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Carbon dioxide (CO2) is a naturally occurring colorless gas, which is a
by-product of aerobic respiration. In clinical medicine, elevated CO2

levels can be a marker of respiratory failure, and if levels are too
low, CO2 is associated with complications such as periventricular
leukomalacia. Several groups have reported that derangements in
circulating CO2 levels from the normal range of 35–45mmHg are
associated with poor outcomes in neonatal encephalopathy (NE),
with hypocarbia (pCO2 < 35mmHg; 4.6 kPa) being particularly
harmful.1 In neonates, both minimum pCO2 and cumulative pCO2

< 35mmHg were associated with poor outcome. Moreover, death
and/or disability increased with greater cumulative exposure to
pCO2 < 35mmHg in babies with NE (n= 204).2

Recently, this journal published the Hypoxic–Ischemic Encephalo-
pathy Therapy Optimization in Neonates for Better Neuroprotection
with Inhalative CO2 (HENRIC) study on 5% CO2 insufflation to
prevent hypocarbia in newborns with NE. This feasibility and safety
trial focused on outcomes associated with NE, a condition associated
with hypoxia, ischemia, and inflammation.3 Szakmar et al. demon-
strated that 5% CO2 administration was both safe and feasible in
infants with NE.3 Thus, this pilot study could pave the way for larger
randomized trials investigating the efficacy of controlled normo-
capnia through 5% CO2 inhalation on long- term neurodevelop-
mental outcomes. Modulation of CO2 levels in infants with NE in
this way is a potentially exciting novel intervention, which should
be considered in the context of CO2 as an important signaling
molecule.
Historically, CO2 has been considered as a waste product of

metabolism that needs to be effectively removed from the body
via the lungs. An increase in inhaled CO2 levels will elicit a rapid
brain-stem-mediated increase in rate and depth of breathing in
order to try and “blow-off” the excess CO2. More recently, CO2 is
understood to have more lasting effects through the modulation
of distinct subsets of genes, including those associated with the
immune system.4 Indeed, there are several animal and cell-based
studies demonstrating a modulatory effect of CO2 on immune
signaling. Hypercapnia can potentially dampen systemic pro-
inflammatory responses. This can be mediated at least in part via
suppression of NF-κB (nuclear factor kappa-light-chain-enhancer
of activated B cells) activation, which is a protein complex
that controls DNA transcription and cytokine production. NF-κB-
dependent signaling can also be cytoprotectant with roles in
mediating apoptosis, cell survival, and wound repair.
Elevated CO2 levels alters the localization, processing, and

protein–protein interactions of key members of the NF-κB
family.5–7 Hypercapnia suppresses NF-κB-dependent signaling
and in turn inhibits the expression of important NF-κB-regulated
pro-inflammatory markers, for example, interleukin-8 (IL-8), IL-6,
and tumor necrosis factor-α.6,8 Other proposed anti-inflammatory
mechanisms include decreased neutrophil intracellular oxidant
production and decreased release of IL-8 from endotoxin-
stimulated cells, as well as the inhibition of a phagocyte influx.
Furthermore, therapeutic hypercapnia has even been found

to reduce markers of inflammation in response to one-lung
ventilation in lobectomy patients.9 CO2 causes diffuse vascular
damage as neutrophils are stimulated to produce microparticles
that contain high concentrations of IL-1β.10 Increased CO2 caused
inflammasome components ASC, NLRP3, caspase-1, thioredoxin-
interacting protein, and calreticulin oligomerization causing IL-1β
synthesis. An increased production rate of microparticles contain-
ing elevated amounts of IL-1β persists for hours after short-
term exposures to elevated CO2.

11 Thus, there is a substantial
amount of evidence linking elevated CO2 with altered cytokine
expression.
While hypercapnia may have important anti-inflammatory

effects on the immune system, the evidence is clear that
hypercapnia is detrimental in the context of infection. Several
studies have linked elevated levels of CO2 with worse outcomes in
response to infection.12,13 Furthermore, severe hypercapnia
PaCO2 > 6.6 kPa (50 mmHg) was independently associated with
higher intensive care unit mortality in acute respiratory distress
syndrome in adults.14 Thus, the current view is that hypercapnia is
detrimental in the context of infection due to immunosuppres-
sion, but may be beneficial in the context of destructive
inflammation due to suppression of inflammatory pathways. Thus,
in the clinical setting where CO2 levels are being manipulated, it
will be crucial to titrate the therapeutic dose of CO2 to promote
beneficial outcomes and avoid adverse consequences. In preterm
infants, permissive hypercapnia has been commonly used in
regular clinical practice, despite a lack of rigorous evidence from
clinical trials.15

In addition to its effects on gene expression and immune
signaling, CO2 is also a potent regulator of cerebral blood flow.
Hypocapnia leads to vascular constriction and reduced blood flow,
which is then linked to reduced brain oxygenation and risk of NE.
In the HENRIC trial, the authors did not observe a change in
cerebral blood flow in response to CO2 inhalation in the small
number of patients studied. Cerebral blood flow measurements
should however be treated with caution in infants with NE and/or
the very young as NE-associated brain injury can blunt the CO2

response and vascular reactivity can be transiently absent in the
newborn.16

In summary, the pro-inflammatory response in NE may be
exacerbated by hypocarbia and manipulating CO2 may be
immunomodulatory. Although oxygen parameters and therapies
have been closely studied, they are not completely defined,
especially in resuscitation.17–19 Similar detailed studies are needed
to define CO2 parameters. Manipulation of CO2 may hold promise
as an immunomodulator, but more research is required to define
safe parameters and dose responses.20 Regular, detailed, and
reliable CO2 monitoring is vital and underlying signaling mechan-
isms need further evaluation.
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