Abstract
Background
Studies in adults showed a relationship between low hemoglobin (Hb) and acute kidney injury (AKI). We performed this study to evaluate this association in newborns.
Methods
We evaluated 1891 newborns from the Assessment of Worldwide AKI Epidemiology in Neonates (AWAKEN) database. We evaluated the associations for the entire cohort and 3 gestational age (GA) groups: <29, 29–<36, and ≥36 weeks’ GA.
Results
Minimum Hb in the first postnatal week was significantly lower in neonates with AKI after the first postnatal week (late AKI). After controlling for multiple potential confounders, compared to neonates with a minimum Hb ≥17.0 g/dL, both those with minimum Hb ≤12.6 and 12.7–14.8 g/dL had an adjusted increased odds of late AKI (aOR 3.16, 95% CI 1.44–6.96, p = 0.04) and (aOR 2.03, 95% CI 1.05–3.93; p = 0.04), respectively. This association was no longer evident after controlling for fluid balance. The ability of minimum Hb to predict late AKI was moderate (c-statistic 0.68, 95% CI 0.64–0.72) with a sensitivity of 65.9%, a specificity of 69.7%, and a PPV of 20.8%.
Conclusions
Lower Hb in the first postnatal week was associated with late AKI, though the association no longer remained after fluid balance was included.
Impact
-
The current study suggests a possible novel association between low serum hemoglobin (Hb) and neonatal acute kidney injury (AKI).
-
The study shows that low serum Hb levels in the first postnatal week are associated with increased risk of AKI after the first postnatal week.
-
This study is the first to show this relationship in neonates.
-
Because this study is retrospective, our observations cannot be considered proof of a causative role but do raise important questions and deserve further investigation. Whether the correction of low Hb levels might confer short- and/or long-term renal benefits in neonates was beyond the scope of this study.
Access options
Subscribe to Journal
Get full journal access for 1 year
$499.00
only $38.38 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.


References
- 1.
Bolat, F. et al. Acute kidney injury in a single neonatal intensive care unit in Turkey. World J. Pediatr. 9, 323–329 (2013).
- 2.
Koralkar, R. et al. Acute kidney injury reduces survival in very low birth weight infants. Pediatr. Res. 69, 354–358 (2011).
- 3.
Kaur, S. et al. Evaluation of glomerular and tubular renal function in neonates with birth asphyxia. Ann. Trop. Paediatr. 31, 129–134 (2011).
- 4.
Jetton, J. G. et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc. Health 1, 184–94 (2017).
- 5.
Askenazi, D. J. et al. Fluid overload and mortality are associated with acute kidney injury in sick near-term/term neonate. Pediatr. Nephrol. 28, 661–666 (2013).
- 6.
Cataldi, L. et al. Potential risk factors for the development of acute renal failure in preterm newborn infants: a case-control study. Arch. Dis. Child. Fetal Neonatal Ed. 90, F514–F519 (2005).
- 7.
Cuzzolin, L. et al. Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions. Pediatr. Nephrol. 21, 931–938 (2006).
- 8.
Selewski, D. T. et al. Acute kidney injury in asphyxiated newborns treated with therapeutic hypothermia. J. Pediatr. 162, 725–729 e1 (2013).
- 9.
Banerjee, J. et al. Haemoglobin level at birth is associated with short term outcomes and mortality in preterm infants. BMC Med. 13, 16 (2015).
- 10.
Goobie, S. M., Faraoni, D., Zurakowski, D. & DiNardo, J. A. Association of preoperative anemia with postoperative mortality in neonates. JAMA Pediatr. 170, 855–862 (2016).
- 11.
Shacham, Y. et al. Association of admission hemoglobin levels and acute kidney injury among myocardial infarction patients treated with primary percutaneous intervention. Can. J. Cardiol. 31, 50–55 (2015).
- 12.
Walsh, M. et al. The association between perioperative hemoglobin and acute kidney injury in patients having noncardiac surgery. Anesth. Analg. 117, 924–931 (2013).
- 13.
Karkouti, K. et al. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation 119, 495–502 (2009).
- 14.
Morabito, S. et al. Incidence of contrast-induced acute kidney injury associated with diagnostic or interventional coronary angiography. J. Nephrol. 25, 1098–1107 (2012).
- 15.
Han, S. S. et al. Anemia is a risk factor for acute kidney injury and long-term mortality in critically ill patients. Tohoku J. Exp. Med. 237, 287–295 (2015).
- 16.
De Santo, L. et al. Preoperative anemia in patients undergoing coronary artery bypass grafting predicts acute kidney injury. J. Thorac. Cardiovasc Surg. 138, 965–970 (2009).
- 17.
Shema-Didi, L., Ore, L., Geron, R. & Kristal, B. Is anemia at hospital admission associated with in-hospital acute kidney injury occurrence? Nephron Clin. Pract. 115, c168–c176 (2010).
- 18.
Jetton, J. G. et al. Assessment of worldwide acute kidney injury epidemiology in neonates: design of a retrospective cohort study. Front Pediatr. 4, 68 (2016).
- 19.
Charlton, J. R. et al. Incidence and risk factors of early onset neonatal AKI. Clin. J. Am. Soc. Nephrol. 14, 184–95 (2019).
- 20.
Charlton, J. R. et al. Late onset neonatal acute kidney injury: results from the AWAKEN Study. Pediatr. Res. 85, 339–48 (2019).
- 21.
Zappitelli, M. et al. Developing a neonatal acute kidney injury research definition: a report from the NIDDK neonatal AKI workshop. Pediatr. Res. 82, 569–73 (2017).
- 22.
Wolf, M. B. Hemoglobin-dilution method: effect of measurement errors on vascular volume estimation. Comput Math. Methods Med. 2017, 3420590 (2017).
- 23.
Selewski, D. T. et al. Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy. Intensive Care Med. 37, 1166–1173 (2011).
- 24.
Selewski, D. T. et al. The impact of fluid balance on outcomes in critically ill near-term/term neonates: a report from the AWAKEN study group. Pediatr. Res. 85, 79–85 (2019).
- 25.
Selewski, D. T. et al. The impact of fluid balance on outcomes in premature neonates: a report from the AWAKEN study group. Pediatr. Res. 87, 550–7 (2020).
- 26.
Ruopp, M. D., Perkins, N. J., Whitcomb, B. W. & Schisterman, E. F. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 50, 419–430 (2008).
- 27.
Sarkar, S. et al. Relationship between acute kidney injury and brain MRI findings in asphyxiated newborns after therapeutic hypothermia. Pediatr. Res. 75, 431–435 (2014).
- 28.
Askenazi, D. J. et al. Acute kidney injury is independently associated with mortality in very low birthweight infants: a matched case-control analysis. Pediatr. Nephrol. 24, 991–997 (2009).
- 29.
Powell-Tuck, J. et al. Anaemia is not a risk factor for progression of acute kidney injury: a retrospective analysis. Crit. Care. 20, 52 (2016).
- 30.
Gorla, R. et al. Impact of preoperative anemia and postoperative hemoglobin drop on the incidence of acute kidney injury and in-hospital mortality in patients with type B acute aortic syndromes undergoing thoracic endovascular aortic repair. Vasc. Endovasc. Surg. 51, 131–138 (2017).
- 31.
Choi, Y. J., Kim, S. O., Sim, J. H. & Hahm, K. D. Postoperative anemia is associated with acute kidney injury in patients undergoing total hip replacement arthroplasty: a retrospective study. Anesth. Analg. 122, 1923–1928 (2016).
- 32.
Brezis, M. & Rosen, S. Hypoxia of the renal medulla-its implications for disease. N. Engl. J. Med. 332, 647–655 (1995).
- 33.
Abuelo, J. G. Normotensive ischemic acute renal failure. N. Engl. J. Med. 357, 797–805 (2007).
- 34.
Susantitaphong, P. et al. World incidence of AKI: a meta-analysis. Clin. J. Am. Soc. Nephrol. 8, 1482–93 (2013).
- 35.
Ford, S. C. J. Adaptation for life: a review of neonatal physiology. Anaesth. Intensive Care Med. 9, 93–98 (2008).
- 36.
Karrowni, W. et al. Blood transfusion and the risk of acute kidney injury among patients with acute coronary syndrome undergoing percutaneous coronary intervention. Circ. Cardiovasc. Interv. 9, e003279 (2016).
- 37.
Nuis, R. J. et al. Blood transfusion and the risk of acute kidney injury after transcatheter aortic valve implantation. Circ. Cardiovasc. Interv. 5, 680–688 (2012).
- 38.
Haase, M. et al. Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol. Dial. Transplant. 27, 153–160 (2012).
- 39.
Kotal, R., Habib, Y., Karim, R. & Saikia, M. Influence of packed red cell transfusion on risk of acute kidney injury after cardiopulmonary bypass in anemic and non-anemic patients. Anaesth. Pain Intensive Care 20(Suppl), S42–S47 (2016).
- 40.
de Vries, B. et al. Reduction of circulating redox-active iron by apotransferrin protects against renal ischemia-reperfusion injury. Transplantation 77, 669–675 (2004).
- 41.
Zafrani, L., Ergin, B., Kapucu, A. & Ince, C. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats. Crit. Care 20, 406 (2016).
Acknowledgements
The authors thank the outstanding work of the following clinical research personnel and colleagues for their involvement in AWAKEN: Ariana Aimani, Samantha Kronish, Ana Palijan, MD, and Michael Pizzi from Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC, Canada; Laila Ajour, BS, and Julia Wrona, BS, from University of Colorado, Children’s Hospital Colorado, Aurora, CO; Melissa Bowman, RN, University of Rochester, Rochester, NY; Teresa Cano, RN, Marta G. Galarza, MD, Wendy Glaberson, MD, Aura Arenas Morales, MD, and Denisse Cristina Pareja Valarezo, MD, from Holtz Children’s Hospital, University of Miami, Miami, FL; Sarah Cashman, BS, and Madeleine Stead, BS, from University of Iowa Children’s Hospital, Iowa City, IO; Jonathan Davis, MD, and Julie Nicoletta, MD, from Floating Hospital for Children at Tufts Medical Center, Tufts University School of Medicine, Boston, MA; Alanna DeMello, British Columbia Children’s Hospital, Vancouver, BC, Canada; Lynn Dill, RN, University of Alabama at Birmingham, Birmingham, AL; Ellen Guthrie, RN, Metro Health Medical Center, Case Western Reserve University, Cleveland, OH; Nicholas L. Harris, BS, and Susan M. Hieber, MSQM, from C.S. Mott Children’s Hospital, University of Michigan, Ann Arbor, MI; Katherine Huang and Rosa Waters from University of Virginia Children’s Hospital, Charlottesville, VA; Judd Jacobs, Ryan Knox, BS, Hilary Pitner, MS, and Tara Terrell from Cincinnati Children’s Hospital Medical Center, Cincinnati, OO; Nilima Jawale, MD, Maimonides Medical Center, Brooklyn, NY; Emily Kane, Australian National University, Canberra, ACT, Australia; Vijay Kher, DM, and Puneet Sodhi, MBBS, from Medanta Kidney Institute, The Medicity Hospital, Gurgaon, Haryana, India; Grace Mele, New York College of Osteopathic Medicine, Westbury, NY; Patricia Mele, DNP, Stony Brook Children’s Hospital, Stony Brook, NY; Charity Njoku, Tennille Paulsen, and Sadia Zubair from Texas Children’s Hospital, Baylor College of Medicine, Houston, TX; Emily Pao, University of Washington, Seattle Children’s Hospital, Seattle, WA; Becky Selman, RN, and Michele Spear, CCRC, from University of New Mexico Health Sciences Center Albuquerque, NM; Melissa Vega, PA-C, The Children’s Hospital at Montefiore, Bronx, NY; and Leslie Walther, RN, Washington University, St. Louis, MO. Cincinnati Children’s Hospital Center for Acute Care Nephrology provided funding to create and maintain the AWAKEN Medidata Rave electronic database. The Pediatric and Infant Center for Acute Nephrology (PICAN) provided support for web meetings, the NKC steering committee annual meeting at the University of Alabama at Birmingham (UAB), and support for some of the AWAKEN investigators at UAB (L.B.J., R.J.G.). PICAN is part of the Department of Pediatrics at UAB and is funded by Children’s of Alabama Hospital, the Department of Pediatrics, UAB School of Medicine, and UAB’s Center for Clinical and Translational Sciences (CCTS, NIH grant UL1TR003096). The AWAKEN study at the University of New Mexico was supported by the Clinical and Translational Science Center (CTSC, NIH grant UL1TR001449) and by the University of Iowa Institute for Clinical and Translational Science (U54TR001356). C.L.A. was supported by the Micah Batchelor Foundation. A.A.A. and C.J.R. were supported by the Section of Pediatric Nephrology, Department of Pediatrics, Texas Children’s Hospital. J.R.C. and J.R.S. were supported by a grant from 100 Women Who Care. F.S.C. and K.T.D. were supported by the Edward Mallinckrodt Department of Pediatrics at Washington University School of Medicine. J.F. and A.K. were supported by the Canberra Hospital Private Practice Fund. R.G. and E.R. were supported by the Department of Pediatrics, Golisano Children’s Hospital, University of Rochester. P.E.R. was supported by R01 HL-102497 and R01 DK 49419. S.S. and D.T.S. were supported by the Department of Pediatrics & Communicable Disease, C.S. Mott Children’s Hospital, University of Michigan. S.S. and R.W. were supported by Stony Brook Children’s Hospital Department of Pediatrics funding. Funding sources for this study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.
Author information
Affiliations
Consortia
Contributions
All listed authors provided substantial contributions to conception and design, acquisition of data, analysis and interpretation of data, drafting the article or revising it critically, and final approval of the version to be published.
Corresponding author
Ethics declarations
Competing interests
All authors declare no real or perceived conflicts of interest that could affect the study design, collection, analysis and interpretation of data, writing of the report, or the decision to submit for publication. For full disclosure, we provide here an additional list of other author’s commitments and funding sources that are not directly related to this study: D.J.A. is a consultant for CHF solutions, Baxter, and Medtronic, and he receives grant funding for studies not related to this manuscript from National Institutes of Health—National Institute of Diabetes and Digestive and Kidney Diseases (NIH-NIDDK, R01 DK103608 and NIH-FDA (R01 FD005092), CHF solutions, and Baxter.
Patient consent
Patient consent was not required for this study.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nada, A., Askenazi, D., Boohaker, L.J. et al. Low hemoglobin levels are independently associated with neonatal acute kidney injury: a report from the AWAKEN Study Group. Pediatr Res (2020). https://doi.org/10.1038/s41390-020-0963-x
Received:
Revised:
Accepted:
Published: