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A person’s health is dependent upon the interaction of one’s
biologic attributes with one’s social and physical environments.
The purpose of this commentary is to provide our collective
opinion about how integration of biologic and social determi-
nants of health in pregnancy can lead to “personalized” care and
improved outcomes for the mother and her baby. We have
based our opinion on our experience with a transdisciplinary
research effort to predict and consequently, prevent preterm
birth (PTB).1 Our fundamental concept is that the disposition
of a pregnant woman should be viewed simultaneously from
multiple perspectives. What is seen depends upon the specific
observational tools themselves as well as upon the various
measures that result from their applications. While this usually
reflects the conceptual framework and the expertise of different
observers, it also can skew the effort towards a single
perspective. Traditionally, medicine has been divided into
disciplines, reflecting several perspectives—a situation that is
also true of the sciences. With respect to pregnancy health,
personalized medicine offers a promise of designing preventions
and therapies that take advantage of the integration of a variety
of observations, not just exclusively of only one, that relate to a
particular pregnancy. This offers a “personalized” means of
understanding the health disposition and life trajectory of any
individual pregnant woman and her offspring. In contrast,
observers, who focus solely on any singular domain, may fail to
capture fully this complex relationship.
Current clinical approaches to the prevention of PTB include risk

assessment such as by detecting a short cervix by ultrasono-
graphy2 and interventions such as 17-OH progesterone,3 and low-
dose aspirin,4 but these have been met with limited success in
preventing PTB overall. For example, in a recent trial of low-dose
aspirin given to nulliparous women with a singleton pregnancy,
the intervention reduced PTB before 37 weeks of gestation

significantly, but only from 13.1 to 11.6% (relative risk (RR): 0.89;
95% confidence interval (CI): 0.81, 0.98); p= 0.012). Clinical
interventions are limited because we do not completely under-
stand the complex pathogenesis of PTB and because we are
unable to predict which women will respond to a specific
intervention. The limited benefits of current clinical care therefore
call out for a more personalized approach.
Studying PTB (delivery before 37 weeks’ completed gestation) can

be used as an example for the potential of integrating many of these
observational domains5 since it is a complex human condition.6,7

Such a model would allow the prediction of disease occurrence
and guide effective, preventive and therapeutic interventions. To a
greater extent, it would also offer a more comprehensive under-
standing of the complex causes of health disparities of women8 and
offspring that have roots both in their ancestry9,10 and in their
current social and/or physical environments.8,11

We propose that no disease should be categorized solely in
terms of biologic or social determinants if we are to gain a full
understanding of its etiology, even when the concept of social
determinants includes a set of broad environmental factors.
Understanding the complex interrelationship between biologic
and social factors may be facilitated by complex mathematical
algorithms. The application of innovative computational techni-
ques is revolutionizing the practice of medicine, but is also
exposing the arbitrary limitations of relying just on a single
disciplinary approach.12 In fact, personalized medicine requires
such a systems-based approach to the understanding of maternal
and child health. In this commentary, we present a perspective on
personalized medicine in maternal and child health through the
lens of a transdisciplinary research enterprise to predict and
prevent PTB—an example of an effort to personalize decision-
making in pregnancy through integrating various domains of risk
factors represented by biologic and sociologic determinants.
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SOLVING THE PUZZLE OF PTB
PTB is now the primary worldwide cause of death in children
under 5 years of age—more than 1 million deaths annually13—
and in about half the cases, this “calendar” event is spontaneous
and enigmatic.14 Understanding how the immunologic tolerance
of a pregnant woman to her fetus is initiated, maintained, and
sometimes disrupted might provide clues to understanding not
only normal parturition and PTB, but probably also certain cancers,
autoimmune diseases, and a variety of other “proinflammatory”
conditions, such as cardiovascular disease or even aging itself.15

Thus, PTB is not simply a calendar event, it is an immunologic
anomaly16—a syndrome with multiple etiologies characterized by
mutual loss of tolerance between the mother and fetus.6,7 Many
mechanisms have been proposed to explain spontaneous preterm
labor, each of which likely has numerous biologic and social
determinants.8,11

Ironically, even normal parturition is not fully understood with
respect to what triggers its initiation.6,7 Nonetheless, labor (both
term and preterm) is characterized by increased myometrial
contractility, cervical ripening, rupture of the chorioamniotic
membranes, and ultimately expulsion of the fetus. Collectively,
these events have been referred to as the common pathway of
parturition. Many pro-labor initiating factors, such as chorioamnio-
nitis, a short cervix, maternal stressors, placental senescence, among
many others, can contribute to inflammatory signaling with
increases in cytokines, chemokines, and prostaglandins, preceding
these physical changes and resulting in PTB.17 Throughout
pregnancy, progestational signals, such as increased progesterone
levels and increased progesterone responsiveness, contribute to a
“progesterone block” of any prelude of inflammatory signaling, the
expression of progestation genes, and consequent uterine relaxation
and quiescence throughout gestation—until mysteriously just
the right time (term) when labor ensues.18 However, in human
pregnancy, it is important to note that the loss of the “progesterone
block” is not just a consequence of a drop in progesterone levels.
Indeed, it must also involve a change in responsiveness to the
hormone through mechanisms that still need to be elucidated.
Progress is being made in understanding the biologic cascades

that coordinate parturition at term or before term, which, in fact,
may not be the same. However, this does not diminish the
importance of many other factors (upstream and/or downstream
(etiologically)), such as socioeconomic inequalities, racial dispa-
rities, nutritional intake, food security, access to care, environ-
mental exposures, etc., that can affect this biology. Interventions
may be undertaken that address specific biologic cascades directly
or via many of these other “nonbiologic” factors, which can
engage the biologic machinery in ways that have yet to be
elucidated. Knowing not only how and when to intervene, but
when to let nature take its course, are difficult questions when
practicing personalized medicine. We propose that the answers to
these questions require the integration of data from many
disparate lines of investigation, with scaling-up of whatever
screening measures and new interventions (targeting at genetic
and/or cellular levels) that might be revealed to the community
and population levels.
Most importantly, understanding a fundamentally complex

human condition like pregnancy, and elucidating a pathologic
pregnancy outcome like PTB, will require a novel conceptualiza-
tion of the “personalization” of medicine, which will include more
than precision technologies and a better understanding of the
biologic cascades leading to the initiation of labor and how to
target therapies safely. It is important to realize that this concept
will require an expanded notion of “personalization,” including an
appreciation that factors external to the person, i.e., their
community and society at large, which can contribute to their
personalized risk profile through numerous contextual aspects,
such as those associated with policies, safety, care, and physical
environments.

CONVERGENCE SCIENCE OR TRANSDISCIPLINARY RESEARCH
AS AN INVESTIGATIVE APPROACH TO A COMPLEX HUMAN
HEALTH PROBLEM
Because PTB is a complex problem (like many other maternal and
child health issues), simply identifying risk factors, most of which
historically have been demographic, psychosocial, or environ-
mental in nature (broadly social determinants), is not sufficient to
reduce its occurrence or eliminate it as a problem. However, a
continued examination of novel risk factors still remains impor-
tant. As the “big data” revolution has increased the availability of
(information) surrounding pregnancies and births, our group and
others have explored modifiable factors, such as exposures to
maternal medications or pesticides, etc. as well as paternal
contributions (e.g. health, demographics, medications) on the
health of the mother, pregnancy, and child.19–27 Nonetheless, it is
still important to identify the underlying biomarkers associated
with various social determinants, in particular proteins, metabo-
lites, and other molecules in the circulation or even at the tissue
level. Moreover, assessing the disposition of a pregnant woman in
terms of biomarkers may be necessary, but not sufficient, to
understand her risk for PTB, even though some measures, for
example, metabolites, are most proximate to the biologic
phenotypes of interest to the physician. We require information
about the genes themselves, and more importantly, their
transcripts, reflecting how genes are being expressed, and
ultimately individual cell-specific signaling behavior. These
sources of data are essential to the task. Thus, for our purpose,
a collaborative group of scientists from a variety of disciplines
relegated into teams and focused on solving the problem of PTB
has provided opportunities for discovery, asking fundamental
questions from a variety of perspectives and inventing new tools
for our various investigative efforts.1,28

Our goal has been to assemble an integrated maternal profile of
demographic, psychosocial, exposomic (environmental),
microbiomic,29,30 genomic, transcriptomic (cell-free (cf)-RNA),31,32

proteomic, metabolomic, and single-cell immunologic data that
reflects a PTB signature (Fig. 1).5 Metagenomic and functional
analyses of the microbiomic data have contributed to an
additional sophistication in our attempt to understand the
“immunologic anomaly” of PTB.33 Ultimately, we aim to create a
fully integrated personal “omics” profile of normal and pathologic
pregnancies.5 One of the first questions we asked was: “Is it
possible to monitor noninvasively the developmental gene
expression program of a human fetus?” We now know that the
answer is “yes”. Most people are now familiar with the utility of
cell-free nucleic acids in the diagnosis of aneuploidy, just by
measuring fetal cf-DNA in the circulation of the mother.34

However, there is also cf-RNA from the mother, fetus, and
placenta in the circulation, and simply sampling a woman’s blood
throughout gestation can allow a kind of “eavesdropping” on a
biologic conversation between the mother, the fetus, and the
placenta, revealing not only what genes are present, but also what
genes are being expressed and at what levels at different points in
gestation.31 It is even possible in some instances to identify the
source of the cf-RNA.32,35

Such gene expression patterns might provide insight into the
maintenance of tolerance for the fetus in a normal term
pregnancy, and also into identifying those changes in immune
cell signaling that might be associated with local tissue changes
that trigger the initiation of preterm labor. In fact, we have
identified genes that display temporal changes across gestation.31

Some of these genes are expressed early, some are upregulated,
and some are downregulated over the course of pregnancy,
suggesting the presence of a “transcriptomic clock” that
characterizes normal pregnancy, and can also be used as a
reference to identify changes in gene expression associated with
PTB.31 Many of these temporal changes occur in the expression of
immune genes. Indeed, the expression of some genes early in
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gestation has been associated with later PTB, providing an
accurate and affordable, noninvasive diagnostic test for estimating
gestational age (GA) (nine genes) or potentially the risk of
spontaneous preterm delivery (seven genes).31

It is remarkable that this model for estimating GA approximates
the accuracy of ultrasonographic estimation of this same measure,
and can predict spontaneous PTB as early as 2 months prior to the
onset of the actual physical event. Thus, a noninvasive blood
test for fetal development can be used to estimate GA and predict
preterm delivery,31 although it needs to be validated by large-
scale testing before its clinical application can be undertaken with
confidence. Complementing these findings, we have also char-
acterized an immune clock of pregnancy.36 During gestation,
there is a shift in the mother from a state of tolerance and
immunosuppression to one of rejection and inflammation
(parturition), with different kinds of cells (and their signaling
behavior) changing over time,37 suggesting that the immune
balance of pregnancy is nature’s measurement of time during
gestation. Using cytometry by “time-of-flight” mass spectro-
metry,38–40 we have been able to survey with unprecedented
single-cell resolution simultaneously quantifying over 37 pheno-
typic and functional proteomic markers per cell for the analysis of
pregnancy-induced alterations in immune cell distribution and
signaling responses across the entire immune system.36 This has
allowed us to characterize the timing of systemic immunologic
events in normal and pathologic pregnancies, as well as to identify
signaling pathways. One such pathway MyD88 is exacerbated in
women with a history of PTB, suggesting a sensitivity to stimuli
that might account for the epidemiologic observation of increased
risk of PTB in a woman with a history of PTB.40

Combining these results with previous noteworthy preclinical
studies has set the stage for molecular targeting of the innate
immune system using an allosteric IL-1R antagonist to prevent PTB
while preserving defensive immunity.41,42 A similar approach has
also identified altered systemic immune cell signaling, which can
predict the occurrence of preeclampsia before the onset of any of
the classical signs.43 Again, this sets the stage for targeted immune
therapies to modulate the differentiation of T-regulatory cells
affecting continued tolerance that was waning in a pregnancy

destined for subsequent preeclampsia. Such an approach is
amenable to test dimension reduction for a scalable (six-color)
diagnostic assay, stratification and immune monitoring of “at-risk”
individuals with the potential for an immune-modulating ther-
apeutic intervention (e.g., low-dose IL-2), as has been proposed for
treating some autoimmune diseases.44,45

Our main task, however, has been to integrate mechanistic
immunological knowledge into a machine learning pipeline
that can increase clinical predictive power.5 Many different kinds
of data from a variety of inquiries and different manners of
interrogation of the same women around the same time allows
this potentially very powerful approach to revolutionize the way
in which we “personalize” care. Such an approach may allow the
translation of one measure obtained from one way of observing
into another measure from an entirely different manner of
interrogation. In this way, various silos of a science can be
merged for the purpose of addressing a complex human
problem with more accurate diagnostics, increased prediction,
and successful prevention.

ANALYTIC APPROACHES FOR THE INTEGRATION OF BIOLOGIC
AND SOCIAL DETERMINANTS
Existing individual- and population-level factors identified in
previous studies have not produced accurate predictive models
of PTB.46 These studies have repeatedly demonstrated that
models that work well for one population do not generalize to
others.29 Therefore, the need to integrate social determinants with
directly measured biological modalities is clear.
Several studies have already used combinations of biological

and population-level factors to predict adverse pregnancy
outcomes.47–50 However, with increased access to patient
databases and the rapid growth in the number of biological
modalities measured in multiomics studies, simply merging
these datasets and using a single multivariate model on the
entire dataset is no longer sufficient.5 There are several analytic
challenges for predicting clinical outcomes when using multio-
mics data itself; these are further pronounced when social
determinants are added.

Exposome

Transcriptome

Epigenome

Microbiome

Genome

Immunome

Proteome/Metabolome

Fig. 1 Integrative personal omics profiling. The various omics: exposome, transcriptome, epigenome, microbiome, proteome/metabolome,
immunome, and genome, whcih can reflect a PTB signature.
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The first analytic challenge comes from the high-dimensionality
of the data, i.e., the regime in which the number of features is
much larger than the number of samples. The proteomic,
metabolomic, and other omics datasets today typically contain
measurements for several thousand features, and tens of
thousands in the transcriptomic data. At the same time, the
cohort sizes for which such data are available are much smaller,
resulting in high-dimensionality of the data. Such settings are
vulnerable to “overfitting”, a phenomenon in which any devel-
oped prediction model is highly accurate on the training dataset,
but performs poorly on the unseen test dataset.51 There are a
number of well-developed dimensionality reduction approaches
that address this problem, either by choosing the most relevant
subset of features (i.e., “feature selection”) or by projecting them
to a new set of features (i.e., “feature projection”).51 Furthermore,
by choosing the subset of most informative features, feature
selection facilitates interpretation of data, identifying potentially
relevant biomarkers, and thereby offering insights into the biology
of a disease. Among the available dimensionality reduction
methods, the best approach may depend on the specificity of
the dataset at hand.
Another analytic challenge for predicting clinical outcomes in a

multiomics setting is the discrepancy in the information content
of the datasets. Modalities with more measurements often deprive
smaller modalities of a chance to participate in the predictions.
This is further complicated by the fact that high-dimensional
datasets often include highly correlated measurements and may
have a lower information content than a smaller, yet more
selective, assay.5 Several solutions have been demonstrated to be
successful in practice. In stacked generalization,52–54 a prediction
model is fit for each dataset (using an adequate machine learning
algorithm) and then the outputs of all models are linearly
combined using a higher-order model to produce the final
prediction. Multiple kernel learning integrates data by calculating
individual kernel matrices for each dataset before combining
them in the final model.55 Probabilistic graphical models56 have
also been successfully used for integration in several settings.57

The heterogeneity of biological, clinical, and social datasets
poses another challenge, often further complicated by the
presence of strong predictors among clinical or social data (e.g.,
African-American race). However, it is neither practical nor
effective to build separate multiomics models on all possible
patient phenotypes based on social determinants, as such
subpopulations can be defined using numerous overlapping
factors. Modeling of specific subpopulations decreases sample
size, which further complicates multiomics studies resulting in the
number of measurements overwhelming the cohort size and
increasing the risk of overfitting and false positive discoveries. A
creative solution is a recently developed algorithm termed “pliable
lasso”,58 which enables flexibility in the coefficients of the now
broadly used sparse modeling technique lasso.59 Pliable lasso falls
into the general class of varying coefficient models.60 The
flexibility in coefficients in pliable lasso is controlled by an
external matrix, in this case social determinants, which allow the
model to use different combinations of biological measurements
based on the population-level data available for a patient or a
group of patients. This increases sample size (and therefore,
accuracy and generalizability) by avoiding the need to study
patient subcohorts in isolation.
Integrating social determinants and biological measurements

also provides an opportunity for the identification of interventions
based on modifiable factors (or combinations of modifiable
factors) to regulate key biological pathways. In such a case, once
a pathway of interest is identified, it can be included in a causal
model61–63 together with modifiable determinants to identify an
optimized intervention strategy. In addition, we have also utilized
computational drug repurposing algorithms to leverage publically
available transcriptomic data to uncover novel therapeutic uses

for compounds already developed and evaluated for safety, such
as for PTB.64

SOLVING THE PROBLEM OF DISPARITIES IN MATERNAL AND
CHILD HEALTH
One of the most pressing problems in maternal and child well-
being is health disparities.8 With respect to PTB, the majority of
individuals in any population do not experience this adverse
outcome. This observation alone suggests that some individuals
are more vulnerable to whatever factors (whether biologic or
social) might be predisposing them to PTB, and others seem to be
resistant and might be characterized as resilient. Although
disparity is unlikely to have a single biologic explanation, there
are individual differences in biologic causes whether they are
related to specific genes, gene pathways, or epigenetic changes in
response to some aspect of the exposome.
Nevertheless, the most prominent risk factor in the US for

spontaneous PTB is being African-American. Many investigations
have attempted to explain this higher rate of PTB disparity among
African-Americans compared with non-Hispanic whites.65,66 How-
ever, all efforts have failed to show which markers of biologic
vulnerability or social disadvantage might have contributed
substantially to this risk disparity.8 These findings have led many
experts to posit the likelihood that individual epigenetic variability
is the underlying etiology of complex conditions such as PTB. DNA
methylation is one of the most studied components of epigenesis,
and yet no clear cause-and-effect relationships have been
conclusively identified. Nonetheless, our phenotypes as indivi-
duals or as populations must reflect such interactions between our
genomes and exposomes.
We10 and many others67 have described new discoveries in the

basic biology of pregnancy and have revealed the complexities of
the interactions (current and ancestral) between genetic and
environmental forces. Moreover, we have also described novel
analytic approaches that permit the integration of biologic and
social determinants of PTB5 and provide the opportunity for a
better understanding of how disparities in PTB occur.8 Such an
integrative effort also offers insights into approaches to prevent or
ameliorate such adverse outcomes. It is, of course, possible that,
even with effective interventions, a change in disparities will
depend upon access or adoption by an individual, an individual’s
community or society. Without such access to or general
acceptance of an effective intervention, the issue of disparities
will not be solved by “personalization,” but could even be
exacerbated.

PERSONALIZED VS. PRECISION MEDICINE
In the end, whatever term may be applied to the current efforts to
make care more effective—“personalized” or “precise,” or whatever
—the notion of “personalized” medicine may seem redundant
when it is first considered.68 It is the acceptance of established
knowledge, the abandonment of unhealthy habits, and the
willingness to explore novel, as yet untried, approaches that offer
hope of potential solutions that will matter. Medicine itself, derived
from the Latin word, “medicus”—a physician—has primarily been
focused on addressing the ills of individuals and on restoring and
maintaining their health. However, Hippocrates advised the
physician to consider “air, water, and places” (which in our
terminology would be called the “environment”) in assessing the
treatment of a patient. This consideration introduces the concept
that what is “personal” needs to include the context in which a
person lives and those determinants of health that we have
designated as social, in addition to those biologic. The two are
intertwined and either can be directly translated into the other. A
false dichotomy of the two is what is important to avoid. They both
serve as potential “levers” for effecting change. “Personalized”
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medicine should be reconciled with another more popular notion
today, “precision” medicine.69 One could argue that both terms, as
well as others that have been introduced, such as “evidenced-
based” medicine, are simply slogans without much meaning. In
some sense, each of the slogans mentioned is an accurate
description of medicine. All that is changed is the knowledge
within the respective disciplines and the variety of tools used, and
not what physicians have always intended—to prevent disease,
heal individuals with diseases, and restore health. It is not clear
what antonyms the suggested descriptors of medicine would
oppose. Do they imply that physicians might engage in “imagina-
tion” medicine or “intuition” medicine? Medicine is typically
practiced on the basis of the best information available and guided
by the inspired and good judgement of physicians.
There is an underlying body of information derived from

epidemiologic studies (from population risk) that allows us to
apply a probability estimate to personal risk, which offers some
guidance for deductive reasoning. Inductive reasoning may need
to be applied at times, but is also prone to error. Inductive
reasoning can sometimes offer clues, but it still requires
“intelligent” guessing. Moreover, any such preliminary efforts for
greater precision will inevitably be costly. But once precision is
established, it may lead to measures that eventually would
become less costly, promote health, and serve as a springboard to
more desirable outcomes. This point is worth making because
“precision” medicine has been accused of accomplishing solutions
that are very expensive, but make only minor differences in the
outcomes or no differences at all for a population.
The point, however, is that it may well be worth it to become

more precise, whatever its current cost, because it would become
more accessible eventually, by offering cures and improving a
particular outcome for an individual, community, or population.
Once this happens, costs may decrease, and the saving of lives
and restoring health are justifications enough. Of course, when it
comes to reproductive health, the issue is not simply saving lives
or even longevity, but assurance of a healthy newborn and a
healthy mother. Progress does follow and costs go down, as drugs
become cheaper and new diagnostic steps become available.
However, new therapies that are more effective may well be more
expensive. The solution may be that we strive to achieve precision,
wherever possible, but we may have to temper this effort with the
assessment of the costs and a possible initial conclusion that some
less precise methods, but cheaper ones, may achieve the same
desirable results, simply by their being applied on a larger scale
(i.e., deliberately in excess).
Those who are adamantly opposed to precision medicine argue

that it may well be of some benefit, but such benefits are only for
the few; whereas, other efforts (call them less sophisticated) are
cheaper, easier to apply, and far more effective for many. We
would agree with this premise, of course, citing food fortification
with folic acid as one example and smoking cessation as another.
However, organ transplantations and immunotherapy and other
molecular maneuvers must continue, even if public health
measures save more lives. Medicine is inherently antievolutionary,
because it does not stress survival of the fittest. It makes possible
for those less fit to survive. Some may refer to this as civilization.
The argument that these expensive methods save, prolong, or
improve lives for only a few is a matter of morality. At any rate, in a
world where people literally starve to death while others live in
opulence, arguments about relative costs are vapid. Thus, we
would suggest that a better descriptor of medicine would be
“rational” medicine.

PREGNANCY AS THE INITIATION OF A LIFE COURSE AND A
MODIFICATION OF ANOTHER
What is unique about personalized (or rational) medicine in
maternal and child health is that it is fundamental to the life

course approach to precision health—to predict, prevent, and
cure precisely.70 The fetal origin of adult disease is now a popular
notion, and there is little doubt that prenatal influences contribute
to postnatal conditions that emerge throughout the lifespan.
Moreover, both paternal and maternal health are relevant to
pregnancy outcomes, and the life course of the fetus certainly
begins at conception in ways which are not fully understood. We
have suggested before that attention to pregnancy is in our
world’s best interest even though the return on investment would
likely occur later in the life course of both the mother and
the child.
Indeed, political gratification might be delayed, but savings in

healthcare costs would ultimately be realized. For example, the
increased risk of heart disease in women after preeclampsia71

could be alleviated or PTB could be decreased on a large scale by
decreasing the occurrence of preeclampsia, or at least if babies
could be born in a healthier disposition later in gestation, closer
to term.

CONCLUSIONS
The practice of rational medicine and maternal and child health
requires the integration of biologic and social determinants in our
execution of healthcare for individuals, communities, and whole
societies. To predict, prevent, and cure precisely will require
personalization of healthcare that integrates the social determi-
nants of health and their biological counterparts. Such persona-
lization cannot ignore the legacy of social injustice, which has
become institutionalized as structural racism and continues to be
manifested in individual misery. However, in order to understand
how racism “gets under the skin” and into a person’s biology will
require approaches similar to the one that we have described
here. Indeed, there may be clues for how to achieve better health
outcomes in our characterization of individual, community, and
societal resilience. Rational medicine needs a life course perspec-
tive and should be practiced as a convergent and transdisciplinary
profession, similar to the way it emerged in ancient times, only
now with powerful new tools and longer life trajectories to which
it needs to attend.
We believe that the search for solutions to the problem of PTB,

like many other complex human conditions, will necessarily
require a deeper understanding of the complexity of the
interactions between biologic and social determinants, using
sophisticated mathematical algorithms as a common language
linking the various scientific disciplines in a coordinated effort to
find the most effective clinical and public health interventions.
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