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Intraventricular hemorrhage and white matter injury:
is persistent cerebral desaturation a missing link?
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Extremely preterm infants are at high risk of mortality and
neurodevelopmental impairment. Many studies have evaluated
factors associated with severe intraventricular hemorrhage (IVH)
among preterm infants (Fig. 1), including lower gestational age,
male sex, lack of antenatal steroid exposure, lower Apgar score,
umbilical cord milking, mechanical ventilation, neonatal transport,
hypotension, hypercapnia, fluctuations in PCO2, hypoxemia, pneu-
mothorax, and specific gene mutations.1–9 Severe IVH is associated
with death, ventricular dilatation, and need for ventriculo-peritoneal
shunt, as well as neurodevelopmental impairment, such as cerebral
palsy and intellectual disability.10,11

The mechanisms of neurodevelopmental impairment in relation
to the severity and location of IVH are not well understood. Direct
neuronal injury, ventricular dilatation, ventriculo-peritoneal shunt
complications, and white matter injury (WMI) may be the mediators
for neurodevelopmental impairment. In this issue of Pediatric
Research, Vesoulis et al.12 report cerebral tissue oxygen saturation
(StO2) and fractional tissue oxygen extraction (FTOE) by postnatal
age in relation to IVH and WMI.
While systemic hypoxia has been shown to be associated with the

development of IVH,13,14 little is known regarding the magnitude
and duration of the effect of various grades of IVH on cerebral
oxygenation. Vesoulis and colleagues12 evaluated the impact of
various grades of IVH as well as WMI on brain oxygenation. In this
prospective observational study, they included 185 preterm infants
born <30 weeks of gestation (Fig. 2). A total of 1237 near-infrared
spectroscopy (NIRS) recordings were obtained from within 48 h of
birth until 36 weeks’ postmenstrual age. Mean StO2 and FTOE were
examined by postnatal age and by the occurrence of IVH or WMI.
IVH of any grade was associated with an acute drop in StO2 that
persisted till 68 days of age. The effect was more pronounced
among patients with severe IVH. The authors suggest that
prolonged low cerebral oxygen saturations after IVH may predispose
these infants to repeated cerebral insults. Notably, patients with WMI
also had early and persistent elevations of FTOE.
The results reported here by Vesoulis et al.12 are both novel and

highly informative as the focus of prior investigations has primarily
been on cerebral oxygenation and autoregulation during the
development of IVH in the first few days of life.14–22 These studies
have implicated low cerebral oxygenation levels14,15,17,19,21 and
impaired cerebral autoregulatory measures18–21 in preterm infants
with severe IVH. Threshold cerebral saturation measures <50–55%
have been associated with adverse IVH outcomes.21,23 Moreover,
the odds ratio was 1.02 (95% confidence interval, 1.01–1.03) for

severe IVH for every 1% time in the first 72 h spent below
threshold saturation.23 However, it remains unclear whether low
cerebral oxygenation contributes to the pathogenesis of IVH or
reflects the mechanical consequence of the hemorrhage itself.
It has been postulated that a transient increase in cerebral
saturation may precede IVH due to a short-term increase in
cerebral blood flow and under-utilization of oxygen.23 Real-time
measures of cerebral oxygenation and autoregulation both before,
during, and after the development of IVH are difficult to capture,
but necessary to establish patterns of causality. Unless such
studies are performed, we should be cautious in our interpretation
of changes in cerebral oxygenation and oxygen extraction in
relation to IVH.
A striking finding in this study is that the elevation in cerebral

tissue oxygen extraction after IVH was associated with WMI in 30
infants. The authors speculate that cerebral desaturation and
increased oxygen utilization related to changes in brain metabolism
after a hemorrhagic injury may play a role in the pathogenesis of
WMI (Fig. 2). However, as acknowledged by the authors, increased
FTOE is probably related to lower cerebral blood flow and oxygen
delivery. IVH may also lead to cerebral injury and hydrocephalus by
other mechanisms. In a rodent model, Chen et al.24 noted persistent
iron accumulation in the brain after intracerebral and IVH, with an
increased risk of hydrocephalus, brain edema, and disruption of the
blood–brain barrier. Administration of intramuscular deferoxamine
was noted to attenuate the occurrence of brain edema, suggesting
an additional role for iron accumulation in brain injury.
The current study has several limitations. The authors did not

measure cerebral blood flow, an important determinant of oxygen
delivery. In addition, consistent MRI diagnostic criteria for WMI
was not part of the original study design, and it is unclear how
many infants were instead diagnosed by cranial ultrasound, a
modality less robust for detecting WMI. Data on IVH and WMI were
extracted from the clinical radiology report, although designating
a central or single-blinded reader would have strengthened the
study. As Vesoulis and others have speculated, an increased
collection of extravascular venous blood skews measurement of
cerebral NIRS measures to lower values and can erroneously
increase FTOE. Nonetheless, exploration of WMI with longitudinal
cerebral oxygenation and autoregulation monitoring deserves
further investigation.
This paper also highlights the need for clinical guidelines for

NIRS monitoring of cerebral oxygenation in at-risk preterm infants.
Changes in NIRS parameters from baseline, particularly a sustained
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decrease in StO2 <55% should alert clinicians to perform a further
evaluation. This evaluation should include a bedside clinical
examination and review of changes in activity, vital signs, blood
gas parameters, hemoglobin, and consideration of head ultra-
sonogram and electroencephalogram as needed. In patients with
IVH with prolonged cerebral desaturation and elevated cFTOE,
further investigation is needed into whether aiming for a higher
hemoglobin target, different SpO2 alarms, and higher blood
pressure targets to increase cerebral blood flow and increase
oxygen delivery may improve neurodevelopmental outcome.

There have been studies that used clinical risk factors among
extremely preterm infants to generate the risk prediction models
for severe IVH.4,25 Based on data from the Vermont Oxford
Network, Singh et al. developed a prediction model for severe IVH
among preterm infants (gestational age (GA), 23–34 weeks,
n= 2917).25 GA, sex, birth weight, any antenatal steroid exposure,
mode of delivery, Apgar score at 5 min, and inborn versus outborn
status were associated with severe IVH. Luque et al.4 developed a
risk prediction model for severe IVH in preterm infants (n= 6538;
birth weight, 500–1249 g) born at the NEOCOSUR Network centers
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Fig. 1 Predisposing factors, pathogenesis, and consequences of intraventricular hemorrhage (IVH) in preterm infants. Solid red lines
suggest a direct relationship and hyphenated, green lines suggest an inhibitory or attenuating effect. PVL periventricular leukomalacia, PDA
patent ductus arteriosus. Copyright Satyan Lakshminrusimha.
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Fig. 2 Graphic abstract of Vesoulis et al.12 This prospective, observational study evaluated 185 extremely preterm infants and monitored
cerebral near-infrared spectroscopy (NIRS) measurements longitudinally and correlated these trends to the presence of IVH and development
of white matter injury (WMI). IVH intraventricular hemorrhage, GA gestational age, VP shunt ventriculo-peritoneal shunt, PHVD post-
hemorrhagic ventricular dilation. Numbers shown within parentheses are standard deviation. Copyright Satyan Lakshminrusimha.
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between 2001 and 2010. Gestational age, mechanical ventilation,
antenatal steroid exposure, 1-min Apgar score, sex, and respiratory
distress syndrome were associated with severe IVH.
In addition to the clinical variables mentioned above, low

cerebral NIRS values should be considered as another important
marker for identifying the risk of IVH in the extremely preterm
infant. Preventing cerebral desaturation by monitoring brain NIRS
may potentially be a therapeutic strategy to reduce WMI following
IVH. More longitudinal studies simultaneously measuring cerebral
blood flow, SpO2, and StO2 by NIRS before, during, and after the
development of IVH are needed to confirm the important findings
reported by Vesoulis et al.12 in this issue of Pediatric Research.
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