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Computational analysis of neonatal ventilator waveforms and
loops
David Chong1,2, Colin J. Morley1 and Gusztav Belteki1

BACKGROUND: Modern neonatal ventilators allow the downloading of their data with a high sampling rate. We wanted to develop
an algorithm that automatically recognises and characterises ventilator inflations from ventilator pressure and flow data.
METHODS: We downloaded airway pressure and flow data with 100 Hz sampling rate from Dräger Babylog VN500 ventilators
ventilating critically ill infants. We developed an open source Python package, Ventiliser, that includes a rule-based algorithm to
automatically discretise ventilator data into a sequence of flow and pressure states and to recognise ventilator inflations and an
information gain approach to identify inflation phases (inspiration, expiration) and sub-phases (pressure rise, pressure plateau,
inspiratory hold etc.).
RESULTS: Ventiliser runs on a personal computer and analyses 24 h of ventilation in 2 min. With longer recordings, the processing
time increases linearly. It generates a table reporting indices of each breath and its sub-phases. Ventiliser also allows visualisation of
individual inflations as waveforms or loops. Ventiliser identified >97% of ventilator inflations and their sub-phases in an out-of-
sample validation of manually annotated data. We also present detailed quantitative analysis and comparison of two 1-hour-long
ventilation periods.
CONCLUSIONS: Ventiliser can analyse ventilation patterns and ventilator–patient interactions over long periods of mechanical
ventilation.

Pediatric Research (2021) 89:1432–1441; https://doi.org/10.1038/s41390-020-01301-9

IMPACT:

● We have developed a computational method to recognize and analyse ventilator inflations from raw data downloaded from
ventilators of preterm and critically ill infants.

● There have been no previous reports on the computational analysis of neonatal ventilator data.
● We have made our program, Ventiliser, freely available.
● Clinicians and researchers can use Ventiliser to analyse ventilator inflations, waveforms and loops over long periods.
● Ventiliser can also be used to study ventilator–patient interactions.

INTRODUCTION
Despite advances in non-invasive respiratory support, mechanical
ventilation remains an important therapy in Neonatology: about
1.2% of all newborn infants receive mechanical ventilation due to
prematurity or a critical illness in the neonatal period.1 Large
tertiary neonatal intensive care units (NICUs) frequently have over
1500 ventilator days annually. Modern ventilators are equipped
with powerful computers and in addition to calculating and
showing several ventilator parameters, their graphical user
interfaces also display real-time ventilator waveforms and loops.2,3

These data are invaluable for analysing effectiveness of ventila-
tion, to determine whether ventilator parameters are appropriate
and to detect adverse ventilator–patient interactions.4 However,
busy clinicians frequently ignore ventilator waveforms or only
review them for very short periods.5 As these data are not
routinely downloaded or stored, they cannot be reviewed later.

An alternative to inspecting ventilator screens over long periods
would be to develop computational methods to study the
effectiveness of mechanical ventilation and individual patient–
ventilator interactions. This approach requires access to raw
ventilator data (airway pressure and flow) at a sampling rate high
enough to computationally re-generate and analyse waveforms
and loops. Indeed, new ventilator models enable such data to be
downloaded.6–9 In order to interpret these raw data, as a first step,
they need to be split into individual ventilator inflations, which
can then be further segmented into sub-phases (i.e. lung inflation,
inspiratory hold, lung deflation etc.). Identification and separation
of these segments enables statistical analysis of their character-
istics over longer periods and automatic detection, characterisa-
tion and quantitative analysis of patient–ventilator interactions
during different phases of the respiratory cycle. Recently, several
different approaches have been reported to computationally
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analyse adult ventilator data and characterise patient–ventilator
interactions.10–17 However, neonatal mechanical ventilation uses
different ventilator modes and has different characteristics from
adult ventilation and the tools developed for adults cannot be
directly used with neonatal data.
In this paper, we describe and validate a novel computational

approach to segment high-throughput raw data downloaded
from the ventilators of critically ill babies into individual ventilator
inflations and to further split the inflations into different sub-
phases.

METHODS
Data collection
Ventilator data were collected from infants ventilated on the
Neonatal Intensive Care Unit, Rosie Hospital, Cambridge. The study
was approved by the Bromley (London) Research Ethics Commit-
tee of the Health Research Authority of the United Kingdom
(reference: 18/LO/2182). Informed consent was obtained from
parents. All procedures were performed in accordance with the
ethical standards of the Research Ethics Committee and the
amended Helsinki Declaration (1983).
Ventilator data were downloaded to a laptop computer via a

cable attached to one of the serial communication ports of
the Dräger Babylog VN500 neonatal ventilator (Dräger Medical,
Lübeck, Germany) using the recording software developed
by the “Technology and Intellectual Property” Department
of Dräger Medical. This is for experimental and scientific
purposes only and it is not commercially available. All data
downloaded by the software carry a timestamp with millisecond
precision. Data are exported into comma-separated value (.csv)
text files.
The software retrieves airway pressure, flow and volume data

with 100 Hz frequency (100 per second). Airway pressure is
measured and calculated by the ventilator’s sensors. Flow is
measured by the proximal flow sensor connected at the patient’s
wye piece. Volume data are generated by the ventilator using time
integration of the flow data. The 100 Hz sampling rate is sufficient
for waveforms of individual breaths and inflations to be
reconstructed,18 also see Fig. 1a and Supplemental Figs. S5 and
S6 (online). As the recording software was designed to be
compatible with paediatric and adult ventilators using larger tidal
volumes, due to bandwidth limitations the smallest difference in
tidal volume that can be retrieved is 1.35 mL, which is too large for
neonatal studies. Therefore, our software (Ventiliser) reconstructs
the volumes from the obtained flow data.
In addition to 100 Hz waveform data, the recording software

also downloads calculated ventilator parameters at 1 Hz
frequency, including mandatory, spontaneous, inspiratory,
expiratory tidal and minute volumes, peak inflation pressure,
mean airway pressure, positive end expiratory pressure,
inspiratory and expiratory times, and fraction of inspired
oxygen. The parameters obtained are those of the last full
inflation that has been applied to the patient or made
spontaneously by the patient before the timestamp. Minute
volumes are directly calculated from the ventilator flow data
over 20-second windows with appropriate filters. The recording
tool also retrieves alarm data with a timestamp when an alarm
was triggered and again when the issue triggering the alarm has
been resolved. Changes in the ventilator and alarm settings are
recorded with a timestamp showing the time the changes
were made.

Data processing and analysis
Data were processed and analysed using Python (version 3.8,
https://www.python.org) and its add-on packages. In addition to
modules that are part of the Python standard library, we used
NumPy (version 1.18.3, http://www.numpy.org), pandas (version

1.0.3, http://pandas.pydata.org) and SciPy (version 1.4.1, www.scipy.
org). We created a Python package named Ventiliser to organise the
ventilator data segmentation pipeline code. Data were analysed
done using Jupyter Notebooks (version: 1.0.0) and Spyder (version:
3.3.1) installed as part of freely available Anaconda distribution
(Continuum Analytics, http://docs.continuum.io/anaconda/pkg-
docs). Visualisation was done with matplotlib (version 3.2.1, http://
matplotlib.org). The graphical user interface was built using the
PyQt5 (version 5.9.2 https://www.riverbankcomputing.com/
software/pyqt/) and pyqtgraph (version 0.10.0 http://www.
pyqtgraph.org/). All software is open source and freely available.
Ventiliser package can be found at https://github.com/barrinalo/
Ventiliser and the data analysis notebooks can be downloaded from
https://github.com/gbelteki/ventilator_data_segmentation.

Definition of a ventilator cycle its phases and sub-phases
Before implementing the algorithm, we defined the concept of a
ventilator cycle and its phases and sub-phases (Table 1 and
Fig. 1a). The start of a ventilator cycle was defined as the time
from the start of the positive (inward) flow, which is
accompanied by a ventilator-assisted and ventilator-cycled
positive pressure inflation. The ventilator cycle can be triggered
by the baby and synchronised when the increase in flow
precedes the start in pressure rise (trigger delay) or it can be a
ventilator-initiated backup cycle when the airway pressure
increases first rapidly followed by the positive flow (Fig. 1b, c).
A ventilator cycle lasts until the start of the next ventilator cycle
(commencement of next positive flow). In some modes (e.g.
synchronised intermittent mandatory ventilation (SIMV)), there
can be unassisted or pressure-supported spontaneous breaths
between ventilator inflations. The inspiratory phase of the cycle
includes the period when the lungs are being inflated and the
inspiratory hold, which, if present, corresponds to inflated lungs
with the airway pressure being maintained at the peak
inspiratory pressure (PIP) level and with no air flow. The
expiratory phase is the period when the lungs are deflating to
the level of the functional residual capacity (FRC) and the time
with the lungs at FRC and the airway pressure at the positive
end expiratory pressure (PEEP).

The StateMapper algorithm
After defining ventilator sub-phases, we also defined flow and
pressure states associated with them (Table 2). To reduce noise
and processing time, the raw time series was then discretised by
associating flow and pressure states with these sub-phases.
Mapping states to raw time series was achieved by piecewise
aggregate approximation using mean and standard deviation
with a window size of 3 data points (30 ms). The mean (Wmeani)
and standard deviation (Wstdi) of each segment (Wi) was then
compared to the next one (Wi+1). Stationary states were
determined by comparing the difference in mean between
windows (ΔWmean=Wmeani+1−Wmeani) against Wstdi. If
ΔWmean < 2 Wstdi or ΔWmean < a threshold (T), then the state
is stationary, and if not, it is non-stationary (moving). T is defined
as 0.1 L/min for flow and 10% of set PEEP for pressure. The type
of the non-stationary states is determined by the sign of
ΔWmean with positive flow and pressure states being “Inspira-
tion initiation”, “Expiration termination” and “Pressure rise”,
respectively, and negative flow and pressure states being
“Inspiration termination”, “Expiration initiation” and “Pressure
drop”, respectively. For stationary flow states, the “Peak
inspiratory flow” state has positive Wmeani, the “Peak expiratory
flow” state has negative Wmeani and the “No flow” state has
Wmeani within ±0.1 L/min of 0 L/min. For stationary pressure
states, the average between the previous peak inflating pressure
(PIP) and the set PEEP was used, such that if Wmeani < the
average, it was state PEEP, and if not, it was state PIP. Details can
be seen in Supplemental Figs. S1 and S2 (online).
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Segmentation algorithm
After discretisation, breaths were demarcated into inspiration–
inspiration intervals, determined by encountering an “Inspiration
initiation” or “Peak inspiratory flow” state and also fulfilling the
following two criteria: (1) having already encountered an
expiratory state (“Expiration initiation”, “Peak expiratory flow” or

“Expiration termination”); or (2) having encountered an “Inspira-
tory hold” or “Expiratory hold” state of >50 time units (=500ms).
This allows Ventiliser to recognise the start of a new ventilator
inflation even after positive flow was previously encountered
without any negative flow, which may be due to a very large
(>90%) leak around the endotracheal tube or a ventilator artefact.
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Fig. 1 Ventilator waveforms reconstructed from pressure and flow data obtained at 100 Hz sampling rate. a Phases and sub-phases of a
ventilator cycle. This was a backup ventilator inflation without any patient contribution. Ventilator mode was AC-VG (assist-control with
volume guarantee). Sub-phases of the inflation are demarcated by dotted line and numbered as follows: (1A) Lung inflation; (1B) Inspiratory
hold; (2A) Lung deflation; (2B) Expiratory hold. See Table 1 for more details. Tidal volume has been calculated by integrating flow. The failure of
the tidal volume wave form to return to zero at the end of expiration indicates the presence of some leak around the endotracheal tube. b, c
Synchronised and backup ventilator inflations. Time point zero on the horizontal axis corresponds to the start of the ventilator cycle as
detected by the algorithm. The vertical dotted lines represent the start of pressure rise as detected by the algorithm. During a synchronised
inflation, b the positive (inspiratory) flow is initiated by the patient and therefore it precedes the rise of airway pressure above the PEEP level.
There is a slight transient drop in PEEP as the patient starts breathing in from the circuit (arrow). During a backup inflation, c the positive
(inspiratory) flow is initiated by the ventilator and therefore it quickly follows the rise in airway pressure.
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Inflations with <500ms expiratory time will still be missed but the
user can set this value differently. There is also an optional post-
processing step which merges adjacent breaths if they are
discovered to have significantly different inspiratory and expira-
tory volumes, which further reduces artefacts, but also combines
breaths with large leaks around the endotracheal tube into one
(default value is 66%).
Identifying inflation sub-phases is further complicated by the

fact that in many cases the pressure and flow waveforms of
ventilated infants do not show the regular shapes presented in
Fig. 1 due to spontaneous breathing effort, splinting, coughing or
movement of the baby and artefacts due to kinking of the
endotracheal tube or condensed water in the ventilator circuit.
Therefore, an actual sub-phase is frequently not a contiguous
series of consecutive single flow and pressure states as shown in
Table 2. Instead, it may be a region dominated by one particular
state and interspersed with others. For example, an inflation may
start with an “Inspiration initiation” flow state but if the patient is
splinting the chest or is trying to breathe out briefly, inspiratory
flow will decrease or even stop, resulting in “Peak inspiratory flow”
or “Inspiration termination” flow states, respectively, before
increasing again to reach the true peak inspiratory flow. To

address this, Ventiliser iterates over the set of ordered states (flow
or pressure) and finds the split along the time axis that maximises
the information gain of the current state with respect to all other
states. Each subsequent split is performed on the data after the
previous split to ensure order.

RESULTS
Output and running time of the segmentation algorithm
We developed Ventiliser, a computational pipeline segmenting
neonatal ventilator data into individual inflations, their phases and
sub-phases. Spontaneous breaths between ventilator inflations are
also recognised, if present. Ventiliser uses a rule-based algorithm
as described in the “Methods” section. Ventiliser generates a report
in table format exported as a .csv file (Supplemental Table S1
(online)). The report lists all identified ventilator inflations and
spontaneous breaths with start time and duration of the various
flow and pressure states and sub-phases. Moreover, additional
parameters such as inspiratory and expiratory time, lung inflation
and deflation time, peak inspiratory and expiratory flow,
inspiratory and expiratory tidal volumes are also reported. The
timing of sub-phases allows the user to distinguish between

Table 2. Flow and pressure states.

Label Flow state Flow directiona Flow change Sub-phase(s) when occurb

0 No flow No flow N/A Inspiratory hold
Expiratory hold

1 Inspiration initiation Positive Increasing Lung inflation

2 Peak inspiratory flow Positive No change Lung inflation

3 Inspiration termination Positive Decreasing Lung inflation

4 Expiration initiation Negative Increasing Lung deflation

5 Peak expiratory flow Negative No change Lung deflation

6 Expiration termination Negative Decreasing Lung deflation

Label Pressure state Pressure level Pressure change Sub-phase(s) when can occurb

0 PEEP PEEP No change Lung deflationc

Expiratory hold

1 Pressure rise Between PEEP and PIP Increasing Lung inflation

2 PIP PIP No change Lung inflationc

Inspiratory hold

3 Pressure drop Between PIP and PEEP Decreasing Lung deflation

PIP peak inspiratory pressure, PEEP positive end expiratory pressure, N/A not applicable.
aPositive flow corresponds to inward flow normally present during inspiration. Negative flow corresponds to outward flow normally present during expiration.
bSee Table 1 for definition of sub-phases of a ventilator cycle.
cDue to airway resistance, during inspiration airway pressure rises to PIP level some time before inspiratory flow ends and during expiration pressure drops
down to PEEP level some time before expiratory flow ends.

Table 1. Phases and sub-phases of a ventilator cycle defined by direction and change in airway flow.

Phase Sub-phase Start End

Inspiration Lung inflation Start of ventilator cyclea Inspiratory flow ends

Inspiratory hold Inspiratory flow ends Expiratory flow starts

Expiration Lung deflation Expiratory flow starts Expiratory flow ends

Expiratory hold Expiratory flow ends Start of next ventilator cycle

Inspiratory hold may be absent depending on the ventilator modes and settings used.
aStart of a ventilator cycle was defined by the beginning of the positive (inward) flow both in case of triggered and backup ventilator inflations. See “Methods”
for more details about the detection algorithm and implementation.
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synchronised and backup inflation (see Fig. 1b, c). The correlation
coefficient between pressure and flow is also reported; sponta-
neous breaths between ventilator inflations (if present) are
characterised by absent or negative correlation as in their case
the positive inspiratory flow is associated with no increase or even
some decrease of the pressure from PEEP level, unless they are
pressure-supported.
In addition to the report in table format, Ventiliser also has an

evaluation module that a user with appropriate programming
skills can use for quality control of Ventiliser’s output (Supple-
mental Fig. S3 (online)). Documentation of the module is available
in the same repository as Ventiliser.
Ventiliser runs on a mid-range personal computer with an

approximate speed of 2 min per ventilation day (corresponding to
8.64 million data points) and the running time scales linearly with
duration of the recording. Speed and performance of the program
is shown for some actual recordings in Supplemental Fig. S4
(online).

Algorithm validation
To validate the segmentation algorithm, we have built a graphical
user interphase (GUI) capable of importing raw ventilator data.
The GUI shows pressure and flow waveforms in a time window set
by the user (Fig. 2). The user can manually identify and label
transition points between the flow and pressure states described
in Table 2. The manual annotation can be exported and stored as
a .csv file and compared with computational annotation provided
by the pipeline.
To evaluate the performance of the algorithm, three random 5-

min samples were extracted from longer recordings of three
infants: two were ventilated using SIMV with volume guarantee,
one using assist-control with volume guarantee (AC-VG). In all
three, the infant had spontaneous breathing effort and therefore

interacted with the ventilator in a complex way. These recordings
were not used during the development of Ventiliser (out-of-sample
validation). The samples were manually annotated by a medical
student after receiving formal training about ventilator waveforms
from G.B. The algorithm successfully identified >97% of the
manually labelled flow and pressure states with a mean error
between 10 and 40ms (representing 1–4 data points) for all
except the expiratory hold start key point, which had a mean error
of 49.4 ms (Table 3). Performance on the individual samples is
shown in Supplemental Tables S2–S4 (online)). The length of sub-
phases identified by Ventiliser showed some deviation from the
manual annotation (Table 4). Overall, the difference between the
mean duration of sub-phases identified by the two methods was
<50ms in 83.33% (25/30) of the tests.

Reconstruction and in-depth analysis of ventilator waveforms and
loops
To demonstrate the utility of Ventiliser, we present analysis of a
39-hour-long ventilator recording obtained from a term infant
ventilated using AC-VG mode. The respiratory parameters
calculated and displayed by the ventilator (i.e. respiratory rate,
tidal volume, peak inspiratory pressure) are shown in data-rich
time series plots (Fig. 3a–c). From the 14,044,274 pressure and
flow data points, Ventiliser identified 143,260 respiratory cycles:
128,663 ventilator inflations (mean: 55/min) and 14,597 unsup-
ported spontaneous breaths. As the actual ventilator rate was
between 60 and 65/min over the whole recording (Fig. 3a),
Ventiliser detected ~85–90% of ventilator inflations overall. We
further analysed two 1-h periods of the recording in more detail
(Table 5). During period 1, the baby had some breathing effort,
but the majority of inflations were initiated by the ventilator as
the high backup rate allowed only a short time window for the
baby to trigger inflations by generating inspiratory (positive) flow.

Fig. 2 Graphical user interface to display and manually annotate ventilator waveform data. Airway pressure (top panel) and flow (bottom
panel) waveforms can be manually annotated with numbers corresponding to the start of pressure and flow states, respectively, as described
in Table 2. The annotation can be exported and stored as a comma-separated value (.csv) file and compared with computational annotation
provided by the pipeline.
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During period 2, stronger breathing effort appeared, there were
more synchronised inflations and some unsupported sponta-
neous breaths also appeared. Moreover, during period 2
ventilator waveforms and loops became more variable and
irregular (Fig. 4). Identification of individual inflations by Ventiliser
makes it possible to visualise any single inflation (Supplemental
Figs. S5 and S6 (online)). Segmentation of inflations into sub-
phases allows for quantitative analysis of these sub-phases over
the period (Table 5). For example, we have found that the actual
pressure rise time (PRT) was on average longer than the set value
(80 ms). During period 2, the median time spent with the pressure
at the PIP level was significantly shorter and the pressure drop to
PEEP level and lung deflation time were also significantly shorter.
In accordance with this, during period 1 a larger number of
inflations had an inspiratory hold (pressure at the PIP level with
no air flow). Also, during period 1 more inflations had no
expiratory hold, that is, the next inflation started immediately
after deflation of the lung.

DISCUSSION
In this paper, we describe a computer program (Ventiliser) that
identifies and characterises individual inflations from airway pressure
and flow data downloaded from neonatal ventilators. We developed
and tested the software with raw data obtained from the Dräger
Babylog VN500 ventilator; however, as the input to our programs is
platform agnostic, requiring only flow and pressure data in a tabular
data format and obtained at a high sampling rate, Ventiliser can be
used with any neonatal ventilator from which flow and pressure
data can be downloaded at high sampling rate. We have also
successfully used Ventiliser on data obtained with a 125-Hz sampling
rate from the fabian +ncpap (Vyaire) neonatal ventilator (Belteki
et al. unpublished observations). GUI can also be used with flow and
pressure data downloaded from any ventilator.
Ventiliser uses Python, a popular computer language and its

freely available data science libraries, allowing us to make it freely
available to clinicians and researchers. The use of Python also
enables the possibility for interfacing with existing open source

Table 3. Overall performance of algorithm against manual annotations.

Number identified by algorithm Number of manually annotated % identified Mean error (ms)

inspiration_initiation_start 924 934 98.93 14.4

peak_inspiratory_flow_start 926 938 98.72 12.1

inspiratory_hold_start 925 936 98.82 20.5

expiration_initiation_start 920 936 98.29 16.1

peak_expiratory_flow_start 920 932 98.71 22.1

expiratory_hold_start 905 916 98.8 49.4

pressure_rise_start 808 825 97.94 36.8

pip_start 804 824 97.57 17.8

pressure_drop_start 805 824 97.69 30.4

peep_start 793 814 97.42 23.8

This table has been compiled from annotation data of three different recordings from three patients. Individual data are shown in Supplemental Tables S2–S4.

Table 4. Comparison of the duration of sub-phases identified by Ventiliser by those identified by manual inspection and annotation.

Ventilator mode Sample 1 Sample 2 Sample 3

SIMV-VG SIMV-VG AC-VG

Manual
annotation

Ventiliser Manual
annotation

Ventiliser Manual
annotation

Ventiliser

Mean (SD) Mean (SD) Difference Mean (SD) Mean (SD) Difference Mean (SD) Mean (SD) Difference

Flow sub-phasesa

Inspiration initiation length (ms) 128.5 (31) 120.8 (44) −7.7 148.7 (74.4) 143.1 (46.4) −5.6 138.9 (35.4) 123 (37.9) −15.9

Inspiration termination length (ms) 131.6 (29) 158.7 (115.7) 27.1 181.2 (55.1) 195.1 (69.6) 13.9 155.9 (19.9) 167.3 (26.4) 11.4

Inspiratory hold length (ms) 54.3 (27.7) 49.3 (40) −5 25.3 (36.8) 1.2 (0.78) −24.1 42.6 (23.2) 31.8 (31) −10.8

Expiration initiation length (ms) 90.02 (43.8) 86.2 (59.1) −3.82 128.3 (48.8) 134.2 (76.3) 5.9 95.8 (48.6) 96.9 (43.5) 1.1

Expiration termination length (ms) 336.7 (133.3) 271.4 (120) −65.3 398.7 (131.8) 413.7 (118.5) 15 321.9 (93.4) 264.1 (164.5) −57.8

Expiratory hold length (ms) 295.1 (318.3) 348.5 (314.7) 53.4 21.9 (57.3) 17.9 (84.7) −4 219.9 (106) 293.9 (127.3) 74

Pressure sub-phasesb

Pressure rise length (ms) 128.1 (68.8) 174.1 (138.6) 46 178.4 (32.2) 143 (87.2) −35.4 142.6 (80.5) 149.3 (19.8) 6.7

Peak inspiratory pressure length (ms) 119 (33.5) 133.5 (83.8) 14.5 121.6 (39.7) 167.5 (51.9) 45.9 109.8 (20.1) 142.6 (36.8) 32.8

Pressure drop length (ms) 184.4 (61.4) 174.9 (32.2) −9.5 169.1 (90.8) 104.2 (46.9) −64.9 159.7 (19) 128.5 (20.4) −31.2

Positive end expiratory pressure
length (ms)

508.9 (200.6) 520.2 (260.4) 11.3 416.5 (186.3) 433.1 (178.7) 16.6 471.2 (79.7) 510.2 (143.6) 39

SIMV-VG synchronised intermittent mandatory ventilation with volume guarantee, AC-VG assist-control ventilation with volume guarantee, SD standard
deviation.
aBoth ventilator inflations and spontaneous breaths from the manual and Ventiliser annotations were used for the calculations. Spontaneous breaths were
defined as a pressure flow correlation ≤0 and ventilator inflations as pressure flow correlations >0.
bOnly ventilator inflations from the manual and Ventiliser annotations were used for the calculations. Spontaneous breaths were defined as a pressure flow
correlation ≤0 and ventilator inflations as pressure flow correlations >0.
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platforms such as ventMap10 and installation on devices such as
the RaspberryPi to enable real-time distributed processing and
data collection at the bedside.
We used a rule-based rather than a machine learning algorithm.

Machine learning models frequently perform better when tested
on new data not seen during algorithm development.19 However,
supervised machine learning methods require a training data set
that can only be produced via manual annotation by domain
experts. As ventilator data are complex and noisy due to
ventilator–patient interactions, thousands of inflations would
need to be manually annotated by clinicians having significant
expertise in neonatal ventilation. Moreover, our program correctly
identified >97% of inflations and their sub-phases in three short
samples, which were not used during algorithm development. In
any case, Ventiliser can be used for benchmarking segmentation

algorithms developed in the future and the GUI can be used for
producing a manually annotated training data set.
Existing software solutions for ventilation waveform analysis

have used adult ventilator data and primarily focused on
detection of specific adverse ventilator–patient interactions (such
as double triggering or ineffective respiratory efforts) via a rule-
based algorithm,10 Hidden Markov model11 or machine learning.12

Furthermore, most of them are not freely available11,12 or may be
tied to specific ventilator platforms.10 None of these methods has
been validated in neonates. The physiology of adult and neonatal
ventilation is significantly different: neonates are usually intubated
with un-cuffed endotracheal tubes and have some leak around
the tube, can breathe during ventilation, the ventilator modes and
settings used are different from those used in adults and
ventilator–patient interactions are also different.
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Recently, BreathMetrics,13 a program written in Matlab pro-
gramming language, sought to address the issue of providing a
flexible but standard way to perform basic processing and analysis
of respiratory waveforms. However, it was developed for the
purpose of analysing spontaneous breathing in mice and adult
humans from nasal respiration data. Moreover, the program does
not use airway pressure, only air flow, and the Matlab software is
not freely available.
Our out-of-sample validation on manually annotated samples

shows that Ventiliser is able to identify the inflation key points
(boundaries between sub-phases) with good accuracy. The length
of each sub-phase is determined by the interval between key
points, and hence the error from the prediction of key points is
summed when identifying sub-phase lengths as seen in Table 4.
The expiration termination and expiratory hold sub-phases had
considerable deviation from manual annotation (>50ms in some
cases). This probably reflects the more variable nature of the
expiratory phase in infants with spontaneous breathing effort,

which means trying to fit them to an ideal expiration is more
challenging.
The PRT (also known as slope time) calculated by Ventiliser was

significantly longer than the one set by the clinician. We cannot
tell if our algorithm overestimates the PRT or if the actual PRT is
longer than the set value due to patient–ventilator interactions or
other factors. In the manually annotated samples, the PRTs
returned by Ventiliser were close to the manually identified values,
which were also longer than the set slope time (80ms); however,
these were only short samples. The clinical significance of different
PRTs in neonatal ventilation is uncertain.20

We have also found that a significant proportion of ventilator
inflations during AC-VG ventilation contain periods of inspiratory
hold or contains no expiratory hold, the occurrence and
significance of which in neonates are not known as there are
few studies analysing short periods.21 Ventiliser allows for
quantitative analysis of inflations over long periods and will
facilitate such studies in future.
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In summary, we have developed a program to automatically
identify and analyse ventilation inflations from neonatal ventilator
data. Our software can be used in future studies to analyse
ventilation patterns and ventilator–patient interaction over longer
periods (hours or days) of mechanical ventilation.
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