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Personalized nutrition approach in pediatrics: a narrative
review
Gregorio P. Milani1,2, Marco Silano3, Alessandra Mazzocchi1, Silvia Bettocchi4, Valentina De Cosmi 1,4 and Carlo Agostoni1,4

Dietary habits represent the main determinant of health. Although extensive research has been conducted to modify unhealthy
dietary behaviors across the lifespan, obesity and obesity-associated comorbidities are increasingly observed worldwide.
Individually tailored interventions are nowadays considered a promising frontier for nutritional research. In this narrative review, the
technologies of importance in a pediatric clinical setting are discussed. The first determinant of the dietary balance is represented
by energy intakes matching individual needs. Most emerging studies highlight the opportunity to reconsider the widely used
prediction equations of resting energy expenditure. Artificial Neural Network approaches may help to disentangle the role of single
contributors to energy expenditure. Artificial intelligence is also useful in the prediction of the glycemic response, based on the
individual microbiome. Other factors further concurring to define individually tailored nutritional needs are metabolomics and
nutrigenomic. Since most available data come from studies in adult groups, new efforts should now be addressed to integrate all
these aspects to develop comprehensive and—above all—effective interventions for children.
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IMPACT:

● Personalized dietary advice, specific to individuals, should be more effective in the prevention of chronic diseases than general
recommendations about diet.

● Artificial Neural Networks algorithms are technologies of importance in a pediatric setting that may help practitioners to
provide personalized nutrition.

● Other approaches to personalized nutrition, while promising in adults and for basic research, are still far from practical
application in pediatrics.

INTRODUCTION
Obesity and obesity-associated comorbidities are increasingly
observed worldwide.1 In parallel, non-communicable diseases,
such as cardiovascular and metabolic diseases, are still the major
killers globally.2 It has been estimated that up to one every eighth
case of cardiometabolic diseases and one every third case of
cancer would be prevented by changing lifestyle.3 In 2017, 11
millions of deaths and 255 million disability-adjusted life-years
(DALYs) were attributable to the dietary habits. Specifically, a high
intake of sodium and low intake of whole grains and fruits are the
leading dietary risk factors for deaths and DALYs, globally.4 It is
also well known that prevention begins early in life. Despite a
growing body of evidence on the determinants of childhood
obesity is being accumulated in the latest years on, the prevalence
of this condition is increasing at an alarming rate both in
developed countries and in developing countries. Respectively,
23.8% of boys and 22.6% of girls and 12.9% of boys and 13.4% of
girls were overweight or obese in 2013.5 Teenagers affected with
chronic conditions will enter adulthood with several years of
disease duration, resistance to treatment, and greater risk of early
complications.6,7 However, interventions to modify dietary atti-
tudes and to increase health and well-being across the lifespan

have shown to exert effect only in a small percentage of people.8

Recent evidences suggest that one-size-fits-all is not a good
enough approach. One of the reasons underlying these issues
is that the individual responses to dietary interventions are
heterogeneous among the single individuals and most trials did
not comprehensively consider the complex relationship of
differing individual characteristics, such as the genome, micro-
biome, and environmental exposure. These innovative evidences
have generated the idea that a better understanding of those
individual characteristics may improve the definition of nutritional
interventions, tailoring them on the specific needs of a subject, or
a group sharing the same features. Consequently, numerous
questions are being raised about how the interventions of
personalized nutrition might be constructed.
Definition: There is not yet a widely agreed definition of

personalized nutrition.8 In the pediatric settings, we are hereby
describing that personalized nutrition is often used interchange-
ably with the term: precision nutrition. Precision nutrition meant a
more intricate approach in the definition of personalized nutrition.
It considers all the relationships between individual’s character-
istics, phenotype, and health status, to adapt to nutrition
interventions. Special importance among these characteristics is
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those based on omics. To that end, precision nutrition approach,
in addition to genetics, is comprehensive of metabolic status, gut
microbiota, metabolome, physiologic status, and environmental
exposures (included dietary habits and food behavior) of any
individual.9 Many tools are available to improve dietary habits for
the prevention (or treatment) of chronic diseases and to improve
public health. The nutrigenetics comprehends the phenotypic
responses to a diet, depending on the genotype of the individual;
the nutrigenomics involves the characterization of all gene
products affected by nutrients; the exposome is the collection of
environmental factors that may affect health. As one moves
further through the levels of characterization, a major complexity
is needed to achieve the desired goal of tailoring intervention. The
metabolomics is the analysis of the metabolites produced by a
cell, tissue, or organism and the microbiomics is the study of the
totality of microbes in a specific environment.8,9

This narrative review aims to summarize the recent technologies
that can help providing indications towards precision nutrition, such
as Artificial Neural Networks (ANNs) in the field of metabolism,
together with metabolomics, microbiomics, and nutrigenomics. The
present review is not intended to be a comprehensive discussion of
medical-oriented technologies, since it is limited to those applicable
within pediatric clinical settings.

MACHINE LEARNING ALGORITHMS APPROACH
The prediction of individual resting energy expenditure
Children are a vulnerable population. Their adequate growth
depends on balanced conjunction between good nutrition and
regular physical activity.10 The accurate estimate of energy
requirements is the first step to achieve a good nutritional status
and it is mainly based on the assessment of resting energy
expenditure (REE). In the literature, many predictive equations
have been created to estimate REE, but none has been
demonstrated to be accurate enough, particularly when applied
to ill populations.11 Total daily energy expenditure (TDEE),
expended over 24 h, is the sum of three components: REE, diet-
induced thermogenesis (DIT) and energy expenditure of physical
activity. In children, the energy spent on growth is another
fundamental factor that accounts for TDEE.12 REE is the energy
required to sustain biochemical systems of the body at rest and
accounts for ~70% of TDEE in sedentary individuals.13 The gold
standard technique for its measurement is the indirect calorimetry
(IC). Fat-free mass is the greatest determinant of REE, accounting
for ~70% of its variance. Sex, age, and fat mass are some of the
remaining significant contributors.14 Energy cost of physical
activity is the energy consumed in muscular work during
voluntary exercise, and is the most variable component of TDEE,
accounting from ~15% in sedentary individuals to ~ 50% in highly
active individuals.13 Lastly, DIT increases REE in response to food
ingestion and accounts for ~10%. When energy expenditure
equals energy intake, the energy balance is zero and the organism
meets the energy equilibrium. Metabolic adaptation to weight
changes relates to body weight control, obesity, and malnutrition.
The energy requirement is the amount of energy from food
needed to maintain body composition and a level of physical
activity consistent with long-term good health. In children, the
energy requirements also include the energy needed for the
synthesis and deposition of new tissues.12,15 The approach of
“prediction equations” has been recently placed under discussion,
even as misleading.16 The accuracy of different predictive
formulae has been challenged11 and, accordingly, all the formulae
considered show a low level of accuracy at an individual level.17,18

Across all equations, the absolute bias is highly inaccurate in the
youngest and most vulnerable children.19 An external cross-
validation study of ten equations to estimate REE in obese and
non-obese children has recently shown that Schofield and Harris-
Benedict equations are the less accurate to estimate REE within

10% of measured (by IC) REE.20 The approach of ANN algorithms
may be a useful tool to check the predictive value of REE. ANNs
are computerized algorithms resembling interactive processes of
the human brain allowing for a more comprehensive approach to
very complex non-linear phenomena such as biological systems.21

Accordingly, they have been successfully implemented in a
population of 561 healthy children.22 The dataset used for ANN
modeling consisted of demographic and anthropometric variables
(such as age, gender, body mass index, and other bioindicators).
ANNs have inference at an individual level rather than at a group
level. They seem to be a valid alternative both to IC and predictive
equations, being strongly correlated to directly measured REE.
Analyzing the semantic connectivity maps (the main components
of the trees building up the algorithms), the hypothesis emerges
that the classic equations actually cannot account for the rapid
evolutionary changes connected to a shift towards a major
representation of fat mass in the pediatric population during the
past century, representing a determinant of “unpredictable and
incalculable” modifications of energy requirements.23 In the
subgroup of obese children, the performance of ANNs was even
better, and the grade of imprecision was lower (just mildly >5%).24

Literature from various medical fields presents the development
and validation of algorithms. Hirose et al.25 successfully imple-
mented a model to predict the 6-year incidence of metabolic
syndrome using ANN based on clinical factors. Furthermore, a
study on 853 obese patients validated an ANN model for the
prediction of REE, demonstrating accurate higher precision than
established REE predictive equations, independently from BMI
subgroups.23 The development of the ANN approach seems to be
particularly promising even in emergency conditions for pediatric
patients in PICUs, taking into account the potential impact of the
variability of blood gases (CO2, O2) to redefine energy and
substrate needs in critical condition and preventing glycemic
unbalances.26

The microbiomics
While the new ANN approach may have the potential to develop
personalized dietary interventions, both for preventive (obesity
and related clinical complications) and therapeutic (children
suffering from either acute or chronic disorders) purposes,
machine-learning algorithms have included other potential
biomarkers, possibly connected with personalized nutrition in a
cause–effect relationship. An elegant study investigated the
possible role of anthropometrics, dietary habits, physical activity,
blood parameters, and gut microbiota in a cohort of 800 Israeli
subjects applying machine-learning algorithms to predict perso-
nalized postprandial glycemic response to real-life meals.27 Blood
glucose levels are largely influenced by diet, but, while foods with
low glycemic index are associated with positive changes in many
metabolic indicators (e.g., glycated proteins) and inflammatory
markers,28,29 different subjects, even eating identical meals, may
present with high variability in post-meal blood glucose
response.30 The variability in glycemic response might depend
on several factors, some modifiable (e.g., lifestyle and insulin
sensitivity) and other unmodifiable (e.g., genetics).31 Zeevi et al.27

added that clinical and microbiome profiles were able to
accurately predict the glycemic response and, conversely, that
the individual approach to improve the glycemic profile of the diet
was able to support the selection of bacterial strains in the gut
more favorably modulating, in turn, the glycemic curves. Further
studies confirmed the effects of this approach within US
populations.32,33 Of note, no study so far has been published
investigating this model in children. Some efforts aimed at
developing personalized nutritional tools in children are emer-
ging. The first international pilot study conducted by the
Schneider Children’s Medical Center and the Weizmann Institute
of Science of Israel together with the Department of Translational
Medical Sciences of the University of Naples “Federico II” in Italy
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started in 2018. This study is focused on personalization of the
Mediterranean Diet in southern Italy and Israel.34 These observa-
tions in adults suggest that gut microbiome might play a key role
in developing personalized dietary interventions, since it actively
interacts with the human body and affects the capabilities of
nutrients and energy harvesting from food.35 The potential of the
microbiome to allow for a more precise development towards
models of personalized nutrition might be summarized as follows:
(1) microbiome profile is partially able to predict the metabolic
consequences of nutritional interventions (e.g., the consumption
of non-caloric artificial sweetener paradoxically tends to increase
the development of glucose-intolerance by promoting dysbiosis in
some individuals) and (2) the microbiome characterization might
contribute to identify children who are especially at risk of
developing diet-associated conditions, such as obesity or
atopy.36,37 Therefore, gut microbiome profiling may represent a
further promising approach in tailoring personalized nutritional
interventions38 to be extended to the pediatric population. So far,
most available studies in children report associations between
specific microbiome profiles and defined clinical conditions,39,40

out of the otherwise healthy pediatric population. In evaluating
cost/benefit ratios, one should also consider the costs of
microbiome profiles’ investigation, potentially limiting its use on
a large-scale population.

METABOLOMICS APPROACH TO INDIVIDUAL NEEDS
Metabolomics represents a recent approach aimed at the
quantitative analysis of the byproducts of cellular activity, derived
from metabolic pathways characterizing living systems, and
allowing for an “individually tailored” evaluation of changes in
gene expression.41 The epigenetics consists of those modifications
(methylation, histone modification, microRNAs) that modify the
expression and function of the genetic material of an organism.8

These modifications may follow environmental exposures during
pregnancy, infancy, and childhood, thus altering the offspring’s
growth and development with inter-generational modifications of
diseases.42 Therefore, understanding how these mechanisms may
contribute to transgenerational transmission and long-term
metabolic modifications are crucial for the development of novel
early detection and prevention strategies.43,44 To understand
the high impact of epigenetics, it is helpful to mention the
observations derived from the Dutch (1944–1945) and Chinese
(1959–1961) famine,45–47 where children of mothers who were
exposed to the calorie restriction in utero and during the first
years of life because of the food shortage gave birth to newborns
with larger birth size as compared to offspring from mothers not
exposed to the famine. Accordingly, epigenetics may trigger the
maternal accrual of adipose tissue while activating genes
controlling for lipogenesis and low-grade inflammation in early
pregnancy. These metabolic alterations may occur prior to any
changes in maternal phenotype.47

Some metabolic alterations may occur also later in childhood.
For instance, patterns of metabolites related to the gut microbiota
led to observe metabolic phenotype differences in autistic
children, providing novel insights into the role of the gut–brain
axis in the etiology of several diseases.48 Moreover, Perng et al.49

explored metabolomics profiles of obesity risk in children aged 6
to 10 years, identifying metabolites involved in lipid, amino acid,
and carbohydrate metabolism as correlates of a metabolic
syndrome risk score,49 with changes in glycemia and lipid
biomarkers during the adolescent transition.50

A growing body of evidence has been accumulating in the
latest years regarding the impact of single foods and dietary
patterns on the long-term health status. The inconsistency of
studies results, even if the enrolled population is stratified for a
known single-gene haplotype, suggests the existence of a robust
inter-individual variance51 as a result of a complex interplay

between the network of several genes and the quality of quantity
of macro- and micronutrients in the diet.52 In addition, the gene
response to foods may, in turn, be individually shaped by social
determinants, such as education and socio-economics status.53

Thus, each individual is likely to be the owner of a personal, well-
individualized risk profile that has been built not only by himself
during the lifespan, but also during the mother’s childbearing age
by her dietary and social behaviors. Nowadays, the challenge is to
associate epigenetic modifications and their metabolomic expres-
sions through the measurement of specific and sensitive serum
biomarkers able to predict a personal poly-factorial score of
metabolic risk.54

NUTRIGENOMICS APPROACH TO INDIVIDUAL NEEDS
Genetic and nutrition interactions play a strong influence on the
individual’s phenotype. Nutritional genomics studies these rela-
tionships, with the goal to unravel the interaction between
genetics and dietary intake and bringing together emerging
branches of biology such as bioinformatics, nutrition, molecular
biology, genetics, genomics, epidemiology, and molecular med-
icine.55 The different responses to lifestyle interventions, especially
those modulating diet, because of genetic variants, may affect
indeed how dietary components are absorbed, metabolized, and
utilized.56 One application of nutrigenomics concerns persona-
lized dietary advice, according to the particular genotype of a
given individual. This approach might be more effective in the
prevention of chronic diseases, compared to population-based
general recommendations on recommended dietary intakes.57

Research activities in the field of nutrigenomics have two major
foci: (1) identifying genes responsive to dietary changes and (2)
studying the interactions between dietary changes and metabolic
homeostasis.58 Nutrients are dietary signals that are detected
by the cellular sensory systems influencing gene and protein
expression and, subsequently, metabolic indices.58 The effect of
gene–diet interaction on risk of childhood obesity are evident
either in animals and in humans.59 The connection between birth
weight and adult weight suggests that there are enduring effects
of the in utero environment on later obesity risk.60 Conversely,
maternal nutrient deprivation during late fetal development could
result in the reduction of offspring birth weight, leading, as well, to
glucose intolerance and insulin resistance later in life.61 This
suggests that gene variants may determine an increase of energy
deposition as fat over time, to maintain the reproductive function
and enhance survival in stress conditions, according to “thrifty
genotype hypothesis.”62 While this area of interest is progressively
expanding, more data on related bioindicators are needed to
improve the approach to a personalized diet in the pediatric age
based on nutrigenomics.

CONCLUSION
Personalized nutrition is one of the fascinating frontiers of
medicine. Individually tailored interventions have been claimed
by many scientists as the turning point for nutritional research.
Available data, while suggesting that a tailored nutritional
intervention might be effective in preventing several conditions,
including obesity and its consequences, paralleling the concept of
precision medicine, show also the practical difficulties in applying
this approach to the pediatric age.
Indeed, while the use of artificial intelligence may be relevant

to improve precision and accuracy of predictions in clinical
settings, gene–diet interactions have been widely reported, but
data on direct interventions are still lacking, particularly for the
pediatric age. Moreover, evidence on the effectiveness of
personalized nutrition is currently limited to adult populations
and it is still unknown how children could respond to such
interventions.
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New efforts from the pediatric scientific communities are
required to investigate the impact of this approach on children,
comprehensive of all the aspects surrounding nutritional status,
metabolism, and nutritional requirements. Accounting for the
great number of variables and their implications, emphasis should
be given, and efforts directed to the implementation of highly
effective nutrition-specific and nutrition-sensitive studies, starting
from the earliest ages of life, with long-term observations, with
affordable costs, and identifying easy-to-use biomarkers for a
more widespread application.
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