Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new era: improving use of sociodemographic constructs in the analysis of pediatric cohort study data

Abstract

Given the diversity of sex, gender identity, race, ethnicity, and socioeconomic position (SEP) in children across the United States, it is incumbent upon pediatric and epidemiologic researchers to conduct their work in ways that promote inclusivity, understanding and reduction in inequities. Current child health research often utilizes an approach of “convenience” in how data related to these constructs are collected, categorized, and included in models; the field needs to be more systematic and thoughtful in its approach to understand how sociodemographics affect child health. We offer suggestions for improving the discourse around sex, gender identity, race, ethnicity, and SEP in child health research. We explain how analytic models should be driven by a conceptual framework grounding the choices of variables that are included in analyses, without the automatic “adjusting for” all sociodemographic constructs. We propose to leverage newly available data from large multi-cohort consortia as unique opportunities to improve the current standards for analyzing and reporting core sociodemographic constructs. Improving the characterization and interpretation of child health studies with regards to core sociodemographic constructs is critical for optimizing child health and reducing inequities in the health and well-being of all children across the United States.

Impact

  • Current child health research often utilizes an approach of “convenience” in how data related to sex, race/ethnicity, and SEP are collected, categorized, and included in models.

  • We offer suggestions for how scholars can improve the discourse around sex, gender identity, race, ethnicity, and SEP in child health research.

  • We explain how analytic models should be driven by a conceptual framework grounding the choices of variables that are included in analyses.

  • We propose to leverage newly available large cohort consortia of child health studies as opportunities to improve the current standards for analyzing and reporting core sociodemographic constructs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Bhopal, R. Is research into ethnicity and health racist, unsound, or important science? BMJ 314, 1751–1756 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    James, S. A. Epidemiologic research on health disparities: some thoughts on history and current developments. Epidemiol. Rev. 31, 1–6 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Seith, D. & Isakson, E. Who are America’s Poor Chidren? Examining Health Disparities among Children in the United States (Mailman School of Public Health, 2011).

  4. 4.

    National Research Council and Institute of Medicine. Children’s Health, the Nation’s Wealth: Assessing and Improving Child Health (National Academies Press, 2004).

  5. 5.

    Sanders-Phillips, K., Settles-Reaves, B., Walker, D. & Brownlow, J. Social inequality and racial discrimination: risk factors for health disparities in children of color. Pediatrics 124(Suppl. 3), S176–S186 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Spencer, N. Social, economic, and political determinants of child health. Pediatrics 112(Part 2), 704–706 (2003).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Marmot, M., Friel, S., Bell, R., Houweling, T. A. & Taylor, S. Commission on Social Determinants of H. Closing the gap in a generation: health equity through action on the social determinants of health. Lancet 372, 1661–1669 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Daly, M. C., Duncan, G. J., McDonough, P. & Williams, D. R. Optimal indicators of socioeconomic status for health research. Am. J. Public Health 92, 1151–1157 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Institute of Medicine. Unequal Treatment: Confronting Racial and Ethnic Disparities in Healthcare (National Academies Press, 2003).

  10. 10.

    Temkin, D., Belford, J., McDaniel, T., Stratford, B. & Parris, D. Improving measurement of sexual orientation and gender identity among middle and high school students. Child Trends 23, 1–2 (2017).

    Google Scholar 

  11. 11.

    Flores, G. Committee On Pediatric R. Technical report—racial and ethnic disparities in the health and health care of children. Pediatrics 125, e979–e1020 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    American Academy of Pediatrics. Race/ethnicity, gender, socioeconomic status-research exploring their effects on child health: a subject review. Pediatrics 105, 1349–1351 (2000).

  13. 13.

    Cheng, T. L. & Goodman, E. Committee on Pediatric R. Race, ethnicity, and socioeconomic status in research on child health. Pediatrics 135, e225–e237 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Walsh, C. & Ross, L. F. Are minority children under- or overrepresented in pediatric research? Pediatrics 112, 890–895 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Ross, L. F. & Walsh, C. Minority children in pediatric research. Am. J. Law Med. 29, 319–336 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Brahan, D. & Bauchner, H. Changes in reporting of race/ethnicity, socioeconomic status, gender, and age over 10 years. Pediatrics 115, e163–e166 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Braveman, P., Cubbin, C., Marchi, K., Egerter, S. & Chavez, G. Measuring socioeconomic status/position in studies of racial/ethnic disparities: maternal and infant health. Public Health Rep. 116, 449–463 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Case, A. & Paxson, C. Parental behavior and child health. Health Aff. 21, 164–178 (2002).

    Article  Google Scholar 

  19. 19.

    Kenney, M. K. Child, family, and neighborhood associations with parent and peer interactive play during early childhood. Matern. Child Health J. 16(Suppl. 1), S88–S101 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Braveman, P. & Barclay, C. Health disparities beginning in childhood: a life-course perspective. Pediatrics 124(Suppl. 3), S163–S175 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Kuh, D., Ben-Shlomo, Y., Lynch, J., Hallqvist, J. & Power, C. Life course epidemiology. J. Epidemiol. Community Health 57, 778–783 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Huang, K. Y., Cheng, S. & Theise, R. School contexts as social determinants of child health: current practices and implications for future public health practice. Public Health Rep. 128(Suppl. 3), 21–28 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Maitland, C., Stratton, G., Foster, S., Braham, R. & Rosenberg, M. A place for play? The influence of the home physical environment on children’s physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 10, 99 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Sampson, R. J. The neighborhood context of well-being. Perspect. Biol. Med. 46(Suppl.), S53–S64 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Christian, H. et al. The influence of the neighborhood physical environment on early child health and development: a review and call for research. Health Place 33, 25–36 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    National Institutes of Health (NIH). Final NIH Statement on Sharing Research Data (NIH, 2003).

  27. 27.

    Gandomi, A. & Haider, M. Beyond the hype: big data concepts, methods and analytics. Int. J. Inf. Manag. 35, 137–144 (2015).

    Article  Google Scholar 

  28. 28.

    Hamilton, D. Post-Racial Rhetoric, Racial Health Disparities, and Health Disparity Consequences of Stigma, Stress and Racism (Washington Center for Equitable Growth, 2017).

  29. 29.

    Krieger, N. Epidemiology and the web of causation: has anyone seen the spider? Soc. Sci. Med. 39, 887–903 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Krieger, N. Theories for social epidemiology in the 21st century: an ecosocial perspective. Int. J. Epidemiol. 30, 668–677 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Krieger, N., Davey & Smith, G. The tale wagged by the DAG: broadening the scope of causal inference and explanation for epidemiology. Int. J. Epidemiol. 45, 1787–1808 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hernandez-Diaz, S., Schisterman, E. F. & Hernan, M. A. The birth weight “paradox” uncovered? Am. J. Epidemiol. 164, 1115–1120 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Galea, S. & Link, B. G. Six paths for the future of social epidemiology. Am. J. Epidemiol. 178, 843–849 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Kaufman, J. S. & Cooper, R. S. Commentary: considerations for use of racial/ethnic classification in etiologic research. Am. J. Epidemiol. 154, 291–298 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    LaVeist, T. A. Beyond dummy variables and sample selection: what health services researchers ought to know about race as a variable. Health Serv. Res. 29, 1–16 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Westreich, D. & Greenland, S. The table 2 fallacy: presenting and interpreting confounder and modifier coefficients. Am. J. Epidemiol. 177, 292–298 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Kaufman, J. S. Statistics, adjusted statistics, and maladjusted statistics. Am. J. Law Med. 43, 193–208 (2017).

    PubMed  Article  Google Scholar 

  38. 38.

    Piccini, P., Montagnani, C. & deMartino, M. Gender disparity in pediatrics: a review of the current literature. Italian J. Pediatr. 44, https://doi.org/10.1186/s13052-017-0437-x (2018).

  39. 39.

    Coen, S. & Banister, E. What a Difference Sex and Gender Make: A Gender, Sex and Health Research Casebook (Canadian Institutes of Health Research, 2012).

  40. 40.

    Clayton, J. A. & Tannenbaum, C. Reporting sex, gender, or both in clinical research? JAMA 316, 1863–1864 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    The Society for Women’s Health Research. Institute of medicine report validates the science of sex differences. J. Womens Health Gend. Based Med. 10, 303–304 (2001).

    Article  Google Scholar 

  42. 42.

    Day, S., Mason, R., Lagosky, S. & Rochon, P. A. Integrating and evaluating sex and gender in health research. Health Res. Policy Syst. 14, 75 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Nowatzki, N. & Grant, K. R. Sex is not enough: the need for gender-based analysis in health research. Health Care Women Int. 32, 263–277 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Doyal, L. Sex and gender: the challenges for epidemiologists. Int. J. Health Serv. 33, 569–579 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Clayton, J. A. Applying the new SABV (sex as a biological variable) policy to research and clinical care. Physiol. Behav. 187, 2–5 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Krieger, N. Genders, sexes, and health: what are the connections—and why does it matter? Int. J. Epidemiol. 32, 652–657 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Institute of Medicine. The Health of Lesbian, Gay, Bisexual and Transgender People: Building a Foundation for a Better Understanding (The National Academies Press, 2011).

  48. 48.

    Ruiz-Cantero, M. T. et al. A framework to analyse gender bias in epidemiological research. J. Epidemiol. Community Health 61(Suppl. 2), ii46–ii53 (2007).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Arboleda, V. A., Sandberg, D. E. & Vilain, E. DSDs: genetics, underlying pathologies and psychosexual differentiation. Nat. Rev. Endocrinol. 10, 603–615 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Kann, L. et al. Youth risk behavior surveillance—United States, 2015. MMWR Surveill. Summ. 65(Suppl. S6), 1–174 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Bird, C. E. & Rieker, P. P. Gender matters: an integrated model for understanding men’s and women’s health. Soc. Sci. Med. 48, 745–755 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Moerman, C. & van Mens-Verhulst, J. Gender-sensitive epidemiologic research: Suggestions for a gender-sensitive approach towards problem definition, data collection and analysis in epidemiological research. Psychol. Health Med. 9, 41–52 (2004).

    Article  Google Scholar 

  53. 53.

    Jahn, I. & Foraita, R. Gender-sensitive epidemiological data analysis: methodological aspects and empirical outcomes. Illustrated by a health reporting example. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 51, 13–27 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Nieuwenhoven, L. & Klinge, I. Scientific excellence in applying sex- and gender-sensitive methods in biomedical and health research. J. Women’s Health 19, 313–321 (2010).

    Article  Google Scholar 

  55. 55.

    Springer, K. W., Mager Stellman, J. & Jordan-Young, R. M. Beyond a catalogue of differences: a theoretical frame and good practice guidelines for researching sex/gender in human health. Soc. Sci. Med. 74, 1817–1824 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Olson, K. R. & Gulgoz, S. Early findings from the TransYouth Project: gender development in transgender children. Child Dev. Perspect. 12, 93–97 (2018).

    Article  Google Scholar 

  57. 57.

    Ainsworth, C. Sex redefined. Nature 518, 288–291 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Krieger, N. in Epidemiology and the People’s Health, 86–92 (Oxford Univ. Press, 2011).

  59. 59.

    Fullilove, M. T. Comment: abandoning “race” as a variable in public health research—an idea whose time has come. Am. J. Public Health 88, 1297–1298 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Bhopal, R. & Donaldson, L. White, European, Western, Caucasian, or what? Inappropriate labeling in research on race, ethnicity, and health. Am. J. Public Health 88, 1303–1307 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Yudell, M., Roberts, D., DeSalle, R. & Tishkoff, S. Science and society. Taking race out of human genetics. Science 351, 564–565 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Fujimura, J. H. & Rajagopalan, R. Different differences: the use of ‘genetic ancestry’ versus race in biomedical human genetic research. Soc. Stud. Sci. 41, 5–30 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Morning, A. Does genomics challenge the social construction of race? Sociol. Theory 32, 189–207 (2014).

    Article  Google Scholar 

  64. 64.

    Office of Management and Budget. Standards for Maintaining, Collecting, and Presenting Federal Data on Race and Ethnicity (OMB, 2016).

  65. 65.

    Senior, P. A. & Bhopal, R. Ethnicity as a variable in epidemiological research. BMJ 309, 327–330 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Moubarac, J. C. Persisting problems related to race and ethnicity in public health and epidemiology research. Rev. Saude Publica 47, 104–115 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Comstock, R. D., Castillo, E. M. & Lindsay, S. P. Four-year review of the use of race and ethnicity in epidemiologic and public health research. Am. J. Epidemiol. 159, 611–619 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Ahdieh, L. & Hahn, R. A. Use of the terms ‘race’, ‘ethnicity’, and ‘national origins’: a review of articles in the American Journal of Public Health, 1980-1989. Ethn. Health 1, 95–98 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    National Center for Health Statistics. Vital Statistics of the United States: Natality (Centers for Disease Control and Prevention, 1999).

  70. 70.

    Ho, A. K., Sidanius, J., Levin, D. T. & Banaji, M. R. Evidence for hypodescent and racial hierarchy in the categorization and perception of biracial individuals. J. Pers. Soc. Psychol. 100, 492–506 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Hickman, C. B. The devil and the one drop rule: racial categories, African Americans, and the U.S. Census. Mich. Law Rev. 95, 1161–1265 (1997).

    Article  Google Scholar 

  72. 72.

    Jones, C. P., LaVeist, T. A. & Lillie-Blanton, M. “Race” in the epidemiologic literature: an examination of the American Journal of Epidemiology, 1921–1990. Am. J. Epidemiol. 134, 1079–1084 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Williams, D. R. Race/ethnicity and socioeconomic status: measurement and methodological issues. Int. J. Health Serv. 26, 483–505 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Passel, J. S. Demographic and social trends affecting the health of children in the United States. Ambul. Pediatr. 2(Suppl.), 169–179 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Vyas, D. A., Eisenstein, L. G. & Jones, D. S. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N. Engl. J. Med. 383, 874–882 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Centers for Disease Control and Prevention. Use of race and ethnicity in public health surveillance: Summary of the CDC/ATSDR workshop. Morb. Mortal. Wkly. Rep. 17, 42 (1993).

    Google Scholar 

  77. 77.

    Rivara, F. & Finberg, L. Use of the terms race and ethnicity. Arch. Pediatr. Adolesc. Med. 155, 119 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Trent, M., Dooley, D. G. & Douge, J. Section On Adolescent H, Council On Community P, Committee On A. The impact of racism on child and adolescent health. Pediatrics 144, e20191765 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    VanderWeele, T. J. & Robinson, W. R. On the causal interpretation of race in regressions adjusting for confounding and mediating variables. Epidemiology 25, 473–484 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Jones, C. P. Invited Commentary: “race,” racism, and the practice of epidemiology. Am. J. Epidemiol.154, 299–304 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Liberatos, P., Link, B. G. & Kelsey, J. L. The measurement of social class in epidemiology. Epidemiol. Rev. 10, 87–121 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Krieger, N., Williams, D. R. & Moss, N. E. Measuring social class in US public health research: concepts, methodologies, and guidelines. Annu. Rev. Public Health 18, 341–378 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Krieger, N. A glossary for social epidemiology. J. Epidemiol. Community Health 55, 693–700 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Chittleborough, C. R., Baum, F. E., Taylor, A. W. & Hiller, J. E. A life-course approach to measuring socioeconomic position in population health surveillance systems. J. Epidemiol. Community Health 60, 981–992 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Currie, J. Healthy, wealthy and wise: socioeconomic status, poor health in childhood, and human capital development. J. Econ. Lit. 47, 87–112 (2009).

    Article  Google Scholar 

  86. 86.

    de Neubourg, E., Borghans, L., Coppens, K. & Jansen, M. Explaining children’s life outcomes: parental socioeconomic status, intelligence and neurocognitive factors in a dynamic life cycle model. Child Indic. Res. 11, 1495–1513 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Laflamme, L., Hasselberg, M. & Burrows, S. 20 years of research on socioeconomic inequality and children’s unintentional injuries understanding the cause-specific evidence at hand. Int. J. Pediatr. 2010, 1–23 (2010).

    Article  Google Scholar 

  88. 88.

    Lynch, J. W. & Kaplan, G. A. Socioeconomic Position (Oxford Univ. Press, 2000).

  89. 89.

    Galobardes, B., Lynch, J. & Smith, G. D. Measuring socioeconomic position in health research. Br. Med. Bull. 81–82, 21–37 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Braveman, P. A. et al. Socioeconomic status in health research: one size does not fit all. JAMA 294, 2879–2888 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Abramson, J. H., Gofin, R., Habib, J., Pridan, H. & Gofin, J. Indicators of social class. A comparative appraisal of measures for use in epidemiological studies. Soc. Sci. Med. 16, 1739–1746 (1982).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Winkleby, M. A., Jatulis, D. E., Frank, E. & Fortmann, S. P. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am. J. Public Health 82, 816–820 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Galobardes, B., Shaw, M., Lawlor, D. A., Lynch, J. W., Davey & Smith, G. Indicators of socioeconomic position (Part 1). J. Epidemiol. Community Health 60, 7–12 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Braveman, P. & Gottlieb, L. The social determinants of health: it’s time to consider the causes of the causes. Public Health Rep. 129(Suppl. 2), 19–31 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Vollmer, S., Bommer, C., Krishna, A., Harttgen, K. & Subramanian, S. V. The association of parental education with childhood undernutrition in low- and middle-income countries: comparing the role of paternal and maternal education. Int. J. Epidemiol. 46, 312–323 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Lindeboom, M., Llena-Nozal, A., Van & der Klaauw, B. Parental education and child health: evidence from a schooling reform. J. Health Econ. 28, 109–131 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Herring, C. & Henderson, L. Wealth inequality in black and white: cultural and structural sources of the racial wealth gap. Race Soc. Probl. 8, 4–17 (2016).

    Article  Google Scholar 

  98. 98.

    Arzberger, P. et al. Promoting access to public research data for scientific, economic, and social development. Data Sci. J. 3, 135–152 (2004).

    Article  Google Scholar 

  99. 99.

    Stockemer, D., Koehler, S. & Lentz, T. Data access, transparency, and replication: new insights from the political behavior literature. Polit. Sci. Polit. 51, 799–803 (2018).

    Article  Google Scholar 

  100. 100.

    Hammond, R. et al. Predicting childhood obesity using electronic health records and publicly available data. PLoS ONE 14, e0215571 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Thakrar, A. P., Forrest, A. D., Maltenfort, M. G. & Forrest, C. B. Child mortality in the US and 19 OECD comparator nations: a 50-year time-trend analysis. Health Aff. 37, 140–149 (2018).

    Article  Google Scholar 

  102. 102.

    Blair, L. M. Publicly available data and pediatric mental health: leveraging big data to answer big questions for children. J. Pediatr. Health Care 30, 84–87 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Nebeling, L., Dwyer, L. & Oh, A. The FLASHE Study: a publicly available data resource. Curr. Dev. Nutr. 4(Suppl. 2), 1337 (2020).

    PubMed Central  Article  Google Scholar 

  104. 104.

    Ghandour, R. M. et al. The Design and Implementation of the 2016 National Survey of Children’s Health. Matern. Child Health J. 22, 1093–1102 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Gillman, M. W. & Blaisdell, C. J. Environmental influences on Child Health Outcomes, a Research Program of the National Institutes of Health. Curr. Opin. Pediatr. 30, 260–262 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lisa Jacobson for her guidance and edits on this manuscript. L.T.D. is supported by grants from the National Institute of Mental Health (R25MH083620) and the National Cancer Institute (K01CA184288). This publication was supported by the Environmental Influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health, under Award Number U24OD023382 (Data Analysis Center). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Contributions

A.C., E.K., and T.L. contributed to the conception, design, acquisition, and interpretation of the information. L.T.D. provided critical input in the intellectual content. All authors contributed to the writing of the manuscript and approved the final version for publication.

Corresponding author

Correspondence to Aruna Chandran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandran, A., Knapp, E., Liu, T. et al. A new era: improving use of sociodemographic constructs in the analysis of pediatric cohort study data. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01386-w

Download citation

Search

Quick links