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Machine learning for automatic identification of
thoracoabdominal asynchrony in children
Madhavi V. Ratnagiri1, Lauren Ryan1, Abigail Strang2, Robert Heinle2, Tariq Rahman1 and Thomas H. Shaffer1,3,4,5

BACKGROUND: The current methods for assessment of thoracoabdominal asynchrony (TAA) require offline analysis on the part of
physicians (respiratory inductance plethysmography (RIP)) or require experts for interpretation of the data (sleep apnea detection).
METHODS: To assess synchrony between the thorax and abdomen, the movements of the two compartments during quiet
breathing were measured using pneuRIP. Fifty-one recordings were obtained: 20 were used to train a machine-learning (ML) model
with elastic-net regularization, and 31 were used to test the model’s performance. Two feature sets were explored: (1) phase
difference (ɸ) between the thoracic and abdominal signals and (2) inverse cumulative percentage (ICP), which is an alternate
measure of data distribution. To compute accuracy of training, the model outcomes were compared with five experts’ assessments.
RESULTS: Accuracies of 61.3% and 90.3% were obtained using ɸ and ICP features, respectively. The inter-rater reliability (i.r.r.) of the
assessments of experts was 0.402 and 0.684 when they used ɸ and ICP to identify TAA, respectively.
CONCLUSIONS: With this pilot study, we show the efficacy of the ICP feature and ML in developing an accurate automated
approach to identifying TAA that reduces time and effort for diagnosis. ICP also helped improve consensus among experts.

Pediatric Research (2021) 89:1232–1238; https://doi.org/10.1038/s41390-020-1032-1

IMPACT:

● Our article presents an automated approach to identifying thoracic abdominal asynchrony using machine learning and the
pneuRIP device.

● It also shows how a modified statistical measure of cumulative frequency can be used to visualize the progression of the
pulmonary functionality along time.

● The pulmonary testing method we developed gives patients and doctors a noninvasive and easy to administer and diagnose
approach.

● It can be administered remotely, and alerts can be transmitted to the physician.
● Further, the test can also be used to monitor and assess pulmonary function continuously for prolonged periods, if needed.

INTRODUCTION
During normal quiet tidal breathing, the rib cage (RC) and
abdomen (ABD) compartments move in unison to provide the
most effective respiration. Asynchronous movement of the two
compartments during dysfunctional breathing is referred to as
thoracoabdominal asynchrony (TAA).1 Thoracoabdominal asyn-
chrony has been identified as a clinical diagnostic indicator for
many pulmonary diseases such as asthma,2 chronic obstructive
pulmonary disease,3 and obstructive sleep apnea,4–7 as well as
other diseases like heart failure and panic disorder.8 Giordano
et al.2 found that objective assessment of TAA can assist in the
evaluation of asthma exacerbation. Allen et al.9 found substantial
asynchrony between RC and ABD exists in infants with
bronchopulmonary dysplasia (BPD) compared with normal control
infants. Bronstein et al.4 and many others5–7 have demonstrated
that objective measurements of TAA can be used to predict

obstructive sleep apnea in both children and adults. Boulding
et al.,8 in an effort to provide systematic classification of the
dysfunctional breathing patterns, found TAA to be linked to
conditions of obstruction, respiratory failure, and neuromuscular
disease. Hammer and Newth,1 in their review article, found many
clinical applications for TAA monitoring. As such, they reference
studies where the measurement of TAA reflected the clinical
improvement due to stridor and ventilation in children with upper
respiratory infections. They also found TAA measurements
demonstrate changes in lung function following bronchodilator
therapy in children with obstructive airway diseases such as BPD
and asthma.
Respiratory inductance plethysmography (RIP) is a noninvasive

method used to assess TAA by recording the RC and ABD
movements during quiet breathing.1,10 pneuRIP (device provided
by Creative Micro Designs, Inc., Newark, DE, USA) is a newly
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developed research RIP device that is less expensive, portable, and
can be used for continuous monitoring. The device records RC and
ABD movements and transmits the data to an iPad. Variables that
assess coordinated movement between RC and ABD are
automatically extracted from the recordings and displayed almost
instantaneously.11 This device was validated by Rahman et al.11

when they showed that the variables computed by pneuRIP were
similar to those computed by the standard RIP device (Respitrace
System, Sensormedics, Yorba Linda, CA, USA) with no statistically
significant difference. Additionally, since the device requires no
active effort on the part of the subject, 100% compliance was
obtained from young children and patients with disability.2,12,13

Diagnosing pulmonary dysfunction using pneuRIP variables uses
a simplistic mean statistic to compare with normal values or a more
time-consuming interpretation of the distribution of variables. With
machine learning (ML), the process of identifying pulmonary
dysfunction, using the entire distribution of the variables over a
prolonged period time, can be automated, making it more
accurate and reducing time required for assessment. Developing
accurate ML models requires good features, the right ML training
algorithm, and sufficient data. Phase difference between RC and
ABD has been shown as an important variable for detection of
TAA,1 since it quantifies the time lag between the signals.
Furthermore, observing the distribution of the phase difference
over time is important in detecting dysfunctional breathing.13–15

There are many ML training algorithms,16 both supervised17 and
unsupervised.18 Supervised training requires a training set where
the class (normal/abnormal) is known for each observation, and
these usually perform better than unsupervised training. The
tradeoff between various supervised training algorithms is inter-
pretability of the features and the complexity of training algorithm
based on the amount of training data available. Elastic-net
regularization19 is a supervised training algorithm that is easily
interpretable and has demonstrated success when limited data are
available for training.19 To distinguish normal and TAA breathing in
our study, we developed an ML model trained using elastic-net
regularization with data collected from healthy pediatric volunteers
and children with neuromuscular (NM) disease. This data set was
chosen because it has been shown that TAA is a common
occurrence in patients with NM disorder.1 With the current trend
toward in-home ventilation to improve quality of life for NM
patients,20 a noninvasive approach that automatically detects TAA
can improve care.

METHODS
Data acquisition
pneuRIP11 measures changes in cross-sectional area of RC and ABD
during breathing. It consists of two elastic bands, each with an

embedded insulated wire. They are placed around the RC and the
ABD (Fig. 1a). An AC current passed through the wire generates a
self-inductance that oscillates in a cyclic pattern and tracks changes
in the cross-sectional area associated with respiration. These
inductive signals are transmitted to and displayed on an iPad.
Data recorded from healthy subjects and patients with NM

disorders aged 5–17 years were used to train and test the ML
models. Approval from the Institutional Review Board (IRB) of
Nemours/Alfred I. duPont Hospital for Children, as well as assent/
consent from the subjects and subjectsʼ guardians, was obtained
prior to recording. The subjects were all in a sitting position during
the recordings, and approximately 3 min of data were collected
from each subject. Data collected from two independent
populations of subjects were used in this study: one for training
the ML model, and another for testing the performance of
the model.

Training data set. This data set included recordings from ten
typically developing subjects (10–17 years) under two different
breathing conditions. One was quiet tidal breathing and the other
was with an added resistive load (loaded). The resistive load was
added to simulate asynchronous breathing encountered during
respiratory distress. Resistance was provided by an external
bidirectional laminar resistive load (Hans Rudolph, Shawnee, KS,
USA) 20 cm H2O/L/s, which was placed in the mouth while the
subject wore a nose-clip. We chose to use the resistive load
because it was easier to administer on children. Allen et al.9

showed that changes in the relative movements of RC and ABD are
nonspecific to changes in airway obstruction (as experienced by
subjects breathing through resistive load), to low lung compliance,
or to weak respiratory muscle reserve as seen in NM patients.

Test set. Data recorded from a different set of 31 subjects aged
5–17 were used as the test set. Eleven were healthy volunteers,
and 20 were patients from the NM clinic at the Nemours/Alfred I.
duPont Hospital for Children who had been genetically and
clinically diagnosed with various forms of neuromuscular disease,
including Becker’s muscular dystrophy, Charcot−Marie−Tooth
disease, collagen VI mutation, Duchenne muscular dystrophy,
mitochondrial myopathies, myotonic muscular dystrophy, Pompe
disease, and spinal muscular atrophy.13 Six patients had comor-
bidities of obstructive sleep apnea; three were obese; one had
cardiomyopathy; one had asthma; and one had neuropathy,
ataxia, and retinitis pigmentosa. Also noteworthy was that seven
patients used wheelchairs.

Computation of the features
Phase difference. The signals recorded by the pneuRIP from the
elastic bands (Fig. 1b, c) are mostly sinusoidal, wherein each point
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over time.
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is characterized by a magnitude and a phase. The magnitude
represents the compartment excursion, and the phase defines
how far the signal is from the start of a cycle. Typically, clinicians
visually inspect the signals to see if the RC and ABD signals are
synchronous or asynchronous and evaluate the breathing as
normal or abnormal (TAA), respectively.
Using signal processing,10,11 we can compute the phase

difference between the RC and ABD signals. When the signals
are synchronized, as seen in Fig. 1b, the phase difference is near
zero. However, the phase difference increases when the two
signals become asynchronous, as shown in Fig. 1c. Since our
objective was to assess pulmonary dysfunction by incorporating
the entire distribution of data over time, the phase difference was
computed at every recorded sample. The signals were recorded
for at least 2.675 min (=160.5 s), and they were sampled at ten
samples per second so 1605 phase difference (ϕ) values were
considered, which is the dimensionality of the ϕ variable.

Inverse cumulative percent. We computed a new variable that is the
inverse of the cumulative frequency. It is calculated by aggregating
the number of data points with value greater than a reference value.
This number, represented as a percentage of the total number of
points in the recording, is the inverse cumulative percent (ICP). The
ICP value was calculated for every degree between the minimum and
maximum range for the phase difference, which is 0–179°. Hence, the
ICP dimension was 180. Example plots of the ICP parameter for phase
difference (ϕ) are shown in Fig. 2.
The x-axis is the range of the phase difference values from 0 to

179°. The y-axis is the ICP values (which is the number of data points
as a percent of the total data). The plots all begin with 100% because
all data points have a value that is above 0°, and, as the reference
value is incremented, the number of data points with value greater
than the reference value drops. The median (indicated by an asterisk)
shows the value that 50% of the data lie above. The 25th and 75th
percentiles are the quartiles. The 25th percentile points indicate that
25% of the points have values greater than that value. For example in
Fig. 2a, 25% of the points have value greater than 22°.
Comparing the ICP plots for healthy (Fig. 2a) and loaded (Fig. 2b)

subjects, we see the slope for the healthy subject is steeper; the
highest phase value is about 60°, and only about 25% of the points
have phase values greater than 22°. Whereas for the loaded subject
with asynchronous breathing, the slope is shallower, and more than
75% of the points have phase values higher than 55°, indicating larger
phase differences that last for a longer duration.

Graphical display of ICP
The difference between normal and abnormal ICP plots in Fig. 2a,
b is clear when the two plots are compared against each other.
However, in isolation, it would be harder to identify the type of
pattern, because the normal and abnormal ranges for the ICP
variable have not been defined. Hence, the display shown in Fig. 3
was developed, which includes the normal and abnormal regions.
These regions were determined from the training set by plotting
the ICP values of the training data and demarcating the normal
breathing by healthy subjects (green) from breathing through a
resistive load (orange). The region in between is undefined. Since
abnormal TAA is characterized by high phase, the abnormal
region could extend all the way to the top orange dashed lines
and the normal region all the way to bottom green dashed lines.
The purple line is the ICP plot for the same subject from Fig. 2b
superimposed on the abnormal and normal regions.

Elastic-net modeling
Elastic-net regularization is an established ML technique for
automated classification of patterns. Its prominent attribute is
feature selection. When the number of features is large, some of
them might be redundant and even provide misinformation.
Additionally, when the dimensionality of the feature is large in
comparison with the training data size, as is the case with our task,
elastic-net regularization has been used successfully.19 In our case,
we had a training data set of 20 and we explored two types of
feature sets: one was the phase difference with a dimension of
1605 and the other was the ICP parameter with a dimension
of 180.
Elastic-net defines the classification task as a regression

problem where the response variable is defined using a weighted
sum of the predictors. For our task, the identification of normal vs.
abnormal breathing was the response variable (y) and the phase
difference (see section “Phase difference”), and the ICP parameters
(see section “Inverse cumulative percent”) were the predictors (x).
The response was assigned two values: y= 0 for normal and y= 1
for abnormal. The model prediction (ŷ) of normal or abnormal
breathing was calculated using a weighted sum of the predictor
variables (xp) as shown in Eq. (1).

ŷ ¼ β̂0 þ x1β̂1 þ � � � þ xpβ̂p; (1)

where ŷ is the predicted response variable, xi is the p-dimensional
input feature vector, and β are the coefficients estimated using
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Fig. 2 Example ICP plots. Example ICP plots of the phase difference for a a healthy subject with normal breathing and b a healthy subject
breathing with a resistive load experiencing TAA. The plots are the percentage of data (ICP values) as a function of the phase difference.

Machine learning for automatic identification of thoracoabdominal. . .
MV Ratnagiri et al.

1234

Pediatric Research (2021) 89:1232 – 1238



penalized least squares as shown in Eq. (2) below.

L λ; βð Þ ¼ y � Xβj j2 þ λ 1� αð Þ βj j1 þ α β2
�
�

�
�

� �

; (2)

where βj j1¼
Pp

k¼1 βk and β2
�
�

�
� ¼ Pp

k¼1 β
2
k are the l1 and l2

regularization terms, respectively. λ is the penalization constant,
and α sets the balance between the l1 and l2 terms.

The first term in Eq. (2) minimizes the error between the model
prediction and the true prediction and leads to high accuracy on
the training data (over fitting) but does not guarantee reliable
performance on a test set. The second term is the regularization
term that helps generalize the model to a different data set not
seen during training. The Ɩ1 regularization term removes
ineffective input variables and retains the salient ones. The Ɩ2 part
stabilizes the regularization and selects groups of variables that
have high correlation between them. So all variables that affect
the identification of the class, including those correlated to each
other, will be selected.
The “glmnet” package in R was used to run the elastic-net

training.21 By setting α to 0.5, both Ɩ1 and Ɩ2 regularization is
employed. λ, which determines the bias-variance tradeoff, is
determined empirically using a tenfold cross-validation run as
shown in Fig. 4. The log (lambda) value of −0.43, one standard
deviation away from best classification error, is used, which is
standard practice. At that lambda, the number of coefficients (top
axis) is reduced to 17.
Two models were trained. One used the phase difference as

predictors, and the other used the ICP parameters as predictors.
The results of two experiments are presented in the “Results”
section.

Expert opinions and model performance evaluation
To classify the breathing patterns, five pulmonary experts were
recruited. They were asked to evaluate the patterns using (a) the
traditional phase-time plot and (b) the ICP plot. Experts were

asked to evaluate the phase difference plots for all healthy and
NM subjects (an example is shown in Fig. 5a). The experts
evaluated the recordings from 20 healthy participants, 20 NM
patients, and 11 healthy participants who were recorded while
breathing with a resistive load. So, a total of 51 breathing patterns
were evaluated. They had to classify the breathing pattern as
either normal or abnormal (TAA) and were blinded to whether the
subject was healthy breathing normally, was breathing with a
resistive load, or was an NM patient. A similar evaluation was
repeated using the ICP plots (example in Fig. 5b). The degree of
agreement between the experts was computed using an inter-
rater reliability measure called Krippendorff’s alpha.22 This
measure is used to evaluate categorical classification (normal vs.
abnormal), and an agreement of ɑ > 0.667 is considered reliable.
The performance of the elastic-net model was determined by

evaluating its prediction on the test data set and comparing it
with the experts’ evaluations. The majority opinion from the five
experts’ evaluations was used as the gold standard for determin-
ing whether a breathing pattern was normal or abnormal. The
accuracy, sensitivity (or true-positive rate, which is the percentage
of true abnormal breathing that the model predicted as
abnormal), and specificity (or true-negative rate, which is the
number of normal breathing patterns that the model predicted as
being normal) were computed.

RESULTS
Expert opinion evaluations
The number of normal and abnormal breathing patterns identified
by each expert out of the 51 total recordings is represented in
Fig. 6 as a bar plot. They evaluated normal vs. abnormal breathing
based on the phase difference plots (Fig. 6a) and the ICP plots
(Fig. 6b).
There is wide variability in the number of normal/abnormal

patterns that each expert identified in their evaluations when
using the phase difference plots (Fig. 6a). For example, expert 1
judged 34 of the 51 patterns as normal and the remaining 17 as
abnormal while expert 3 had an opposite evaluation, with 14
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normal and 37 abnormal. However, with the ICP plots, judgements
of normal vs. abnormal were more evenly matched (Fig. 6b)
among the various experts.
We also checked the inter-rater reliability (i.r.r.) using Krippen-

dorff’s alpha. As shown in Table 1, the i.r.r. using the phase
difference plots was lower than that for ICP and far below the
minimum accepted score of 0.667 for reliable agreement.22

Model predictions
The performance of the elastic-net models was determined by
comparing the predicted response on the test set with the
majority opinion of the experts. As seen in Table 2, the overall
accuracy that includes predicting the breathing patterns of both
healthy and NM patients is significantly improved with the ICP
parameter compared with using the phase difference feature.
Recall that the models were trained on abnormal breathing

patterns generated by healthy subjects breathing through a
resistive load to simulate TAA breathing while the test set

included breathing experienced by NM patients. Yet the model
predictions on the abnormal breathing patterns collected from
NM patients were excellent. This indicates that the method used
to simulate TAA breathing was a good representation of an NM
patient’s breathing distress pattern, and that the ML model
generalizes well to test data that are different from the
training set.
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Table 1. Inter-rater reliability using phase difference and ICP
phase plots.

Evaluation method Krippendorff ’s alpha
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ICP phase plot 0.684
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Feature selection
Using elastic-net regularization, salient features that best modeled
the response were determined. When the phase difference feature
was used for training the model, the input predictor dimension-
ality was 1605, which is extremely large considering we have only
20 patterns (10 normal and 10 abnormal) for training. Regulariza-
tion found 66 of them were salient for our task.
When ICP features were used, the dimensionality of the input

vector was 180; of those, 15 phase difference features from 21° to
35° were selected for modeling the response.

DISCUSSION AND FUTURE WORK
In this pilot study, we have shown that machine learning,
specifically elastic-net regularization, can be used effectively to
automatically identify normal and TAA breathing patterns with the
ICP feature set. The pneuRIP device along with the use of the ICP
parameter and logistic regression training makes our ML approach
accurate, portable, and easy to implement, and it can be extended
to study a variety of pulmonary disorders.
Several devices have been developed to record the movement

of the RC and the ABD compartments, like the Respitrace system
(Sensormedics, Yorba Linda, CA),12 VivoSense LifeShirt (Newport
Coast, CA),23 passive infrared technology,24 polysomnography,4 or
piezoelectric sensors placed below the bed (EarlySense, Ltd., Israel)
to measure vital signs during sleep.25 These devices are expensive
and not easily adaptable to studying other respiratory conditions.
In contrast, the pneuRIP is portable, inexpensive, and displays the
variables in real time. This approach can be used in the emergency
room, in an outpatient setting, and in a home environment with
equal ease. Finally, it has been demonstrated that pediatric
patients, including those with disability, were 100% compliant
with this noninvasive testing method.12,13,26

Recent studies have been developed for automatic detection of
pulmonary dysfunction using data from the RC and ABD move-
ments.5–7 These studies detected sleep apnea/hypopnea either
using a rule-based approach,5 global metric,6 or artificial neural
networks (ANN)-based7 algorithms. These methods are specific to
sleep apnea/hypopnea study and cannot be extended for other
disorders; furthermore, the ANN-based method is computationally
intensive. The logistic regression method we used is less complex
and it can be extended easily to other studies. Further, the
regularization aspect of the elastic-net identified salient features
for the detection, which the ANN approach cannot do.
The efficiency of the machine-learning algorithm depends

partly on the dimensionality and nature of the feature vector.
Features need to contain sufficient information to discriminate
between the classes (normal/abnormal) yet be concise enough to
estimate accurate model parameters with available data. The ICP
parameter we calculated was able to improve the recognition
accuracy because it had a smaller dimension and contained all
information present in the features over the entire duration of the
recording. As a result, a 29% improvement in the accuracy was
obtained over using phase difference features. The regularization
aspect of the elastic-net algorithm was useful in further reducing
the feature set and thus reducing the redundancy in information.

Prior studies have identified significant differences in RIP
parameters between diseased and healthy subjects2–4,12,13,15 by
using ANCOVA analysis, which looks for significant differences in
the means. However, some of these studies identified situations
where bimodal distributions of the parameters were observed. de
Jongh et al.15 found bimodal distributions in their study on infants.
Strang et al.13 also observed bimodal and diffuse phase
distributions in NM patients. Though the two studies were
conducted on different subject populations, the characteristic of
weak respiratory muscles was common to the two populations.
Both studies noted that identifying bimodal and diffuse phase
distributions is critical. An ANCOVA mean analysis as conducted by
the above-mentioned studies and many others is therefore
limiting. In the analysis we presented here, we considered the
variables for the entire duration of the recording, which
represented the distribution of the whole data.
The added benefit of the ICP parameter is its suitability to

develop an informative graphical display. The standard procedure
of calculating the respiratory indices using the tracings and Konno
−Mead loops9 from an RIP device is done post hoc and is
time consuming.2,4,12 Even analyzing the variables extracted by
the pneuRIP device requires expertise and visually estimating the
percent of time there is asynchrony to diagnose abnormal
breathing.11,13 With the introduction of the ICP parameter and
its graphical display, we reduced the ambiguity and uncertainty in
evaluation.
A limitation of this analysis is the small sample size. The amount

of data required to train an algorithm is partly dependent on the
number of parameters that need to be estimated. Thus, a less
complex model requires a smaller data set. Our choice of logistic
regression modeling effectively took into consideration our small
sample size, and the high accuracy (including specificity and
sensitivity) we obtained on the test set shows that the model was
well trained. Though, in general, larger data sets can lead to
possibly more accurate and more “generalizable” models. To this
end, we are in the process of recruiting more subjects with normal
breathing and patients with a variety of NM disorders.

CONCLUSIONS
An ML approach to detect TAA automatically has been
implemented. The approach identified TAA in NM patients with
an accuracy of 90.3%. Such an automated system can be a useful
tool for monitoring and assessing respiration in patients. We also
presented a different representation for the variables (ICP) that
not only improves the machine-learning performance but also
provides a comprehensive graphical display of variation in
pulmonary function over time. The pneuRIP device in conjunction
with the ML automation can be easily adapted for numerous
environments such as in-home, outpatient clinics, intensive care
units, sleep apnea detection, or emergency room settings.
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