Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Progression of left ventricular diastolic function in the neonate and early childhood from transmitral color M-mode filling analysis



We implemented sophisticated color M-mode analysis to assess age-dependent progression of left ventricular (LV) diastolic function.


Normal infants were prospectively enrolled for serial echocardiograms at 1 week, 1 month, 6 months, 1 year, and 2 years. From color M-mode scans, propagation velocity (VP), strength of filling (VS), and intraventricular pressure difference (IVPD) in 3 segments along apex-to-mitral valve scan line were measured.


Age-wise comparisons of diastolic filling from 121 echocardiograms in 31 infants showed VP (cm/s), VS (cm2/s), and E-wave IVPD (mmHg) at 1 week to be 66.2 ± 11.9, 75.3 ± 19.9, and 1.5 ± 0.4, respectively, while VP, VS, and E-wave IVPD at 1 month were 80.3 ± 14.4, 101.2 ± 28.3, and 2.42 ± 1.1, respectively. There were significant differences in VP and segmental IVPD between first week and first month (p < 0.005) and IVPD between the age groups (p < 0.001).


Comprehensive analysis of transmitral color M-mode data is feasible in infants, enabling calculation of pressure drop between the LV base and apex and strength of propagation from two distinct slopes. Profound changes very early followed by relatively constant filling mechanics in later infancy indicate significant LV maturation occurring during the first month of life.


  • We implemented sophisticated analytic methods for color M-mode echocardiography in infants to assess age- and dimension-dependent changes in left ventricular diastolic function.

  • Comprehensive characterization of transmitral color M-mode flow was feasible, enabling calculation of pressure drop between left ventricular base and apex and strength of propagation.

  • Left ventricular diastolic filling function has predictable maturational progression, with significant differences in the intraventricular pressure between infants from birth to 2 years.

  • This study forms the basis for future studies to examine alteration of early diastolic filling in congenital heart disease.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of the CMM analysis processing.
Fig. 2: Chart represents specific time points of imaging.
Fig. 3: (Top) Correlations of age with E-wave VP, VS, and breakpoint plotted on the logarithmic scale.
Fig. 4: (Top) Correlations of age with mitral valve E-wave mitral-to-apex IVPD and A-wave mitral-to-apex IVPD plotted on the logarithmic scale.
Fig. 5


  1. 1.

    Stewart, K. C. et al. Evaluation of LV diastolic function from color M-mode echocardiography. JACC Cardiovasc. Imaging 4, 37–46 (2011).

    PubMed  Google Scholar 

  2. 2.

    Lo Iudice, F. et al. Left ventricular diastolic dysfunction in type I Gaucher disease: an Echo Doppler study. Echocardiography 32, 890–895 (2015).

    PubMed  Google Scholar 

  3. 3.

    Hui, W. et al. Diastolic asynchrony and myocardial dysfunction in patients with univentricular heart after Fontan operation. J. Echocardiogr. 11, 130–137 (2013).

    PubMed  Google Scholar 

  4. 4.

    Agha, H. M. et al. Forgotten right ventricle in pediatric dilated cardiomyopathy. Pediatr. Cardiol. 38, 819–827 (2017).

    PubMed  Google Scholar 

  5. 5.

    Greenberg, N. L., Vandervoort, P. M., Firstenberg, M. S., Garcia, M. J. & Thomas, J. D. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am. J. Physiol. Circ. Physiol. 280, H2507–H2515 (2001).

    CAS  Google Scholar 

  6. 6.

    Thomas, J. D., Greenberg, N. L., Vandervoort, P. M., Aghassi, D. S. & Hunt, B. F. Digital analysis of transmitral color Doppler M-mode data: a potential new approach to the noninvasive assessment of diastolic function. In Proc. Computers in Cardiology 631–734 (IEEE, 1992).

  7. 7.

    Yotti, R. et al. Noninvasive assessment of ejection intraventricular pressure gradients. J. Am. Coll. Cardiol. 43, 1654–1662 (2004).

    PubMed  Google Scholar 

  8. 8.

    Garcia, M. J. et al. An index of early left ventricular filling that combined with pulsed Doppler peak E velocity may estimate capillary wedge pressure. J. Am. Coll. Cardiol. 29, 448–454 (1997).

    CAS  PubMed  Google Scholar 

  9. 9.

    Yotti, R. et al. Doppler-derived ejection intraventricular pressure gradients provide a reliable assessment of left ventricular contracility. Circulation 112, 1771–1779 (2005).

  10. 10.

    Takatsuji, H. et al. A new approach for evaluation of left ventricular diastolic function: spatial and temporal analysis of left ventricular filling flow propagation by color M-mode Doppler echocardiography. J. Am. Coll. Cardiol. 27, 365–371 (1996).

    CAS  PubMed  Google Scholar 

  11. 11.

    Gonzalez-Vilchez, F., Ares, M., Ayuela, J. & Alonso, L. Combined use of pulsed and color M-mode Doppler echocardiography for the estimation of pulmonary capillary wedge pressure: an empirical approach based on an analytical relation. J. Am. Coll. Cardiol. 34, 515–523 (1999).

    CAS  PubMed  Google Scholar 

  12. 12.

    Hashimoto, I. et al. Assessment of variables affecting flow propagation velocity of the left ventricle in healthy children. Pediatr. Int. 49, 305–309 (2007).

    PubMed  Google Scholar 

  13. 13.

    Moon‐Grady, A. J., Taylor, D., Bennett, S. H., Hornberger, L. K. & Tacy, T. A. Color M‐mode propagation velocity, but not its ratio to early diastolic inflow velocity, changes throughout gestation in normal human fetuses. Ultrasound Obstet. Gynecol. 31, 535–541 (2008).

    PubMed  Google Scholar 

  14. 14.

    Border, W. L. et al. Color M-mode and Doppler tissue evaluation of diastolic function in children: simultaneous correlation with invasive indices. J. Am. Soc. Echocardiogr. 16, 988–994 (2003).

    PubMed  Google Scholar 

  15. 15.

    Lopez, L. et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J. Am. Soc. Echocardiogr. 23, 465–495 (2010).

    PubMed  Google Scholar 

  16. 16.

    Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. J. Echocardiogr. 17, 1321–1360 (2016).

    Google Scholar 

  17. 17.

    Hinkley, D. V. Inference about the change-point from cumulative sum tests. Biometrika 58, 509–523 (1971).

    Google Scholar 

  18. 18.

    Taylor, W. A. Change-point analysis: a powerful new tool for detecting changes. (2000).

  19. 19.

    Brun, P. et al. Left ventricular flow propagation during early filling is related to wall relaxation: a color M-mode Doppler analysis. J. Am. Coll. Cardiol. 20, 420–432 (1992).

    CAS  PubMed  Google Scholar 

  20. 20.

    Etebari, A. & Vlachos, P. P. Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp. Fluids 39, 1040–1050 (2005).

    Google Scholar 

  21. 21.

    Yotti, R. et al. A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 112, 2921–2929 (2005).

    PubMed  Google Scholar 

  22. 22.

    Rovner, A. et al. Improvement in diastolic intraventricular pressure gradients in patients with HOCM after ethanol septal reduction. Am. J. Physiol. Circ. Physiol. 285, H2492–H2499 (2003).

    CAS  Google Scholar 

  23. 23.

    Pearlman, J. D., Triulzi, M. O., King, M. E., Newell, J. & Weyman, A. E. Limits of normal left ventricular dimensions in growth and development: analysis of dimensions and variance in the two-dimensional echocardiograms of 268 normal healthy subjects. J. Am. Coll. Cardiol. 12, 1432–1441 (1988).

    CAS  PubMed  Google Scholar 

  24. 24.

    Huwez, F. U., Houston, A. B., Watson, J., McLaughlin, S. & Macfarlane, P. W. Age and body surface area related normal upper and lower limits of M mode echocardiographic measurements and left ventricular volume and mass from infancy to early adulthood. Heart 72, 276–280 (1994).

    CAS  Google Scholar 

  25. 25.

    Detterich, J. A., Pruetz, J. & Sklansky, M. S. Color M-mode sonography for evaluation of fetal arrhythmias. J. Ultrasound Med. 31, 1681–1688 (2012).

    PubMed  Google Scholar 

  26. 26.

    Schmitz, L., Koch, H., Bein, G. & Brockmeier, K. Left ventricular diastolic function in infants, children, and adolescents. Reference values and analysis of morphologic and physiologic determinants of echocardiographic Doppler flow signals during growth and maturation. J. Am. Coll. Cardiol. 32, 1441–1448 (1998).

    CAS  PubMed  Google Scholar 

  27. 27.

    Kozák-Bárány, A., Jokinen, E., Saraste, M., Tuominen, J. & Välimäki, I. Development of left ventricular systolic and diastolic function in preterm infants during the first month of life: a prospective follow-up study. J. Pediatr. 139, 539–545 (2001).

    PubMed  Google Scholar 

  28. 28.

    Seo, Y. et al. Preload-dependent variation of the propagation velocity in patients with congestive heart failure. J. Am. Soc. Echocardiogr. 17, 432–438 (2004).

    PubMed  Google Scholar 

  29. 29.

    Tsujita, Y., Kato, T. & Sussman, M. A. Evaluation of left ventricular function in cardiomyopathic mice by tissue Doppler and color M‐mode Doppler echocardiography. Echocardiography 22, 245–253 (2005).

    PubMed  Google Scholar 

  30. 30.

    Tanaka, M. et al. Physiological basis and clinical significance of left ventricular suction studied using echo-dynamography. J. Cardiol. 58, 232–244 (2011).

    PubMed  Google Scholar 

  31. 31.

    Marijianowski, M. M. H., van der Loos, C. M., Mohrschladt, M. F. & Becker, A. E. The neonatal heart has a relatively high content of total collagen and type I collagen, a condition that may explain the less compliant state. J. Am. Coll. Cardiol. 23, 1204–1208 (1994).

    CAS  PubMed  Google Scholar 

  32. 32.

    Hutchinson, K. R., Stewart, J. A. Jr & Lucchesi, P. A. Extracellular matrix remodeling during the progression of volume overload-induced heart failure. J. Mol. Cell. Cardiol. 48, 564–569 (2010).

    CAS  PubMed  Google Scholar 

  33. 33.

    Leite-Moreira, A. F. Current perspectives in diastolic dysfunction and diastolic heart failure. Heart 92, 712–718 (2006).

    PubMed  Google Scholar 

  34. 34.

    Romero, T., Covell, J. & Friedman, W. F. A comparison of pressure-volume relations of the fetal, newborn, and adult heart. Am. J. Physiol. 222, 1285–1290 (1972).

    CAS  PubMed  Google Scholar 

  35. 35.

    Davis, P. J., Cladis, F. P. & Motoyama, E. K. Smith’s Anesthesia for Infants and Children (Mosby, Philadelphia, PA, 2011).

  36. 36.

    Garcia, M. J. et al. Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation. J. Am. Coll. Cardiol. 35, 201–208 (2000).

    CAS  PubMed  Google Scholar 

  37. 37.

    Legato, M. J. Cellular mechanisms of normal growth in the mammalian heart. I. Qualitative and quantitative features of ventricular architecture in the dog from birth to five months of age. Circ. Res. 44, 250–262 (1979).

    CAS  PubMed  Google Scholar 

  38. 38.

    Friedman, W. F. The intrinsic physiologic properties of the developing heart. Prog. Cardiovasc. Dis. 15, 87–111 (1972).

    CAS  PubMed  Google Scholar 

  39. 39.

    Price, J. F. in Heart Failure in Congenital Heart Disease 21–42 (Springer, 2010).

  40. 40.

    Moulton, M. J., Hong, B. D. & Secomb, T. W. Simulation of left ventricular dynamics using a low-order mathematical model. Cardiovasc. Eng. Technol. 8, 480–494 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Feit, T. S. Diastolic pressure-volume relations and distribution of pressure and fiber extension across the wall of a model left ventricle. Biophys. J. 28, 143–166 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Patey, O., Gatzoulis, M. A., Thilaganathan, B. & Carvalho, J. S. Perinatal changes in fetal ventricular geometry, myocardial performance, and cardiac function in normal term pregnancies. J. Am. Soc. Echocardiogr. 30, 485–492 (2017).

    PubMed  Google Scholar 

  43. 43.

    Patey, O., Carvalho, J. S. & Thilaganathan, B. Perinatal changes in fetal cardiac geometry and function in diabetic pregnancy at term. Ultrasound Obstet. Gynecol. 54, 634–642 (2019).

    CAS  PubMed  Google Scholar 

  44. 44.

    Mottram, P. M. & Marwick, T. H. Assessment of diastolic function: what the general cardiologist needs to know. Heart 91, 681–695 (2005).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ferferieva, V. et al. The relative value of strain and strain rate for defining intrinsic myocardial function. Am. J. Physiol. Circ. Physiol. 302, H188–H195 (2011).

    Google Scholar 

  46. 46.

    Alvarez, S. V. et al. Strain rate in children and young piglets mirrors changes in contractility and demonstrates a force-frequency relationship. J. Am. Soc. Echocardiogr. 30, 797–806 (2017).

    PubMed  Google Scholar 

  47. 47.

    Londono-Hoyos, F. J. et al. Assessment of methodologies to calculate intraventricular pressure differences in computational models and patients. Med. Biol. Eng. Comput. 56, 469–481 (2018).

    PubMed  Google Scholar 

  48. 48.

    Akins, C. W., Travis, B. & Yoganathan, A. P. Energy loss for evaluating heart valve performance. J. Thorac. Cardiovasc. Surg. 136, 820–833 (2008).

    PubMed  Google Scholar 

Download references


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors acknowledge the support of the Children’s Hospital and Medical Center Foundation.

Author information




C.T.E., B.M., P.V., and S.K. conceived and designed the study. C.T.E., B.M., L.L., V.J., and M.C. performed measurements. K.S.B.M., J.B., and D.A.D. performed statistical analysis. C.T.E., B.M., V.J., J.B., and S.K. wrote the manuscript. All authors revised the manuscript critically for important intellectual content, and all authors read and approved the final version to be published.

Corresponding author

Correspondence to Shelby Kutty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Patient consent

Written informed consents were obtained from the parents or guardians of the study subjects.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erickson, C.T., Meyers, B., Li, L. et al. Progression of left ventricular diastolic function in the neonate and early childhood from transmitral color M-mode filling analysis. Pediatr Res 89, 987–995 (2021).

Download citation


Quick links