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Immunopathogenesis in HIV-associated pediatric tuberculosis
Huanbin Xu1, Robert V. Blair1, Ronald S. Veazey1 and Xiaolei Wang1

Tuberculosis (TB) is an increasing global emergency in human immunodeficiency virus/acquired immune deficiency syndrome (HIV/
AIDS) patients, in which host immunity is dysregulated and compromised. However, the pathogenesis and efficacy of therapeutic
strategies in HIV-associated TB in developing infants are essentially lacking. Bacillus Calmette-Guerin vaccine, an attenuated live
strain of Mycobacterium bovis, is not adequately effective, which confers partial protection against Mycobacterium tuberculosis (Mtb)
in infants when administered at birth. However, pediatric HIV infection is most devastating in the disease progression of TB. It
remains challenging whether early antiretroviral therapy (ART) could maintain immune development and function, and restore Mtb-
specific immune function in HIV-associated TB in children. A better understanding of the immunopathogenesis in HIV-associated
pediatric Mtb infection is essential to provide more effective interventions, reducing the risk of morbidity and mortality in
HIV-associated Mtb infection in infants.
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IMPACT:

● Children living with HIV are more likely prone to opportunistic infection, predisposing high risk of TB diseases.
● HIV and Mtb coinfection in infants may synergistically accelerate disease progression.
● Early ART may probably induce immune reconstitution inflammatory syndrome and TB pathology in HIV/Mtb coinfected infants.

INTRODUCTION
Mycobacterium tuberculosis (Mtb) remains a major global public
health problem with more than one million deaths each year, and
patients infected with Mtb develop latent tuberculosis infection
(LTBI) or active tuberculosis (TB).1–3 Human immunodeficiency
virus (HIV) infection markedly increases susceptibility to TB, 20–30
times greater to develop active TB than those without HIV
infection (https://www.who.int/hiv/topics/tb/about_tb/en/).4 Mtb
and HIV act in detrimental synergy, accelerating the decline of
immunological functions and subsequent death if untreated.
Given distinct immune systems, children infected with TB are
more prone to develop active disease, occurring sooner and more
frequently,5–9 yet the immunopathogenesis and clinical outcomes
in infants with HIV/Mtb coinfection are unknown.

HIV-ASSOCIATED MTB INFECTION IN INFANTS
HIV infection is a significant driving force of the global TB
epidemic, especially in sub-Saharan Africa,4 resulting in epidemio-
logic shifts in pediatric TB cases, with an increased incidence of TB
among HIV-infected women and their infants.10 HIV-infected
infants (≤12 months of age) and young children have a high risk of
TB disease, with an estimated incidence of culture-confirmed TB
~>24-fold higher among HIV+ than HIV− infants,11 and a 20-fold
increase in the incidence of LTBI in HIV-exposed uninfected (HEU)
children compared to children unexposed to HIV.12 Antiretroviral
therapy (ART) during pregnancy prevents maternal HIV disease
progression and significantly reduces rates of perinatal transmis-
sion,13,14 yet there is a substantial risk of several adverse
pregnancies and negative birth outcomes in “uninfected”

infants.14–20 Although the majority of infants now remain
uninfected due to improved pre- and postnatal HIV care, there
is a rapidly increasing population of HEU infants who still show
persistent inflammation and many abnormalities of immune
function and suffer from poor health outcomes, especially in
infancy.15,18,21–30 Indeed, there is a growing awareness that this
large and expanding population of HEU infants may have
compromised immune function,15,18,22,23,29–41 which may influ-
ence subsequent immune responses to Mtb, increasing the risk of
TB incidence.42 These immunological differences indicate uniquely
altered host–pathogen interactions in developing infant immune
systems, which likely increase host vulnerability to Mtb. Notably,
inducible bronchus-associated lymphoid tissue (iBALT), an orga-
nized structure for initiation of antibody responses, is essentially
not present in infants, which may be implicated in the
exacerbation of Mtb infection of infants.43–45 HIV-associated
chronic lung disease is increasingly more prevalent in children
with lower CD4+ T cell counts and high viral loads. These children
often show chronic cough, pneumonia (e.g., Pneumocystis jirovecii
or/and lymphocytic interstitial pneumonia) and clinical respiratory
symptoms (e.g., tachypnea, mild to severe distress and hypoxia,
lymphoproliferative response, pulmonary immune reconstitution
inflammatory syndrome/IRIS), which are caused by multifactor
including recurrent bacterial (e.g., Streptococcus pneumoniae) or
severe viral (Cytomegalovirus or/and Epstein–Barr virus) or fungal
(e.g., Candida albicans) infection as long-term sequelae.46–54

Although the live attenuated Bacillus Calmette-Guérin (BCG)
vaccine is routinely administered to 80% of neonates globally
and effectively prevents the most severe complications of TB, its
efficacy wanes with age.55,56 BCG vaccination is contraindicated in
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HIV-infected infants, and infants at risk for HIV due to the potential
of inducing disseminated BCG disease,11,57,58 which is consistent
with simian immunodeficiency virus (SIV)-infected infant macaque
studies vaccinated with attenuated Mtb or Mycobacterium bovis
BCG.59 Multifactor, including unique immunoregulation and
ontogeny in infants and children, and HIV-associated immunode-
ficiency, may be implicated in the poor Mtb containment, as
indicated by: (1) HIV-infected children with TB tend to have more
extensive lung involvement;60–62 (2) HIV-related immune suppres-
sion increases susceptibility to Mtb infection;63 (3) HIV-infected
children with a CD4 percentage of <15% had a fourfold higher TB
incidence;64 and (4) among HIV-infected children with TB, the
mortality increases sixfold (41 vs. 7%).65 Notably, initiation of ART
in HIV-infected infants reduces mortality and opportunistic
infection including TB, suggesting that early combination ART is
necessary,66 because primary isoniazid prophylaxis treatment
alone does not improve TB-free survival among HIV-infected
children.67

POTENTIALLY COMPROMISED IMMUNE RESPONSES IN
PEDIATRIC HIV AND MTB COINFECTION
The lung is the primary mucosal portal of Mtb entry, thus both
innate and adaptive immune responses in the mucosal system
desperately play an essential role in immune control of Mtb
infection.68–72 Strikingly, converging evidence indicates that the
neonatal immune system is highly compartmentalized: the
mucosal immune system is more competent and develops faster
than the systemic immune system. This different organ-specific
maturation of the immune system between these two systemic
and mucosal systems may directly affect the infection and
transmission,73,74 so mucosal immune responses against infections
might be similar between infants and adults. In the context of HIV
and/or Mtb infection, many immune cells, including T/B cells and
innate lymphoid cells (macrophages, monocytes, natural killer
cells, and myeloid-derived cells), are involved.
It is reported that CD4+ T-helper type 1 (Th1) cells and CD8+

T cells, which produce interferon-γ (IFN-γ), tumor necrosis factor-α
(TNF-α), and cytolytic granules, may be essential for effective
immune controls to bacterial Mtb.75–79 However, most people with
active TB typically exhibit robust Th1 and IFN-γ responses,80

contributing to immunopathology.81 It is widely accepted that HIV
infection results in massive depletion of mucosal lymphocyte cells
in mucosal tissues, especially Th17 and Th22 and other innate
lymphoid cells responsible for the regulation of mucosal
integrity.82–85 HIV/Mtb coinfection thus devastates multiple
aspects of host immunosurveillance, as indicated by altered
production of TNF-α, IFN-γ, interleukin-2 and interleukin-10,86,87

and impaired differentiation and function of Mtb-specific CD4+
and CD8+ T cells.88–92 Meanwhile, Mtb-specific antibody
responses also play an essential role in bacterial containment
upon pulmonary challenge with Mtb.93–95 The ectopic lymphoid
and iBALT in lung parenchyma adjacent to granulomas, which
usually have normal to reactive B cell and germinal centers (GCs)
containing follicular Th cells (Tfh),96–98 are believed to defend
against Mtb invasion.93,99 Since Tfh cells are critical for cognate B
cell help in generating humoral immune responses, Tfh cells,
together with macrophage and other CD4+ T cells as major
cellular HIV reservoir within these “sanctuary sites” of lymphoid
tissues,100–102 definitely display impaired immune function,
leading to active TB and rapid disease progression. However,
the events and outcomes in Mtb and HIV coinfection in infants
remain elusive due to lack of iBALT.
Mtb-specific innate immunity, which shows long-lasting mem-

ory responses mediated by innate cells, persists in the host
providing long-lived protection termed trained immunity.72,103–106

These innate cells have the potential to undergo expansions and/
or acquire epigenetic modifications that primed against Mtb, yet

trained immunity in HIV-associated pediatric TB remains unknown.
Of innate cells, macrophages are the predominant sentinel
immune cells and the primary target cell for both HIV and Mtb
infection. Macrophages are involved in recognition, phagocytosis
and elimination of pathogens and debris, and producing cellular
mediators to prime immune responses with different activation
states (proinflammatory M1 and anti-inflammatory M2 pheno-
type). Two macrophage populations exist in the BAL and lung
tissues: lung-resident alveolar macrophages (AMs) and interstitial
macrophages (IMs).107,108 AMs are a larger proportion of long-lived
cells (75–80%) derived from embryonic precursors, which
replenish their populations by in situ self-renewal, but not from
the circulation.109,110 The AMs support bacterial growth, albeit
bacilli are distributed both AM and peripheral monocyte-derived
IMs,111 yet HIV-infected AMs are insensitive to ART.112,113

Interestingly, peripheral AMs seem to be absent in infants at
birth,108,114 suggesting that AM precursors may exist in lung
tissues of newborn and gradually expand with age. Conversely,
IMs exhibit a higher turnover rate, similar to peripheral monocytes,
and implement the important immune function. Infant AMs have
less capacity to restrict Mtb replication and unresponsive to
Pneumocystis murina infection,115–118 yet the role of neonatal IMs
is unknown. Further, SIV/Mtb coinfection in infants increases the
turnover of monocytes, in which massive numbers of macro-
phages in the lung are infected and eventually depleted, which
may contribute to active pediatric TB disease.119 These findings
support the concept that pulmonary macrophages, especially AM
in the lung and BAL, are unique in HIV-associated pediatric TB,
compared with those in adults.

PATHOLOGICAL CHANGES IN HIV-ASSOCIATED PEDIATRIC TB
Highly pathogenic mycobacterial infections breach mucosal
barriers in the lung parenchyma and cause inflammation,
granuloma formation, cavitation, and scarring, leading to the
loss of pulmonary function. Granuloma formation is triggered by
the macrophages and then develops with multinucleated giant
cells and an intracytoplasmic frothy appearance. In active TB,
granulomas are a hallmark of the local response against Mtb in
the lung, which form an immunological barrier to limit bacterial
dissemination and growth.120,121 Granuloma is surrounded by a
ring, which comprises macrophages, dendritic cells, and
aggregated lymphocytes. Inside the granuloma, neutrophil
granulocytes (myeloperoxidase-expressing cells) are predomi-
nantly distributed (Fig. 1a, b), accompanied by hypoxia and a
high concentration of nitric oxide (NO).122–124 In some infant
macaques with typically active Mtb, less organized coalescing
granulomas are observed, exhibiting distinct macrophage layers,
more significant infiltration of T cells into it, and clustered B cells
along the peripheral margin of the granuloma (Fig. 1c, d), in
concert with constituted indoleamine 2, 3-dioxygenase (IDO)-
expressing cells in the layer (Fig. 1e, f). Note IDO catalyzes the
rate-limiting step in the kynurenine production, which sup-
presses innate and adaptive immunity,125–129 probably explain-
ing why host immunity fails to fully kill bacilli. Granulomas can
form in any tissue, but predominantly in the lungs and lymph
nodes. Lymph nodes are the primary site for the development of
adaptive immune responses. It is reported that initiation of the
adaptive immune response to Mtb depends on antigen
production in the local lymph node, not the lungs.130 There
simply is no bronchus-associated mucosal tissues in infant, as
these develop in response to antigen exposures after birth.
Thus, the onset of the adaptive immune response to Mtb is
delayed compared with intestinal infections, likely due to lack of
iBALT.131,132 Even though lymph nodes are present at birth,
lymphoid follicle organization and GC formation and T cell
recruitment do not occur until several weeks after birth in
normal infants.133 In contrast, GC Tfh cell development in
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SIV-infected infants is markedly impaired throughout infection,
accompanied by impaired follicular development and defective
B cell proliferation and differentiation. Lymph nodes are thus the
most common site of extrapulmonary TB (EPTB) infection in HIV-
infected children,134,135 and endothelial cells in lymph nodes
have been shown to be potential niches for Mtb that allows
persistent infection.136 Higher rates of EPTB are observed in HIV-
infected infants and adults,134,137,138 suggesting inadequate
immunological control of HIV/Mtb coinfected patients. Impaired
immune development and function in pediatric lymph nodes
might get worse in HIV-associated pediatric TB.
HIV infection may alter host immunity and affects the integrity

of the Mtb granuloma structure, and is more likely to reactivate
latent Mtb infection into active TB, thus exacerbating the
disease.89,139,140 In support of this concept, HIV-infected patients
without ART have >20-fold higher risk of developing active TB
disease than those without HIV infection.141 In contrast, very early
ART initiation has a tremendous impact on reducing the risk of TB
disease in HIV-infected patients (~67%).141,142 Although ART in
HIV/Mtb coinfected patients reduces HIV-associated opportunistic
infections and increased Mtb-specific T cell responses. However,
this treatment may not ameliorate TB pathology and may even

accelerate TB progression due to the possible immune reconstitu-
tion inflammatory syndrome, especially in patients with lower CD4
T cell counts, high viral loads or EPTB.143–146 TB-IRIS is an adverse
consequence of the restoration of local pathogen-specific immune
responses in HIV-infected patients during the initial ART (~18%
HIV/TB coinfection),147 resulting in abnormal cytokine responses
and cell migration to the inflammatory sites,148–151 yet paradoxical
TB-IRS initiating ART in children is observed.152–154 Taken together,
HIV and Mtb coinfection in infants may have synergistic
detrimental effects on immunologic functions, resulting in
conditions favoring replication of both pathogens and accelerat-
ing disease progression and increasing morbidity and mortality in
HIV-associated pediatric TB. Understanding the mechanisms
behind the susceptibility of infants with HIV to TB and
immunopathogenesis is critical for preventing and treating HIV/
Mtb coinfection.
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Fig. 1 Pulmonary granulomas in infant macaques with tuberculosis. a, b Granulomas, comprising of macrophage layers (red) and clusters of
CD20+ B cells (blue), are organized well with a central area of caseous necrosis (MPO-expressing neutrophils). c–f Less organized coalescing
granulomas, surrounded by a layer of macrophages (green) and IDO-expressing cells (red, e, f) with infiltration of CD3+ T cells (red, c, d).
Clustered 20+ B cells (blue) distributed along the layer. MPO myeloperoxidase, IDO indoleamine-pyrrole 2,3-dioxygenase.
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