Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hydrogen and therapeutic gases for neonatal hypoxic–ischemic encephalopathy: potential neuroprotective adjuncts in translational research

Abstract

Numerous studies have examined the potential use of therapeutic gases for the treatment of various neurological disorders. Hydrogen gas, a promising neuroprotective agent, has been a focus of study due to its potent antioxidative properties. In translational research into adult diseases, hydrogen has been shown to be neuroprotective in disorders such as cerebral ischemia and traumatic brain injury, and in neurodegenerative diseases such as Alzheimer’s disease. Animal and human studies have verified the safety and feasibility of molecular hydrogen. However, despite extensive research on its efficacy in adults, only a few studies have investigated its application in pediatric and neonatal medicine. Neonatal hypoxic–ischemic encephalopathy (HIE) is characterized by damage to neurons and other cells of the nervous system. One of the major contributing factors is excessive exposure to oxidative stress. Current research interest in HIE is shifting toward new neuroprotective agents, as single agents or as adjuncts to therapeutic hypothermia. Here, we review therapeutic gases, particularly hydrogen, and their potentials and limitations in the treatment of HIE in newborns.

Impact

  • Translational animal models of neonatal HIE are a current focus of research into the therapeutic usefulness of various gases.

  • Hydrogen ventilation as a single agent or in combination with therapeutic hypothermia shows short- and long-term neuroprotection in neonatal translational HIE models.

  • The optimal target severity for therapeutic interventions should be well established to improve outcomes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Kajimura, M. et al. Gas biology: tiny molecules controlling metabolic systems. Respir. Physiol. Neurobiol. 184, 139–148 (2012).

    CAS  PubMed  Google Scholar 

  2. 2.

    Ohsawa, I. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694 (2007).

    CAS  PubMed  Google Scholar 

  3. 3.

    Volpe, J. J. Neurology of the Newborn 6th edn (Elsevier, 2018).

  4. 4.

    Kriz, J. Inflammation in ischemic brain injury: timing is important. Crit. Rev. Neurobiol. 18, 145–157 (2006).

    CAS  PubMed  Google Scholar 

  5. 5.

    Hassell, K. J., Ezzati, M., Alonso-Alconada, D., Hausenloy, D. J. & Robertson, N. J. New horizons for newborn brain protection: enhancing endogenous neuroprotection. Arch. Dis. Child Fetal Neonatal Ed. 100, F541–F552 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Robles, R., Palomino, N. & Robles, A. Oxidative stress in the neonate. Early Hum. Dev. 65(Suppl.), S75–S81 (2001).

    CAS  PubMed  Google Scholar 

  7. 7.

    Ferriero, D. M. Neonatal brain injury. N. Engl. J. Med. 351, 1985–1995 (2004).

    CAS  PubMed  Google Scholar 

  8. 8.

    Forman, H. J., Maiorino, M. & Ursini, F. Signaling functions of reactive oxygen species. Biochemistry 49, 835–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bauer, G. Signaling and proapoptotic functions of transformed cell-derived reactive oxygen species. Prostaglandins Leukot. Essent. Fatty Acids 66, 41–56 (2002).

    CAS  PubMed  Google Scholar 

  10. 10.

    Gunn, A. J. et al. Therapeutic hypothermia translates from ancient history in to practice. Pediatr. Res. 81, 202–209 (2017).

    PubMed  Google Scholar 

  11. 11.

    Hill, A. Pharmacologic considerations in the management of the asphyxiated newborn. Clin. Invest. Med. 8, 355–359 (1985).

    CAS  PubMed  Google Scholar 

  12. 12.

    Palmer, C. & Vannucci, R. C. Potential new therapies for perinatal cerebral hypoxia–ischemia. Clin. Perinatol. 20, 411–432 (1993).

    CAS  PubMed  Google Scholar 

  13. 13.

    Jiang, J. Y., Liang, Y. M., Luo, Q. Z. & Zhu, C. Effect of mild hypothermia on brain dialysate lactate after fluid percussion brain injury in rodents. Neurosurgery 54, 713–717 (2004). discussion 717–718.

    PubMed  Google Scholar 

  14. 14.

    Erecinska, M., Thoresen, M. & Silver, I. A. Effects of hypothermia on energy metabolism in Mammalian central nervous system. J. Cereb. Blood Flow Metab. 23, 513–530 (2003).

    CAS  PubMed  Google Scholar 

  15. 15.

    Hagerdal, M., Harp, J., Nilsson, L. & Siesjo, B. K. The effect of induced hypothermia upon oxygen consumption in the rat brain. J. Neurochem. 24, 311–316 (1975).

    CAS  PubMed  Google Scholar 

  16. 16.

    Kvrivishvili, G. Glycine and neuroprotective effect of hypothermia in hypoxic–ischemic brain damage. NeuroReport 13, 1995–2000 (2002).

    CAS  PubMed  Google Scholar 

  17. 17.

    Xiong, M., Yang, Y., Chen, G. Q. & Zhou, W. H. Post-ischemic hypothermia for 24h in P7 rats rescues hippocampal neuron: association with decreased astrocyte activation and inflammatory cytokine expression. Brain Res. Bull. 79, 351–357 (2009).

    CAS  PubMed  Google Scholar 

  18. 18.

    Edwards, A. D. et al. Specific inhibition of apoptosis after cerebral hypoxia–ischaemia by moderate post-insult hypothermia. Biochem. Biophys. Res. Commun. 217, 1193–1199 (1995).

    CAS  PubMed  Google Scholar 

  19. 19.

    Ohmura, A. et al. Prolonged hypothermia protects neonatal rat brain against hypoxic–ischemia by reducing both apoptosis and necrosis. Brain Dev. 27, 517–526 (2005).

    PubMed  Google Scholar 

  20. 20.

    Hasegawa, M., Ogihara, T., Tamai, H. & Hiroi, M. Hypothermic inhibition of apoptotic pathways for combined neurotoxicity of iron and ascorbic acid in differentiated PC12 cells: reduction of oxidative stress and maintenance of the glutathione redox state. Brain Res. 1283, 1–13 (2009).

    CAS  PubMed  Google Scholar 

  21. 21.

    Truettner, J. S., Alonso, O. F. & Dietrich, W. D. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J. Cereb. Blood Flow Metab. 25, 1505–1516 (2005).

    CAS  PubMed  Google Scholar 

  22. 22.

    Edwards, A. D. et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340, c363 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Jacobs, S. E. et al. Cooling for newborns with hypoxic–ischaemic encephalopathy. Cochrane Database Syst. Rev. CD003311, https://doi.org/10.1002/14651858.CD003311.pub3 (2013).

  24. 24.

    Low, E. et al. Cooling and seizure burden in term neonates: an observational study. Arch. Dis. Child Fetal Neonatal Ed. 97, F267–F272 (2012).

    PubMed  Google Scholar 

  25. 25.

    Azzopardi, D. et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N. Engl. J. Med. 371, 140–149 (2014).

    CAS  PubMed  Google Scholar 

  26. 26.

    Guillet, R. et al. Seven- to eight-year follow-up of the CoolCap trial of head cooling for neonatal encephalopathy. Pediatr. Res. 71, 205–209 (2012).

    PubMed  Google Scholar 

  27. 27.

    Ohta, S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim. Biophys. Acta 1820, 586–594 (2012).

    CAS  PubMed  Google Scholar 

  28. 28.

    Gardette, B. & Delauze, H. G. Techniques of underwater intervention: means, methods, research and outlook. Bull. Acad. Natl Med. 180, 975–983 (1996).

    CAS  PubMed  Google Scholar 

  29. 29.

    Ichihara, M. et al. Beneficial biological effects and the underlying mechanisms of molecular hydrogen—comprehensive review of 321 original articles. Med. Gas Res. 5, 12 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ohta, S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharm. Ther. 144, 1–11 (2014).

    CAS  Google Scholar 

  31. 31.

    Tamura, T., Hayashida, K., Sano, M., Onuki, S. & Suzuki, M. Efficacy of inhaled HYdrogen on neurological outcome following BRain Ischemia During post-cardiac arrest care (HYBRID II trial): study protocol for a randomized controlled trial. Trials 18, 488 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ono, H. et al. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med. Gas Res. 2, 21 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Rice, J. E. 3rd, Vannucci, R. C. & Brierley, J. B. The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann. Neurol. 9, 131–141 (1981).

    PubMed  Google Scholar 

  34. 34.

    Lingam, I., Avdic-Belltheus, A. & Robertson, N. J. Using animal models to improve care of neonatal encephalopathy. Arch. Dis. Child Educ. Pract. Ed. 101, 271–276 (2016).

    PubMed  Google Scholar 

  35. 35.

    Thornton, C., Baburamani, A. A., Kichev, A. & Hagberg, H. Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic–ischaemic brain injury. Biochem. Soc. Trans. 45, 1067–1076 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Koehler, R. C., Yang, Z. J., Lee, J. K. & Martin, L. J. Perinatal hypoxic–ischemic brain injury in large animal models: relevance to human neonatal encephalopathy. J. Cereb. Blood Flow Metab. 38, 2092–2111 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Cai, J. et al. Hydrogen therapy reduces apoptosis in neonatal hypoxia–ischemia rat model. Neurosci. Lett. 441, 167–172 (2008).

    CAS  PubMed  Google Scholar 

  38. 38.

    Matchett, G. A. et al. Hydrogen gas is ineffective in moderate and severe neonatal hypoxia–ischemia rat models. Brain Res. 1259, 90–97 (2009).

    CAS  PubMed  Google Scholar 

  39. 39.

    Dobbing, J. & Sands, J. Comparative aspects of the brain growth spurt. Early Hum. Dev. 3, 79–83 (1979).

    CAS  PubMed  Google Scholar 

  40. 40.

    Kusaka, T. et al. Relationship between cerebral oxygenation and phosphorylation potential during secondary energy failure in hypoxic–ischemic newborn piglets. Pediatr. Res. 65, 317–322 (2009).

    CAS  PubMed  Google Scholar 

  41. 41.

    Cady, E. B., Iwata, O., Bainbridge, A., Wyatt, J. S. & Robertson, N. J. Phosphorus magnetic resonance spectroscopy 2 h after perinatal cerebral hypoxia–ischemia prognosticates outcome in the newborn piglet. J. Neurochem. 107, 1027–1035 (2008).

    CAS  PubMed  Google Scholar 

  42. 42.

    Iwata, O. et al. Supra- and sub-baseline phosphocreatine recovery in developing brain after transient hypoxia–ischaemia: relation to baseline energetics, insult severity and outcome. Brain 131, 2220–2226 (2008).

    PubMed  Google Scholar 

  43. 43.

    Moroz, T., Banaji, M., Robertson, N. J., Cooper, C. E. & Tachtsidis, I. Computational modelling of the piglet brain to simulate near-infrared spectroscopy and magnetic resonance spectroscopy data collected during oxygen deprivation. J. R. Soc. Interface 9, 1499–1509 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Moroz, T. et al. Modelling blood flow and metabolism in the piglet brain during hypoxia–ischaemia: simulating brain energetics. Adv. Exp. Med. Biol. 789, 339–344 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Robertson, N. J. et al. Methyl-isobutyl amiloride reduces brain Lac/NAA, cell death and microglial activation in a perinatal asphyxia model. J. Neurochem. 124, 645–657 (2013).

    CAS  PubMed  Google Scholar 

  46. 46.

    Bainbridge, A. et al. Brain mitochondrial oxidative metabolism during and after cerebral hypoxia–ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy. Neuroimage 102(Part 1), 173–183 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Martin, L. J., Brambrink, A., Koehler, R. C. & Traystman, R. J. Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxia–ischemia. J. Comp. Neurol. 377, 262–285 (1997).

    CAS  PubMed  Google Scholar 

  48. 48.

    Tooley, J. R., Satas, S., Porter, H., Silver, I. A. & Thoresen, M. Head cooling with mild systemic hypothermia in anesthetized piglets is neuroprotective. Ann. Neurol. 53, 65–72 (2003).

    PubMed  Google Scholar 

  49. 49.

    Alderliesten, T. et al. Neuroprotection by argon ventilation after perinatal asphyxia: a safety study in newborn piglets. PLoS ONE 9, e113575 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Chakkarapani, E. et al. A closed-circuit neonatal xenon delivery system: a technical and practical neuroprotection feasibility study in newborn pigs. Anesth. Analg. 109, 451–460 (2009).

    CAS  PubMed  Google Scholar 

  51. 51.

    Chakkarapani, E., Thoresen, M., Liu, X., Walloe, L. & Dingley, J. Xenon offers stable haemodynamics independent of induced hypothermia after hypoxia–ischaemia in newborn pigs. Intens. Care Med. 38, 316–323 (2012).

    CAS  Google Scholar 

  52. 52.

    Faulkner, S. et al. Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann. Neurol. 70, 133–150 (2011).

    CAS  PubMed  Google Scholar 

  53. 53.

    Faulkner, S. D. et al. A xenon recirculating ventilator for the newborn piglet: developing clinical applications of xenon for neonates. Eur. J. Anaesthesiol. 29, 577–585 (2012).

    PubMed  Google Scholar 

  54. 54.

    Foster, K. A. et al. An improved survival model of hypoxia/ischaemia in the piglet suitable for neuroprotection studies. Brain Res. 919, 122–131 (2001).

    CAS  PubMed  Google Scholar 

  55. 55.

    Domoki, F. et al. Hydrogen is neuroprotective and preserves cerebrovascular reactivity in asphyxiated newborn pigs. Pediatr. Res. 68, 387–392 (2010).

    CAS  PubMed  Google Scholar 

  56. 56.

    Varga, V. et al. Molecular hydrogen alleviates asphyxia-induced neuronal cyclooxygenase-2 expression in newborn pigs. Acta Pharm. Sin. 39, 1273–1283 (2018).

    CAS  Google Scholar 

  57. 57.

    Nemeth, J. et al. Molecular hydrogen affords neuroprotection in a translational piglet model of hypoxic–ischemic encephalopathy. J. Physiol. Pharm. 67, 677–689 (2016).

    CAS  Google Scholar 

  58. 58.

    Olah, O., Toth-Szuki, V., Temesvari, P., Bari, F. & Domoki, F. Delayed neurovascular dysfunction is alleviated by hydrogen in asphyxiated newborn pigs. Neonatology 104, 79–86 (2013).

    CAS  PubMed  Google Scholar 

  59. 59.

    Htun, Y. et al. Hydrogen ventilation combined with mild hypothermia improves short-term neurological outcomes in a 5-day neonatal hypoxia–ischaemia piglet model. Sci. Rep. 9, 4088 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Thoresen, M., Simmonds, M., Satas, S., Tooley, J. & Silver, I. A. Effective selective head cooling during posthypoxic hypothermia in newborn piglets. Pediatr. Res. 49, 594–599 (2001).

    CAS  PubMed  Google Scholar 

  61. 61.

    Purushothuman, S. & Stone, J. The reaction of cerebral cortex to a nearby lesion: damage, survival, self-protection. Brain Res. 1601, 52–63 (2015).

    CAS  PubMed  Google Scholar 

  62. 62.

    Won, M. H. et al. The alterations of N-methyl-d-aspartate receptor expressions and oxidative DNA damage in the CA1 area at the early time after ischemia–reperfusion insult. Neurosci. Lett. 301, 139–142 (2001).

    CAS  PubMed  Google Scholar 

  63. 63.

    Tao, G., Song, G. & Qin, S. Molecular hydrogen: current knowledge on mechanism in alleviating free radical damage and diseases. Acta Biochim. Biophys. Sin. (Shanghai) 51, 1189–1197 (2019).

    CAS  Google Scholar 

  64. 64.

    Huang, Y. et al. Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits. Brain Res. 1378, 125–136 (2011).

    CAS  PubMed  Google Scholar 

  65. 65.

    Xin, H. G. et al. Consumption of hydrogen-rich water alleviates renal injury in spontaneous hypertensive rats. Mol. Cell. Biochem. 392, 117–124 (2014).

    CAS  PubMed  Google Scholar 

  66. 66.

    Shi, Q. et al. Hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced severe acute pancreatitis by inhibiting ROS and NF-kappaB pathway. Mediat. Inflamm. 2015, 685043 (2015).

    Google Scholar 

  67. 67.

    Song, G. et al. Molecular hydrogen stabilizes atherosclerotic plaque in low-density lipoprotein receptor-knockout mice. Free Radic. Biol. Med. 87, 58–68 (2015).

    CAS  PubMed  Google Scholar 

  68. 68.

    Gold, R. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098–1107 (2012).

    CAS  PubMed  Google Scholar 

  69. 69.

    Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharm. Toxicol. 53, 401–426 (2013).

    CAS  Google Scholar 

  70. 70.

    Liu, L. et al. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res. 1589, 78–92 (2014).

    CAS  PubMed  Google Scholar 

  71. 71.

    Gharib, B. et al. Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation. C. R. Acad. Sci. III 324, 719–724 (2001).

    CAS  PubMed  Google Scholar 

  72. 72.

    Tian, Y. et al. Effects of hydrogen-rich saline on hepatectomy-induced postoperative cognitive dysfunction in old mice. Mol. Neurobiol. 54, 2579–2584 (2017).

    CAS  PubMed  Google Scholar 

  73. 73.

    Shao, A. et al. Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF-kappaB pathway and NLRP3 pnflammasome. Mol. Neurobiol. 53, 3462–3476 (2016).

    CAS  PubMed  Google Scholar 

  74. 74.

    Zhang, G. et al. The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period. Transplantation 102, 1253–1261 (2018).

    CAS  PubMed  Google Scholar 

  75. 75.

    Chen, L. et al. Hydrogen treatment protects mice against chronic pancreatitis by restoring regulatory T cells loss. Cell. Physiol. Biochem. 44, 2005–2016 (2017).

    CAS  PubMed  Google Scholar 

  76. 76.

    Lin, C. P., Chuang, W. C., Lu, F. J. & Chen, C. Y. Anti-oxidant and anti-inflammatory effects of hydrogen-rich water alleviate ethanol-induced fatty liver in mice. World J. Gastroenterol. 23, 4920–4934 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Iuchi, K. et al. Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci. Rep. 6, 18971 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Jiang, X. et al. FoxO1-mediated autophagy plays an important role in the neuroprotective effects of hydrogen in a rat model of vascular dementia. Behav. Brain Res. 356, 98–106 (2019).

    CAS  PubMed  Google Scholar 

  79. 79.

    Gao, Y. et al. Hydrogen gas attenuates myocardial ischemia–reperfusion injury independent of postconditioning in rats by attenuating endoplasmic reticulum stress-induced autophagy. Cell. Physiol. Biochem. 43, 1503–1514 (2017).

    CAS  PubMed  Google Scholar 

  80. 80.

    Ishibashi, T. Therapeutic efficacy of molecular hydrogen: a new mechanistic insight. Curr. Pharm. Des. 25, 946–955 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Yoritaka, A. et al. Pilot study of H(2) therapy in Parkinson’s disease: a randomized double-blind placebo-controlled trial. Mov. Disord. 28, 836–839 (2013).

    CAS  PubMed  Google Scholar 

  82. 82.

    Sakai, T. et al. Consumption of water containing over 3.5 mg of dissolved hydrogen could improve vascular endothelial function. Vasc. Health Risk Manag. 10, 591–597 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Hayashida, K. et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia–reperfusion injury. Biochem. Biophys. Res. Commun. 373, 30–35 (2008).

    CAS  PubMed  Google Scholar 

  84. 84.

    Yamamoto, R., Homma, K., Suzuki, S., Sano, M. & Sasaki, J. Hydrogen gas distribution in organs after inhalation: real-time monitoring of tissue hydrogen concentration in rat. Sci. Rep. 9, 1255 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Rossaint, R. et al. Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology 98, 6–13 (2003).

    CAS  PubMed  Google Scholar 

  86. 86.

    Cullen, S. C. & Gross, E. G. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science 113, 580–582 (1951).

    CAS  PubMed  Google Scholar 

  87. 87.

    Cullen, S. C. & Pittinger, C. B. Clinical and laboratory observations of the use of xenon for anesthesia. Surg. Forum. 38th Congress 361–366 (1953).

  88. 88.

    Franks, N. P., Dickinson, R., de Sousa, S. L., Hall, A. C. & Lieb, W. R. How does xenon produce anaesthesia? Nature 396, 324 (1998).

    CAS  PubMed  Google Scholar 

  89. 89.

    Petzelt, C. P., Kodirov, S., Taschenberger, G. & Kox, W. J. Participation of the Ca(2+)-calmodulin-activated Kinase II in the control of metaphase–anaphase transition in human cells. Cell Biol. Int. 25, 403–409 (2001).

    CAS  PubMed  Google Scholar 

  90. 90.

    Ma, D. et al. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J. Cereb. Blood Flow Metab. 26, 199–208 (2006).

    CAS  PubMed  Google Scholar 

  91. 91.

    Dingley, J., Tooley, J., Porter, H. & Thoresen, M. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia–ischemia. Stroke 37, 501–506 (2006).

    CAS  PubMed  Google Scholar 

  92. 92.

    Dingley, J., Hobbs, C., Ferguson, J., Stone, J. & Thoresen, M. Xenon/hypothermia neuroprotection regimes in spontaneously breathing neonatal rats after hypoxic–ischemic insult: the respiratory and sedative effects. Anesth. Analg. 106, 916–923 (2008), table of contents.

    CAS  PubMed  Google Scholar 

  93. 93.

    Liu, X., Dingley, J., Scull-Brown, E. & Thoresen, M. Adding 5 h delayed xenon to delayed hypothermia treatment improves long-term function in neonatal rats surviving to adulthood. Pediatr. Res. 77, 779–783 (2015).

    CAS  PubMed  Google Scholar 

  94. 94.

    Thoresen, M., Hobbs, C. E., Wood, T., Chakkarapani, E. & Dingley, J. Cooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia. J. Cereb. Blood Flow Metab. 29, 707–714 (2009).

    CAS  PubMed  Google Scholar 

  95. 95.

    Hobbs, C. et al. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 39, 1307–1313 (2008).

    PubMed  Google Scholar 

  96. 96.

    Sabir, H., Osredkar, D., Maes, E., Wood, T. & Thoresen, M. Xenon combined with therapeutic hypothermia is not neuroprotective after severe hypoxia–ischemia in neonatal rats. PLoS ONE 11, e0156759 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Chakkarapani, E. et al. Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann. Neurol. 68, 330–341 (2010).

    PubMed  Google Scholar 

  98. 98.

    Dingley, J. et al. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study. Pediatrics 133, 809–818 (2014).

    PubMed  Google Scholar 

  99. 99.

    Ruegger, C. M., Davis, P. G. & Cheong, J. L. Xenon as an adjuvant to therapeutic hypothermia in near-term and term newborns with hypoxic–ischaemic encephalopathy. Cochrane Database Syst. Rev. 8, CD012753 (2018).

    PubMed  Google Scholar 

  100. 100.

    Hollig, A. et al. Argon: systematic review on neuro- and organoprotective properties of an “inert” gas. Int. J. Mol. Sci. 15, 18175–18196 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Loetscher, P. D. et al. Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit. Care 13, R206 (2009).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Broad, K. D. et al. Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol. Dis. 87, 29–38 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Koziakova, M. et al. Noble gas neuroprotection: xenon and argon protect against hypoxic–ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br. J. Anaesth. 123, 601–609 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Ben-Ari, Y., Khalilov, I., Kahle, K. T. & Cherubini, E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18, 467–486 (2012).

    PubMed  Google Scholar 

  105. 105.

    Katz, I., Murdock, J., Palgen, M., Pype, J. & Caillibotte, G. Pharmacokinetic analysis of the chronic administration of the inert gases Xe and Ar using a physiological based model. Med. Gas Res. 5, 8 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Sabir, H. et al. Xenon depresses aEEG background voltage activity whilst maintaining cardiovascular stability in sedated healthy newborn pigs. J. Neurol. Sci. 363, 140–144 (2016).

    CAS  PubMed  Google Scholar 

  107. 107.

    Amer, A. R. & Oorschot, D. E. Xenon combined with hypothermia in perinatal hypoxic–ischemic encephalopathy: a noble gas, a noble mission. Pediatr. Neurol. 84, 5–10 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (number 16K10092 to T.K., and numbers 19K08253, 16H06276, 16K19685, and 15KK0311 to S.N.), grants from the Kagawa University Faculty of Medicine School of Medicine Alumni Association Sanjukai Research Aid (numbers R1-1 and 25-2), and a scholarship from the Honjo International Scholarship Foundation (to Y.H.).

Author information

Affiliations

Authors

Contributions

Y.H. and T.K. designed the study and drafted the article. Y.H., S.N., and T.K. revised it critically and contributed to the final approval of the version to be published.

Corresponding author

Correspondence to Takashi Kusaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Htun, Y., Nakamura, S. & Kusaka, T. Hydrogen and therapeutic gases for neonatal hypoxic–ischemic encephalopathy: potential neuroprotective adjuncts in translational research. Pediatr Res 89, 753–759 (2021). https://doi.org/10.1038/s41390-020-0998-z

Download citation

Further reading

Search

Quick links