Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Induction of fecal cholesterol excretion is not effective for the treatment of hyperbilirubinemia in Gunn rats

Abstract

Background

Unconjugated hyperbilirubinemia, a feature of neonatal jaundice or Crigler–Najjar syndrome, can lead to neurotoxicity and even death. We previously demonstrated that unconjugated bilirubin (UCB) can be eliminated via transintestinal excretion in Gunn rats, a model of unconjugated hyperbilirubinemia, and that this is stimulated by enhancing fecal fatty acid excretion. Since transintestinal excretion also occurs for cholesterol (TICE), we hypothesized that increasing fecal cholesterol excretion and/or TICE could also enhance fecal UCB disposal and subsequently lower plasma UCB concentrations.

Methods

To determine whether increasing fecal cholesterol excretion could ameliorate unconjugated hyperbilirubinemia, we treated hyperbilirubinemic Gunn rats with ezetimibe (EZE), an intestinal cholesterol absorption inhibitor, and/or a liver X receptor (LXR) and farnesoid X receptor (FXR) agonist (T0901317 (T09) and obeticholic acid (OCA), respectively), known to stimulate TICE.

Results

We found that EZE treatment alone or in combination with T09 or OCA increased fecal cholesterol disposal but did not lower plasma UCB levels.

Conclusions

These findings do not support a link between the regulation of transintestinal excretion of cholesterol and bilirubin. Furthermore, induction of fecal cholesterol excretion is not a potential therapy for unconjugated hyperbilirubinemia.

Impact

  • Increasing fecal cholesterol excretion is not effective to treat unconjugated hyperbilirubinemia.

  • This is the first time a potential relation between transintestinal excretion of cholesterol and unconjugated bilirubin is investigated.

  • Transintestinal excretion of cholesterol and unconjugated bilirubin do not seem to be quantitatively linked.

  • Unlike intestinal fatty acids, cholesterol cannot “capture” unconjugated bilirubin to increase its excretion.

  • These results add to our understanding of ways to improve and factors regulating unconjugated bilirubin disposal in hyperbilirubinemic conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The effect of stimulation of FNS on plasma levels of bilirubin in hyperbilirubinemic rats.
Fig. 2: Schematic representation of the calculated cholesterol fluxes.
Fig. 3: The effect of T09 and EZE on UCB in bile and feces in Gunn rats.
Fig. 4: The effect of T09 and EZE treatment on LXR target gene expression and triglyceride levels.
Fig. 5: The effect of OCA and EZE treatment on FXR target genes and bile acids in Gunn rats.

References

  1. 1.

    Ostrow, J. D., Pascolo, L., Brites, D. & Tiribelli, C. Molecular basis of bilirubin-induced neurotoxicity. Trends Mol. Med. 10, 65–70 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    McDonnell, W. M., Hitomi, E. & Askari, F. K. Identification of bilirubin UDP-GTs in the human alimentary tract in accordance with the gut as a putative metabolic organ. Biochem. Pharmacol. 51, 483–488 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    Arias, I. M., Johnson, L. & Wolfson, S. Biliary excretion of injected conjugated and unconjugated bilirubin by normal and Gunn rats. Am. J. Physiol. 200, 1091–1094 (1961).

    CAS  Article  Google Scholar 

  4. 4.

    Kotal, P. et al. Intestinal excretion of unconjugated bilirubin in man and rats with inherited unconjugated hyperbilirubinemia. Pediatr. Res. 42, 195–200 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    Nishioka, T. et al. Orlistat treatment increases fecal bilirubin excretion and decreases plasma bilirubin concentrations in hyperbilirubinemic Gunn rats. J. Pediatr. 143, 327–334 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    Cuperus, F. J. C. et al. Effective treatment of unconjugated hyperbilirubinemia with oral bile salts in Gunn rats. Gastroenterology 136, 673.e1–682.e1 (2009).

    Article  Google Scholar 

  7. 7.

    Kruit, J. K. et al. Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 128, 147–156 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    van der Veen, J. N. et al. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J. Biol. Chem. 284, 19211–19219 (2009).

    Article  Google Scholar 

  9. 9.

    Jakulj, L. et al. Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab. 24, 783–794 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Vrins, C. L. J. et al. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. J. Lipid Res. 50, 2046–2054 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    de Boer, J. F. et al. Intestinal farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology 152, 1126.e6–1138.e6 (2017).

    Google Scholar 

  12. 12.

    Grefhorst, A. et al. Pharmacological LXR activation reduces presence of SR-B1 in liver membranes contributing to LXR-mediated induction of HDL-cholesterol. Atherosclerosis 222, 382–389 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    de Boer, J. F., Kuipers, F. & Groen, A. K. Cholesterol transport revisited: a new turbo mechanism to drive cholesterol excretion. Trends Endocrinol. Metab. 29, 123–133 (2018).

    Article  Google Scholar 

  14. 14.

    Terunuma, S., Kumata, N. & Osada, K. Ezetimibe impairs uptake of dietary cholesterol oxidation products and reduces alterations in hepatic cholesterol metabolism and antioxidant function in rats. Lipids 48, 587–595 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    van de Peppel, I. P. et al. Efficient reabsorption of transintestinally excreted cholesterol is a strong determinant for cholesterol disposal in mice. J. Lipid Res. 60, 1562–1572 (2019).

    Article  Google Scholar 

  16. 16.

    Hafkamp, A. M. et al. Novel kinetic insights into treatment of unconjugated hyperbilirubinemia: phototherapy and orlistat treatment in Gunn rats. Pediatr. Res. 59, 506–512 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Hafkamp, A. M., Havinga, R., Sinaasappel, M. & Verkade, H. J. Effective oral treatment of unconjugated hyperbilirubinemia in Gunn rats. Hepatology 41, 526–534 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    Cuperus, F. J. C., Iemhoff, A. A. & Verkade, H. J. Combined treatment strategies for unconjugated hyperbilirubinemia in Gunn rats. Pediatr. Res 70, 560–565 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    van der Velde, A. E. et al. Regulation of direct transintestinal cholesterol excretion in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G203–G208 (2008).

    Article  Google Scholar 

  20. 20.

    Bulmer, A. C., Verkade, H. J. & Wagner, K. H. Bilirubin and beyond: a review of lipid status in Gilbert’s syndrome and its relevance to cardiovascular disease protection. Prog. Lipid Res. 52, 193–205 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Ronda, O. A. H. O., van Dijk, T. H., Verkade, H. J. & Groen, A. K. Measurement of intestinal and peripheral cholesterol fluxes by a dual-tracer balance method. Curr. Protoc. Mouse Biol. 6, 408–434 (2016).

    Article  Google Scholar 

  22. 22.

    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS  Article  Google Scholar 

  23. 23.

    Heuman, D. M. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J. Lipid Res. 30, 719–730 (1989).

    CAS  PubMed  Google Scholar 

  24. 24.

    Xu, Y. et al. Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology 64, 1072–1085 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Hambruch, E. et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor. J. Pharmacol. Exp. Ther. 343, 556–567 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Sugizaki, T. et al. The Niemann-Pick C1 Like 1 (NPC1L1) inhibitor ezetimibe improves metabolic disease via decreased liver X receptor (LXR) activity in liver of obese male mice. Endocrinology 155, 2810–2819 (2014).

    Article  Google Scholar 

  27. 27.

    Shih, A. W. Y., McFarlane, A. & Verhovsek, M. Haptoglobin testing in hemolysis: measurement and interpretation. Am. J. Hematol. 89, 443–447 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Nakano, T. et al. Ezetimibe promotes brush border membrane-to-lumen cholesterol efflux in the small intestine. PLoS ONE 11, e0152207 (2016).

    Article  Google Scholar 

  29. 29.

    Van Heek, M. et al. Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. Br. J. Pharmacol. 129, 1748–1754 (2000).

    Article  Google Scholar 

  30. 30.

    Ghosal, A. et al. Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of ezetimibe (Zetia). Drug Metab. Dispos. 32, 314–320 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    Calpe-Berdiel, L. et al. Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8. J. Lipid Res. 49, 1904–1911 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Oosterveer, M. H., Grefhorst, A., Groen, A. K. & Kuipers, F. The liver X receptor: control of cellular lipid homeostasis and beyond. Prog. Lipid Res. 49, 343–352 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    Jonker, J. W., Liddle, C. & Downes, M. FXR and PXR: potential therapeutic targets in cholestasis. J. Steroid Biochem. Mol. Biol. 130, 147–158 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Van Der Veere, C. N. et al. Influence of dietary calcium phosphate on the disposition of bilirubin in rats with unconjugated hyperbilirubinemia. Hepatology 24, 620–626 (1996).

    Article  Google Scholar 

  35. 35.

    Duval, C. et al. Niemann–Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem. Biophys. Res. Commun. 340, 1259–1263 (2006).

    CAS  Article  Google Scholar 

  36. 36.

    Kawase, A., Araki, Y., Ueda, Y., Nakazaki, S. & Iwaki, M. Impact of a high-cholesterol diet on expression levels of Niemann-Pick C1-like 1 and intestinal transporters in rats and mice. Eur. J. Drug Metab. Pharmacokinet. 41, 457–463 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Dimeski, G., Mollee, P. & Carter, A. Increased lipid concentration is associated with increased hemolysis. Clin. Chem. 51, 2425 (2005).

    CAS  Article  Google Scholar 

  38. 38.

    London, I. M., West, R., Shemin, D. & Rittenberg, D. On the origin of bile pigment in normal man. J. Biol. Chem. 184, 351–358 (1950).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the excellent technical contributions to this study by Rick Havinga, Renze Boverhof, Martijn Koehorst, and Anouk Bos. We thank Folkert Kuipers for helpful discussions and advice. This study was funded by a grant from De Cock Hadders stichting. L.V. received a grant from the Czech Ministry of Health (RVO-VFN64165).

Author information

Affiliations

Authors

Contributions

M.B. designed and performed the experiments, analyzed and interpreted data, and wrote the manuscript. I.P.v.d.P. interpreted data and wrote the manuscript. A.D. and N.C. analyzed data and reviewed the manuscript. L.V. interpreted data and reviewed the manuscript. J.W.J. and H.J.V. designed the experiments, interpreted data, and wrote the manuscript.

Corresponding author

Correspondence to Henkjan J. Verkade.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blankestijn, M., van de Peppel, I.P., Dvorak, A. et al. Induction of fecal cholesterol excretion is not effective for the treatment of hyperbilirubinemia in Gunn rats. Pediatr Res (2020). https://doi.org/10.1038/s41390-020-0926-2

Download citation

Search

Quick links