapt model, qav,0 is always held constant, whereas Δpav,0 can be
changed between cycles in the homeostatic pressure-flow control described in a
section below. Hence, changing Δpav,0 changes the av vascular resistance. Intuitively,

Δpav,0 can be seen as the pressure difference between the av artery and vein that
would be required to generate a constant systemic flow of qav= qav,0.

Although the reference av pressure drop (Δpav,0) and flow (qav,0) determine the
setpoint for the peripheral resistance, the nonlinearity of the pressure-flow relation is
determined by the exponent kav (Fig. 7). The pressure-flow relation is set to be linear
(kav= 1) for all systemic av elements. The PVR, however, is presumed to fall
nonlinearly (kav= 2) with increases in PBF, due to vessel dilation and/or vessel
recruitment in the pulmonary circulation.115–118

The high PVR in utero was established by using an increased reference pulmonary
av pressure drop (ΔpPU,0 > ΔpPU), thereby reducing the pulmonary av flow rate (qPU <
qPU,0) (Fig. 7). With the systemic flow maintained by homeostatic pressure-flow
control mechanisms (qav ¼ qav;0), the reduced pulmonary flow (qPU < qPU,0) inherently
reduces the CCO (CCO < CCO0). Hence, the reference pulmonary av pressure drop
(ΔpPU,0) was increased to 117 mmHg, while keeping the reference pulmonary av flow
rate (qPU,0) at 50% of the neonatal CCO of 500 mL/min/kg, thereby reducing the
simulated pulmonary flow rate (qav) to 20% of the fetal CCO of 430 mL/min/kg. The
remainder of the CCO was divided among the systemic elements (Table 1).

Homeostatic pressure-flow control
In the CircAdapt model, homeostatic pressure-flow control is used to maintain a
reference CO (qsys,0) and reference mean systemic arterial pressure (MAP0). Note that
qsys is not necessarily the same as qsys,0 in Eq. (A1). In the current study, MAP0 is set to
48 mmHg for the fetus, and increases linearly after birth to 60mmHg at 24 h.

The homeostatic pressure-flow control represents two physiological processes;
acutely, it represents the recruitment of pooled blood in the venous system into the
circulating blood volume, whereas in the longer term, it represents the
renin–angiotensin–aldosterone system (RAAS) on fluid retention to maintain CO.

With homeostatic pressure-flow control enabled, CircAdapt calculates the ratio
between current mean systemic arterial pressure over the cardiac cycle (MAP= paorta)
and MAP0 at the end of each cardiac cycle. This ratio is then used to incrementally
alter the av vascular resistance through changes in Δpav,0, with the process repeated
over multiple cardiac cycles until MAP=MAP0

Δpav;0;new ¼ MAP0
MAP

� �α qav
qav;0

� �α

Δpav;0;old

with α < 1 a damping factor that prevents oscillatory behavior. Hence, the av vascular
resistance will increase when MAP is too low, and decrease when av flow (qav) is too
low. One must bear in mind that the pressure-flow control is only applied to systemic
av elements, the PVR remains unaffected.

To represent RAAS and/or fluid retention of pooled blood, the circulating blood
volume alters with the SVR by injecting or removing volume per cardiac cycle into
the cardiac system from the systemic bed, that is, by altering the flow entering the

Δpav,0

qav

qav,0

kav = 1

kav > 1

0
0

Δp
av

Fig. 7 (Non-)linear pressure-flow relation for the arterio-venous
(av) resistance, assuming the volume term in Eq. (A1) is constant.
The nonlinearity of the pressure-flow relation is determined by the
exponent kav. A linear relation (kav= 1) was assumed for all systemic
elements, due to homeostatic control mechanisms. The relation
becomes nonlinear for higher kav values. A nonlinear relation (kav=
2) was assumed for the pulmonary element, due to vessel dilation
and/or vessel recruitment in the pulmonary circulation. The setpoint
for the peripheral resistance is determined by the reference av
pressure drop (pav,0) and flow rate (qav,0). Note that the nonlinear
pulmonary peripheral resistance increases with a decrease in current
pulmonary flow rate (qav).
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systemic veins (qven), so that

qven tð Þ ¼ MAP0
MAP

� �α

qðtÞ

with q the flow across the systemic circulation. Note that MAP0 >MAP represents
recruitment of pooled blood into the circulation or fluid retention by RAAS, indicating
a positive additional flow. If MAP >MAP0, volume is removed from the circulation,
representing blood pooling in the veins and fluid excretion through RAAS.

Preferential streaming pattern of the DV flow
In the full-term fetus, ~25% of the oxygen-rich blood from the umbilical vein passes
through the DV119–121 and preferentially streams into the LA through the FO.45 This
preferential streaming pattern was taken into account in the CircAdapt model by
forcing the oxygen saturation of the FO flow to consist primarily of umbilical vein
oxygen saturation mixed with inferior vena cava (IVC) oxygen saturation. In case of
positive FO flow (i.e., from RA to LA), the following equation holds:

SO2;FO ¼
qFOSO2;DV

qFO
if qFO � qDV

qFOSO2;DVþ qFO�qDVð ÞSO2;IVC

qFO
else

8<
: (A2)

with SO2,FO the oxygen saturation of the flow across the FO with a flow rate qFO, SO2,

DV the oxygen saturation of the flow across the DV with a flow rate qDV, and SO2,IVC

the oxygen saturation of the flow in the IVC with a flow rate qIVC. According to Eq.
(A2), the FO flow consists solely of blood originating from the DV if qDV > qFO.
Otherwise, if qDV < qFO, the FO flow consist of blood originating from the DV with the
remainder derived from the IVC.
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