Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Safety and efficacy of probiotic administration to preterm infants: ten common questions

Abstract

In spite of a large number of randomized placebo-controlled clinical trials and observational cohort studies including >50,000 preterm infants from 29 countries that have demonstrated a decrease in the risk of necrotizing enterocolitis, death, and sepsis, routine prophylactic probiotic administration to preterm infants remains uncommon in much of the world. This manuscript reflects talks given at NEC Society Symposium in 2019 and is not intended to be a state-of-the-art review or systematic review, but a summary of the probiotic-specific aspects of the symposium with limited additions including a recent strain-specific network analysis and position statement from the European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN). We address ten common questions related to the intestinal microbiome and probiotic administration to the preterm infant.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Athalye-Jape, G. & Patole, S. Probiotics for preterm infants - time to end all controversies. Microb. Biotechnol. 12, 249–253 (2019).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Pell, L. G., Loutet, M. G., Roth, D. E. & Sherman, P. M. Arguments against routine administration of probiotics for NEC prevention. Curr. Opin. Pediatr. 31, 195–201 (2019).

    PubMed  Google Scholar 

  3. 3.

    Weiss, G. A. & Hennet, T. Mechanisms and consequences of intestinal dysbiosis. Cell. Mol. Life Sci. 74, 2959–2977 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Takiishi, T., Fenero, C. I. M. & Camara, N. O. S. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 5, e1373208 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Chua, H. H. et al. Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterology 154, 154–167 (2018).

    PubMed  Google Scholar 

  7. 7.

    Abdellatif, A. M. & Sarvetnick, N. E. Current understanding of the role of gut dysbiosis in type 1 diabetes. J. Diabetes 11, 632–644 (2019).

    PubMed  Google Scholar 

  8. 8.

    Lujan, J. A., Rugeles, M. T. & Taborda, N. A. Contribution of the microbiota to intestinal homeostasis and its role in the pathogenesis of HIV-1 infection. Curr. HIV Res. 17, 13–25 (2019).

    CAS  PubMed  Google Scholar 

  9. 9.

    Jackson, D. N. & Theiss, A. L. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes 11, 285–304 (2019).

  10. 10.

    Zhou, R., Fan, X. & Schnabl, B. Role of the intestinal microbiome in liver fibrosis development and new treatment strategies. Transl. Res. 209, 22–38 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    Jazani, N. H., Savoj, J., Lustgarten, M., Lau, W. L. & Vaziri, N. D. Impact of gut dysbiosis on neurohormonal pathways in chronic kidney disease. Diseases 7, E21 (2019).

    PubMed  Google Scholar 

  12. 12.

    Lin, P. Importance of the intestinal microbiota in ocular inflammatory diseases: a review. Clin. Exp. Ophthalmol. 47, 418–422 (2019).

    PubMed  Google Scholar 

  13. 13.

    Henrick, B. M. et al. Elevated fecal pH indicates a profound change in the breastfed infant gut microbiome due to reduction of bifidobacterium over the past century. mSphere 3, e00041-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Rook, G. A., Lowry, C. A. & Raison, C. L. Microbial ‘old friends’, immunoregulation and stress resilience. Evol. Med. Public Health 2013, 46–64 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Heida, F. H. et al. Paneth cells in the developing gut: when do they arise and when are they immune competent? Pediatr. Res. 80, 306–310 (2016).

    CAS  PubMed  Google Scholar 

  16. 16.

    Brandtzaeg, P. Gate-keeper function of the intestinal epithelium. Benef. Microbes 4, 67–82 (2013).

    CAS  PubMed  Google Scholar 

  17. 17.

    Mihi, B. & Good, M. Impact of Toll-like receptor 4 signaling in necrotizing enterocolitis: the state of the science. Clin. Perinatol. 46, 145–157 (2019).

    PubMed  Google Scholar 

  18. 18.

    Taft, D. H. et al. Bacterial colonization and antimicrobial resistance genes in neonatal enteral feeding tubes. FEMS Microbiol. Ecol. 95, fiz039 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Gasparrini, A. J. et al. Antibiotic perturbation of the preterm infant gut microbiome and resistome. Gut Microbes 7, 443–449 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zwittink, R. D. et al. Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. Eur. J. Clin. Microbiol. Infect. Dis. 37, 475–483 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Gupta, R. W. et al. Histamine-2 receptor blockers alter the fecal microbiota in premature infants. J. Pediatr. Gastroenterol. Nutr. 56, 397–400 (2013).

    CAS  PubMed  Google Scholar 

  22. 22.

    La Rosa, P. S. et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl Acad. Sci. USA 111, 12522–12527 (2014).

    PubMed  Google Scholar 

  23. 23.

    Litvak, Y., Byndloss, M. X., Tsolis, R. M. & Baumler, A. J. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 39, 1–6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Pammi, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5, 31 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yee, W. H. et al. Incidence and timing of presentation of necrotizing enterocolitis in preterm infants. Pediatrics 129, e298–e304 (2012).

    PubMed  Google Scholar 

  26. 26.

    Hackam, D. J. & Sodhi, C. P. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis. Cell. Mol. Gastroenterol. Hepatol. 6, 229.e1–238.e1 (2018).

    Google Scholar 

  27. 27.

    Lueschow, S. R. et al. Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis. PLoS ONE 13, e0204967 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Cantey, J. B., Pyle, A. K., Wozniak, P. S., Hynan, L. S. & Sanchez, P. J. Early antibiotic exposure and adverse outcomes in preterm, very low birth weight infants. J. Pediatr. 203, 62–67 (2018).

    CAS  PubMed  Google Scholar 

  29. 29.

    More, K., Athalye-Jape, G., Rao, S. & Patole, S. Association of inhibitors of gastric acid secretion and higher incidence of necrotizing enterocolitis in preterm very low-birth-weight infants. Am. J. Perinatol. 30, 849–856 (2013).

    PubMed  Google Scholar 

  30. 30.

    Stewart, C. J. et al. Longitudinal development of the gut microbiome and metabolome in preterm neonates with late onset sepsis and healthy controls. Microbiome 5, 75 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Taft, D. H. et al. Center variation in intestinal microbiota prior to late-onset sepsis in preterm infants. PLoS ONE 10, e0130604 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Esaiassen, E. et al. Effects of probiotic supplementation on the gut microbiota and antibiotic resistome development in preterm infants. Front. Pediatr. 6, 347 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Dutta, S., Ray, P. & Narang, A. Comparison of stool colonization in premature infants by three dose regimes of a probiotic combination: a randomized controlled trial. Am. J. Perinatol. 32, 733–740 (2015).

    PubMed  Google Scholar 

  34. 34.

    Tobin, J. M., Garland, S. M., Jacobs, S. E., Pirotta, M. & Tabrizi, S. N. Rapid assay to assess colonization patterns following in-vivo probiotic ingestion. BMC Res. Notes 6, 252 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Chrzanowska-Liszewska, D., Seliga-Siwecka, J. & Kornacka, M. K. The effect of Lactobacillus rhamnosus GG supplemented enteral feeding on the microbiotic flora of preterm infants-double blinded randomized control trial. Early Hum. Dev. 88, 57–60 (2012).

    PubMed  Google Scholar 

  36. 36.

    Underwood, M. A. et al. Digestion of human milk oligosaccharides by Bifidobacterium breve in the premature infant. J. Pediatr. Gastroenterol. Nutr. 65, 449–455 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Underwood, M. A. et al. A comparison of two probiotic strains of bifidobacteria in premature infants. J. Pediatr. 163, 1585.e9–1591.e9 (2013).

    Google Scholar 

  38. 38.

    Mohan, R. et al. Effects of Bifidobacterium lactis Bb12 supplementation on body weight, fecal pH, acetate, lactate, calprotectin, and IgA in preterm infants. Pediatr. Res. 64, 418–422 (2008).

    PubMed  Google Scholar 

  39. 39.

    Underwood, M. A. et al. A randomized placebo-controlled comparison of 2 prebiotic/probiotic combinations in preterm infants: impact on weight gain, intestinal microbiota, and fecal short-chain fatty acids. J. Pediatr. Gastroenterol. Nutr. 48, 216–225 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Smilowitz, J. T., Lebrilla, C. B., Mills, D. A., German, J. B. & Freeman, S. L. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu. Rev. Nutr. 34, 143–169 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Underwood, M. A., German, J. B., Lebrilla, C. B. & Mills, D. A. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr. Res. 77, 229–235 (2015).

    CAS  PubMed  Google Scholar 

  42. 42.

    Garrido, D. et al. Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol. 33, 262–270 (2013).

    CAS  PubMed  Google Scholar 

  43. 43.

    Frese, S. A. et al. Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. mSphere 2, e00501–e00517 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hu, H. J., Zhang, G. Q., Zhang, Q., Shakya, S. & Li, Z. Y. Probiotics prevent candida colonization and invasive fungal sepsis in preterm neonates: a systematic review and meta-analysis of randomized controlled trials. Pediatr. Neonatol. 58, 103–110 (2017).

    PubMed  Google Scholar 

  45. 45.

    Oncel, M. Y. et al. Comparison of Lactobacillus reuteri and nystatin prophylaxis on Candida colonization and infection in very low birth weight infants. J. Matern. Fetal Neonatal Med. 28, 1790–1794 (2015).

    PubMed  Google Scholar 

  46. 46.

    Turner, R. B. et al. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection - a randomised controlled trial. Benef. Microbes 8, 207–215 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Fang, S. B. et al. Dose-dependent effect of Lactobacillus rhamnosus on quantitative reduction of faecal rotavirus shedding in children. J. Trop. Pediatr. 55, 297–301 (2009).

    PubMed  Google Scholar 

  48. 48.

    Alfaleh, K. & Anabrees, J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 4, CD005496 (2014).

    Google Scholar 

  49. 49.

    Sawh, S. C., Deshpande, S., Jansen, S., Reynaert, C. J. & Jones, P. M. Prevention of necrotizing enterocolitis with probiotics: a systematic review and meta-analysis. PeerJ 4, e2429 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sun, J. et al. Effects of probiotics on necrotizing enterocolitis, sepsis, intraventricular hemorrhage, mortality, length of hospital stay, and weight gain in very preterm infants: a meta-analysis. Adv. Nutr. 8, 749–763 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Dermyshi, E. et al. The “golden age” of probiotics: a systematic review and meta-analysis of randomized and observational studies in preterm infants. Neonatology 112, 9–23 (2017).

    CAS  PubMed  Google Scholar 

  52. 52.

    Deshpande, G., Jape, G., Rao, S. & Patole, S. Benefits of probiotics in preterm neonates in low-income and medium-income countries: a systematic review of randomised controlled trials. BMJ Open 7, e017638 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Zhu, X. L. et al. Bifidobacterium may benefit the prevention of necrotizing enterocolitis in preterm infants: a systematic review and meta-analysis. Int. J. Surg. 61, 17–25 (2019).

    PubMed  Google Scholar 

  54. 54.

    Jiang, T., Zhang, H., Xu, X., Li, H. & Yang, J. Mixed probiotics decrease the incidence of stage II-III necrotizing enterocolitis and death: a systematic review and meta-analysis. Microb. Pathog. 138, 103794 (2020).

    CAS  PubMed  Google Scholar 

  55. 55.

    Balasubramanian, H., Ananthan, A., Rao, S. & Patole, S. Probiotics for preterm infants in India - systematic review and meta-analysis of randomized controlled trials. Indian J. Pediatr. https://doi.org/10.1007/s12098-020-03223-0 (2020).

  56. 56.

    Olsen, R., Greisen, G., Schroder, M. & Brok, J. Prophylactic probiotics for preterm infants: a systematic review and meta-analysis of observational studies. Neonatology 109, 105–112 (2016).

    PubMed  Google Scholar 

  57. 57.

    Xiong, T., Maheshwari, A., Neu, J., Ei-Saie, A. & Pammi, M. An overview of systematic reviews of randomized-controlled trials for preventing necrotizing enterocolitis in preterm infants. Neonatology 117, 46–56 (2020).

    CAS  PubMed  Google Scholar 

  58. 58.

    Costeloe, K. et al. Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. Lancet 387, 649–660 (2016).

  59. 59.

    Oncel, M. Y. et al. Lactobacillus reuteri for the prevention of necrotising enterocolitis in very low birthweight infants: a randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 99, F110–F115 (2014).

    PubMed  Google Scholar 

  60. 60.

    Manzoni, P. et al. Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. Clin. Infect. Dis. 42, 1735–1742 (2006).

    CAS  PubMed  Google Scholar 

  61. 61.

    Jacobs, S. E. et al. Probiotic effects on late-onset sepsis in very preterm infants: a randomized controlled trial. Pediatrics 132, 1055–1062 (2013).

    PubMed  Google Scholar 

  62. 62.

    Rojas, M. A. et al. Prophylactic probiotics to prevent death and nosocomial infection in preterm infants. Pediatrics 130, e1113–e1120 (2012).

    PubMed  Google Scholar 

  63. 63.

    Lin, H. C. et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics 122, 693–700 (2008).

    PubMed  Google Scholar 

  64. 64.

    Dani, C., Biadaioli, R., Bertini, G., Martelli, E. & Rubaltelli, F. F. Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. A prospective double-blind study. Biol. Neonate 82, 103–108 (2002).

    CAS  PubMed  Google Scholar 

  65. 65.

    Guthmann, F., Arlettaz Mieth, R. P., Bucher, H. U. & Buhrer, C. Short courses of dual-strain probiotics appear to be effective in reducing necrotising enterocolitis. Acta Paediatr. 105, 255–259 (2016).

    PubMed  Google Scholar 

  66. 66.

    Hartel, C. et al. Prophylactic use of Lactobacillus acidophilus/Bifidobacterium infantis probiotics and outcome in very low birth weight infants. J. Pediatr. 165, 285–289. e281 (2014).

    PubMed  Google Scholar 

  67. 67.

    Bonsante, F., Iacobelli, S. & Gouyon, J. B. Routine probiotic use in very preterm infants: retrospective comparison of two cohorts. Am. J. Perinatol. 30, 41–46 (2013).

    PubMed  Google Scholar 

  68. 68.

    Hoyos, A. B. Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int. J. Infect. Dis. 3, 197–202 (1999).

    CAS  PubMed  Google Scholar 

  69. 69.

    Luoto, R., Matomaki, J., Isolauri, E. & Lehtonen, L. Incidence of necrotizing enterocolitis in very-low-birth-weight infants related to the use of Lactobacillus GG. Acta Paediatr. 99, 1135–1138 (2010).

    CAS  PubMed  Google Scholar 

  70. 70.

    Denkel, L. A. et al. Protective effect of dual-strain probiotics in preterm infants: a multi-center time series analysis. PLoS ONE 11, e0158136 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Patole, S. K. et al. Benefits of Bifidobacterium breve M-16V supplementation in preterm neonates - a retrospective cohort study. PLoS ONE 11, e0150775 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Samuels, N. et al. Necrotising enterocolitis and mortality in preterm infants after introduction of probiotics: a quasi-experimental study. Sci. Rep. 6, 31643 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Sharpe, J., Way, M., Koorts, P. J. & Davies, M. W. The availability of probiotics and donor human milk is associated with improved survival in very preterm infants. World J. Pediatr. 14, 492–497 (2018).

    CAS  PubMed  Google Scholar 

  74. 74.

    Singh, B. et al. Probiotics for preterm infants: a national retrospective cohort study. J. Perinatol. 39, 533–539 (2019).

    PubMed  Google Scholar 

  75. 75.

    Meyer, M. P. et al. Probiotics for prevention of severe necrotizing enterocolitis: experience of New Zealand neonatal intensive care units. Front. Pediatr. 8, 119 (2020).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Lin, H. C., Wu, S. F. & Underwood, M. Necrotizing enterocolitis. N. Engl. J. Med. 364, 1878–1879 (2011). Author reply 1879.

    CAS  PubMed  Google Scholar 

  77. 77.

    Wallach, J. D. et al. Evaluation of evidence of statistical support and corroboration of subgroup claims in randomized clinical trials. JAMA Intern. Med. 177, 554–560 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Denkel, L. A. et al. Dual-strain probiotics reduce NEC, mortality and neonatal bloodstream infections among extremely low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 102, F559–F560 (2017).

    PubMed  Google Scholar 

  79. 79.

    Favaro, L. & Todorov, S. D. Bacteriocinogenic LAB strains for fermented meat preservation: perspectives, challenges, and limitations. Probiotics Antimicrob. Proteins 9, 444–458 (2017).

    CAS  PubMed  Google Scholar 

  80. 80.

    Mokoena, M. P. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22, E1255 (2017).

    PubMed  Google Scholar 

  81. 81.

    Arciero, J. et al. Modeling the interactions of bacteria and Toll-like receptor-mediated inflammation in necrotizing enterocolitis. J. Theor. Biol. 321, 83–99 (2013).

    CAS  PubMed  Google Scholar 

  82. 82.

    Ganguli, K. et al. Probiotics prevent necrotizing enterocolitis by modulating enterocyte genes that regulate innate immune-mediated inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G132–G141 (2013).

    CAS  PubMed  Google Scholar 

  83. 83.

    Halloran, K. & Underwood, M. A. Probiotic mechanisms of action. Early Hum. Dev. 135, 58–65 (2019).

    PubMed  Google Scholar 

  84. 84.

    Meng, D. et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr. Res. https://doi.org/10.1038/s41390-019-0740-x (2020).

  85. 85.

    Liu, Q. et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 19, 23 (2020).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Bafeta, A., Koh, M., Riveros, C. & Ravaud, P. Harms reporting in randomized controlled trials of interventions aimed at modifying microbiota: a systematic review. Ann. Intern. Med. 169, 240–247 (2018).

    PubMed  Google Scholar 

  87. 87.

    Athalye-Jape, G., Deshpande, G., Rao, S. & Patole, S. Benefits of probiotics on enteral nutrition in preterm neonates: a systematic review. Am. J. Clin. Nutr. 100, 1508–1519 (2014).

    CAS  PubMed  Google Scholar 

  88. 88.

    Esaiassen, E. et al. Bifidobacterium longum subspecies infantis bacteremia in 3 extremely preterm infants receiving probiotics. Emerg. Infect. Dis. 22, 1664–1666 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Costeloe, K. et al. A randomised controlled trial of the probiotic Bifidobacterium breve BBG-001 in preterm babies to prevent sepsis, necrotising enterocolitis and death: the Probiotics in Preterm infantS (PiPS) trial. Health Technol. Assess. 20, 1–194 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Kane, A. F., Bhatia, A. D., Denning, P. W., Shane, A. L. & Patel, R. M. Routine supplementation of Lactobacillus rhamnosus GG and risk of necrotizing enterocolitis in very low birth weight infants. J. Pediatr. 195, 73.e2–79.e2 (2018).

    Google Scholar 

  91. 91.

    Jackson, S. A. et al. Improving end-user trust in the quality of commercial probiotic products. Front. Microbiol. 10, 739 (2019).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Vallabhaneni, S. et al. Notes from the field: fatal gastrointestinal mucormycosis in a premature infant associated with a contaminated dietary supplement—Connecticut, 2014. Morbidity Mortal. Wkly. Rep. 64, 155–156 (2015).

    Google Scholar 

  93. 93.

    Villamor-Martinez, E. et al. Probiotic supplementation in preterm infants does not affect the risk of bronchopulmonary dysplasia: a meta-analysis of randomized controlled trials. Nutrients 9, E1197 (2017).

    PubMed  Google Scholar 

  94. 94.

    Cavallaro, G., Villamor-Martinez, E., Filippi, L., Mosca, F. & Villamor, E. Probiotic supplementation in preterm infants does not affect the risk of retinopathy of prematurity: a meta-analysis of randomized controlled trials. Sci. Rep. 7, 13014 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Berrington, J. & Ward Platt, M. Recent advances in the management of infants born <1000 g. Arch. Dis. Child. 101, 1053–1056 (2016).

    PubMed  Google Scholar 

  96. 96.

    Perapoch, J. et al. Fungemia with Saccharomyces cerevisiae in two newborns, only one of whom had been treated with ultra-levura. Eur. J. Clin. Microbiol. Infect. Dis. 19, 468–470 (2000).

    CAS  PubMed  Google Scholar 

  97. 97.

    Hamprecht, K. & Goelz, R. Postnatal cytomegalovirus infection through human milk in preterm infants: transmission, clinical presentation, and prevention. Clin. Perinatol. 44, 121–130 (2017).

    PubMed  Google Scholar 

  98. 98.

    Roberts, D., Brown, J., Medley, N. & Dalziel, S. R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 3, CD004454 (2017).

    PubMed  Google Scholar 

  99. 99.

    Conde-Agudelo, A. & Diaz-Rossello, J. L. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database Syst. Rev. CD002771 (2016).

  100. 100.

    Jensen, E. A., Foglia, E. E. & Schmidt, B. Association between prophylactic indomethacin and death or bronchopulmonary dysplasia: a systematic review and meta-analysis of observational studies. Semin. Perinatol. 42, 228–234 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Hennes, H. M., Lee, M. B., Rimm, A. A. & Shapiro, D. L. Surfactant replacement therapy in respiratory distress syndrome. Meta-analysis of clinical trials of single-dose surfactant extracts. Am. J. Dis. Child. 145, 102–104 (1991).

    CAS  PubMed  Google Scholar 

  102. 102.

    Singh, N. et al. Comparison of animal-derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants. Cochrane Database Syst. Rev. CD010249 (2015).

  103. 103.

    Askie, L. M. et al. Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants. Cochrane Database Syst. Rev. 4, CD011190 (2017).

    PubMed  Google Scholar 

  104. 104.

    Quigley, M., Embleton, N. D. & McGuire, W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 6, CD002971 (2018).

    PubMed  Google Scholar 

  105. 105.

    Mitra, S. et al. Association of placebo, indomethacin, ibuprofen, and acetaminophen with closure of hemodynamically significant patent ductus arteriosus in preterm infants: a systematic review and meta-analysis. JAMA 319, 1221–1238 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Osborn, D. A., Schindler, T., Jones, L. J., Sinn, J. K. & Bolisetty, S. Higher versus lower amino acid intake in parenteral nutrition for newborn infants. Cochrane Database Syst. Rev. 3, CD005949 (2018).

    PubMed  Google Scholar 

  107. 107.

    McCall, E. M., Alderdice, F., Halliday, H. L., Vohra, S. & Johnston, L. Interventions to prevent hypothermia at birth in preterm and/or low birth weight infants. Cochrane Database Syst. Rev. 2, CD004210 (2018).

    PubMed  Google Scholar 

  108. 108.

    Barrington, K. J., Finer, N. & Pennaforte, T. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst. Rev. 1, CD000509 (2017).

    PubMed  Google Scholar 

  109. 109.

    Chi, C., Buys, N., Li, C., Sun, J. & Yin, C. Effects of prebiotics on sepsis, necrotizing enterocolitis, mortality, feeding intolerance, time to full enteral feeding, length of hospital stay, and stool frequency in preterm infants: a meta-analysis. Eur. J. Clin. Nutr. 73, 657–670 (2019).

    CAS  PubMed  Google Scholar 

  110. 110.

    Pammi, M. & Suresh, G. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 6, CD007137 (2017).

    PubMed  Google Scholar 

  111. 111.

    Griffiths, J. J. P. et al. Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial. Lancet 393, 423–433 (2019).

    Google Scholar 

  112. 112.

    Kitajima, H. et al. Early administration of Bifidobacterium breve to preterm infants: randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 76, F101–F107 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Chang, H. Y. et al. Multiple strains probiotics appear to be the most effective probiotics in the prevention of necrotizing enterocolitis and mortality: an updated meta-analysis. PLoS ONE 12, e0171579 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    van den Akker, C. H. P. et al. Probiotics for preterm Infants: a strain specific systematic review and network meta-analysis. J. Pediatr. Gastroenterol. Nutr. 67, 103–122 (2018).

    PubMed  Google Scholar 

  115. 115.

    Underwood, M. A. Probiotics and the prevention of necrotizing enterocolitis. J. Pediatr. Surg. 54, 405–412 (2019).

    PubMed  Google Scholar 

  116. 116.

    Athalye-Jape, G., Rao, S. & Patole, S. Lactobacillus reuteri DSM 17938 as a probiotic for preterm neonates: a strain-specific systematic review. JPEN J. Parenter. Enter. Nutr. 40, 783–794 (2016).

    CAS  Google Scholar 

  117. 117.

    Rolnitsky, A. et al. A quality improvement intervention to reduce necrotizing enterocolitis in premature infants with probiotic supplementation. Pediatr. Qual. Saf. 4, e201 (2019).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Sekhon, M. K., Grubb, P. H., Newman, M. & Yoder, B. A. Implementation of a probiotic protocol to reduce rates of necrotizing enterocolitis. J. Perinatol. 39, 1315–1322 (2019).

    CAS  PubMed  Google Scholar 

  119. 119.

    Smilowitz, J. T. et al. Safety and tolerability of Bifidobacterium longum subspecies infantis EVC001 supplementation in healthy term breastfed infants: a phase I clinical trial. BMC Pediatr. 17, 133 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Scalabrin, D., Harris, C., Johnston, W. H. & Berseth, C. L. Long-term safety assessment in children who received hydrolyzed protein formulas with Lactobacillus rhamnosus GG: a 5-year follow-up. Eur. J. Pediatr. 176, 217–224 (2017).

    CAS  PubMed  Google Scholar 

  121. 121.

    Lundelin, K., Poussa, T., Salminen, S. & Isolauri, E. Long-term safety and efficacy of perinatal probiotic intervention: evidence from a follow-up study of four randomized, double-blind, placebo-controlled trials. Pediatr. Allergy Immunol. 28, 170–175 (2017).

    PubMed  Google Scholar 

  122. 122.

    Watkins, C. et al. Dose-interval study of a dual probiotic in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 104, F159–F164 (2019).

    PubMed  Google Scholar 

  123. 123.

    van den Akker, C. H. P. et al. Probiotics and preterm infants: a position paper by the ESPGHAN Committee on Nutrition and the ESPGHAN Working Group for Probiotics and Prebiotics. J. Pediatr. Gastroenterol. Nutr. 70, 664–680 (2020).

    PubMed  Google Scholar 

  124. 124.

    Ortenstrand, A. et al. The Stockholm Neonatal Family Centered Care Study: effects on length of stay and infant morbidity. Pediatrics 125, e278–e285 (2010).

    PubMed  Google Scholar 

  125. 125.

    White-Traut, R. C. et al. Influence of H-HOPE intervention for premature infants on growth, feeding progression and length of stay during initial hospitalization. J. Perinatol. 35, 636–641 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Raiskila, S., Axelin, A., Rapeli, S., Vasko, I. & Lehtonen, L. Trends in care practices reflecting parental involvement in neonatal care. Early Hum. Dev. 90, 863–867 (2014).

    PubMed  Google Scholar 

  127. 127.

    Gianni, M. L. et al. Does parental involvement affect the development of feeding skills in preterm infants? A prospective study. Early Hum. Dev. 103, 123–128 (2016).

    PubMed  Google Scholar 

  128. 128.

    Franck, L. S., McNulty, A. & Alderdice, F. The perinatal-neonatal care journey for parents of preterm infants: what is working and what can be improved. J. Perinat. Neonatal Nurs. 31, 244–255 (2017).

    PubMed  Google Scholar 

  129. 129.

    Umberger, E., Canvasser, J. & Hall, S. L. Enhancing NICU parent engagement and empowerment. Semin. Pediatr. Surg. 27, 19–24 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

M.A.U. and R.M.P. received funding from the NIH: M.A.U. R01 HD059127 and R21 HD096247 and R.M.P. KL2 TR000455, UL1 TR000454, and K23 HL128942. The NIH had no role in: (1) study design; (2) the collection, analysis, and interpretation of data; (3) the writing of the report; and (4) the decision to submit the paper for publication. Publication of this article was sponsored by the Necrotizing Enterocolitis (NEC) Society, Patient-Centered Outcomes Research Institute, and National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Author information

Affiliations

Authors

Contributions

M.A.U. wrote the initial and final drafts; E.U. and R.M.P. edited the initial draft and approved the final draft.

Corresponding author

Correspondence to Mark A. Underwood.

Ethics declarations

Competing interests

M.A.U. has received grant support from Evolve Bioscience, honoraria and travel support from Abbott, and received consulting fees from Avexegen. R.M.P. has received honoraria and travel support from Mednax, Inc., partial travel support from Danone to attend the SIGNEC UK meeting, and consults for Shipman & Goodwin, LLP. M.A.U. and R.M.P. serve on the data-monitoring committee for a probiotic study conducted by Premier Research/Infant Bacterial Therapeutics. E.U. serves as a director of the NEC Society, the sponsor of the NEC Symposium and of this supplement to Pediatric Research. None of these entities had any role in this manuscript. The authors are not endorsing the use of any specific probiotic product.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Underwood, M.A., Umberger, E. & Patel, R.M. Safety and efficacy of probiotic administration to preterm infants: ten common questions. Pediatr Res 88, 48–55 (2020). https://doi.org/10.1038/s41390-020-1080-6

Download citation

Search

Quick links