Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Association of blood pressure, obesity and physical activity with arterial stiffness in children: a systematic review and meta-analysis

Abstract

Central pulse wave velocity (cPWV) is a biomarker for cardiovascular (CV) risk and a predictor for CV events in adulthood. Alterations of arterial stiffness have also been associated with CV risk in childhood. The study aimed to systematically review and meta-analyze the association of blood pressure (BP), body mass index (BMI), and cardiorespiratory fitness (CRF) with cPWV in children. Literature search was through the databases PubMed, Web of Science, Embase and the Cochrane Register of Controlled Trials. Twenty-two articles were included in the systematic review and eight articles in the meta-analysis. Higher systolic and diastolic BP were associated with higher cPWV (pooled estimated effect size (ES) 0.02 (95% CI: 0.012−0.027; P < 0.001), and ES 0.02 (95% CI: 0.011−0.029; P < 0.001); respectively). Higher BMI correlated with higher cPWV (ES 0.025 (95% CI: 0.013−0.038; P < 0.001)). CRF was inversely associated with cPWV (ES −0.033 (95% CI: −0.055 to −0.011; P = 0.002)). In children, higher BP and BMI are already related to increased cPWV, and enhanced CRF may be a preventive strategy to counteract development of CV disease later in life.

Impact

  • This meta-analysis suggests that elevated blood pressure and body mass index in childhood correlate with increased central pulse wave velocity.

  • Children with higher cardiorespiratory fitness appear to have favorably lower arterial stiffening.

  • Elevated blood pressure and altered arterial stiffness originate early in life and childhood risk stratification as well as timely initiation of exercise treatment may help counteract development of manifest cardiovascular disease later in life.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Flow chart.
Fig. 2: Association of systolic blood pressure with pulse wave velocity.
Fig. 3: Association of diastolic blood pressure with pulse wave velocity.
Fig. 4: Association of body mass index with pulse wave velocity.

References

  1. 1.

    World Health Organization. Global Status Report on Noncommunicable Diseases 2014 (WHO, Geneva, 2014).

  2. 2.

    Lavie, C. J., Milani, R. V. & Ventura, H. O. Obesity and cardiovascular disease. J. Am. Coll. Cardiol. 53, 1925–1932 (2009).

    PubMed  Article  Google Scholar 

  3. 3.

    Berenson, G. Childhood risk factors predict adult risk associated with subclinical cardiovascular disease. The Bogalusa Heart Study. Am. J. Cardiol. 90, 3L–7L (2002).

    PubMed  Article  Google Scholar 

  4. 4.

    Franks, P. W. & Bennett, P. H. Childhood obesity, other cardiovascular risk factors, and premature death. N. Engl. J. Med. 362, 485–493 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Bibbins-Domingo, K., Pletcher, M. J. & Goldman, L. Adolescent overweight and future adult coronary heart disease. N. Engl. J. Med. 357, 2371–2379 (2007).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Aggoun, Y. et al. Impaired endothelial and smooth muscle functions and arterial stiffness appear before puberty in obese children and are associated with elevated ambulatory blood pressure. Eur. Heart J. 29, 792–799 (2008).

    PubMed  Article  Google Scholar 

  7. 7.

    Turoni, J. et al. Arterial stiffness and endothelial function in obese children and adolescents and its relationship with cardiovascular risk factors. Horm. Res. Paediatr. 80, 281–286 (2013).

    Article  CAS  Google Scholar 

  8. 8.

    NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Article  Google Scholar 

  9. 9.

    Sorof, J. M., Lai, D., Turner, J., Poffenbarger, T. & Portman, R. J. Overweight, ethnicity, and the prevalence of hypertension in school-aged children. Pediatrics 113, 475–482 (2004).

    PubMed  Article  Google Scholar 

  10. 10.

    Falaschetti, E. et al. Adiposity and cardiovascular risk factors in a large contemporary population of pre-pubertal children. Eur. Heart J. 31, 3063–3072 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Raitakan, O. T. et al. Effects of persistent physical activity and inactivity on coronary risk factors in children and young adults: The Cardiovascular Risk in Young Finns Study. Am. J. Epidemiol. 140, 195–205 (1994).

    Article  Google Scholar 

  12. 12.

    Verloigne, M. et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: an observational study within the ENERGY-project. Int. J. Behav. Nutr. Phys. Act. 9, 34 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Verloigne, M. et al. Patterns of objectively measured sedentary time in 10- to 12-year-old Belgian children: an observational study within the ENERGY-project. BMC Pediatr. 17, 147 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Ekelund, U. et al. TV viewing and physical activity are independently associated with metabolic risk in children: the European Youth Heart Study. PLoS Med. 3, e488 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Salmon, J., Dunstan, D. & Owen, N. Should we be concerned about children spending extended periods of time in sedentary pursuits even among the highly active? Int. J. Pediatr. Obes. 3, 66–68 (2008).

    PubMed  Article  Google Scholar 

  16. 16.

    Janssen, I. & Leblanc, A. G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 7, 40 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Simmonds, M., Llewellyn, A., Owen, C. G. & Woolacott, N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis: adult obesity from childhood obesity. Obes. Rev. 17, 95–107 (2016).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Chen, X. & Wang, Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation 117, 3171–3180 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Kim, H.-L. & Kim, S.-H. Pulse wave velocity in atherosclerosis. Front. Cardiovasc. Med. 6, 41 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Vlachopoulos, C., Aznaouridis, K. & Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness. J. Am. Coll. Cardiol. 55, 1318–1327 (2010).

    PubMed  Article  Google Scholar 

  21. 21.

    Tsuchikura, S. et al. Central versus peripheral arterial stiffness in association with coronary, cerebral and peripheral arterial disease. Atherosclerosis 211, 480–485 (2010).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Endes, S. et al. Associations of novel and traditional vascular biomarkers of arterial stiffness: results of the SAPALDIA 3 Cohort Study. PLoS ONE 11, e0163844 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Li, P., Wang, L. & Liu, C. Overweightness, obesity and arterial stiffness in healthy subjects: a systematic review and meta-analysis of literature studies. Postgrad. Med. 129, 224–230 (2017).

    PubMed  Article  Google Scholar 

  24. 24.

    Fernberg, U., Fernström, M. & Hurtig-Wennlöf, A. Arterial stiffness is associated to cardiorespiratory fitness and body mass index in young Swedish adults: the Lifestyle, Biomarkers, and Atherosclerosis study. Eur. J. Prev. Cardiol. 24, 1809–1818 (2017).

    PubMed  Article  Google Scholar 

  25. 25.

    PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4, 1 (2015).

    PubMed Central  Article  PubMed  Google Scholar 

  26. 26.

    Davies, S. The importance of PROSPERO to the National Institute for Health Research. Syst. Rev. 1, 5 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Downes, M. J., Brennan, M. L., Williams, H. C. & Dean, R. S. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 6, e011458 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Stabouli, S. et al. Arterial stiffness and SBP variability in children and adolescents. J. Hypertens. 33, 88–95 (2015).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    PubMed  Article  Google Scholar 

  30. 30.

    Egger, M., Smith, G. D. & Altman D. Systematic Reviews in Health Care Meta-Analysis in Context (John Wiley & Sons, New York, NY, 2013).

  31. 31.

    Stergiou, G. S. et al. Relationship of home blood pressure with target-organ damage in children and adolescents. Hypertens. Res. 34, 640–644 (2011).

    PubMed  Article  Google Scholar 

  32. 32.

    Montero López, M. P. et al. Arterial stiffness and blood pressure in a multicultural child sample (Angola, Brazil, and Spain). Am. J. Hypertens. 32, 265–271 (2019).

    PubMed  Article  Google Scholar 

  33. 33.

    Batista, M. S., Mill, J. G., Pereira, T. S. S., Fernandes, C. D. R. & Molina del, M. C. B. Factors associated with arterial stiffness in children aged 9-10 years. Rev. Saúde. Pública 49, 23 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    McCloskey, K. et al. The effect of known cardiovascular risk factors on carotid-femoral pulse wave velocity in school-aged children: a population based twin study. J. Dev. Orig. Health Dis. 5, 307–313 (2014).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Sakuragi, S. et al. Influence of adiposity and physical activity on arterial stiffness in healthy children: the lifestyle of our kids study. Hypertension 53, 611–616 (2009).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Lurbe, E. et al. Blood pressure and obesity exert independent influences on pulse wave velocity in youth. Hypertension 60, 550–555 (2012).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Hvidt, K. N., Olsen, M. H., Holm, J.-C. & Ibsen, H. Obese children and adolescents have elevated nighttime blood pressure independent of insulin resistance and arterial stiffness. Am. J. Hypertens. 27, 1408–1415 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Garcia-Espinosa, V. et al. Peripheral and central aortic pressure, wave-derived reflection parameters, local and regional arterial stiffness and structural parameters in children and adolescents: impact of body mass index variations. High. Blood Press. Cardiovasc. Prev. 25, 267–280 (2018).

    PubMed  Article  Google Scholar 

  39. 39.

    Caterini, J. E. et al. Magnetic resonance imaging reveals elevated aortic pulse wave velocity in obese and overweight adolescents: MRI assessment of vascular function in obesity. Clin. Obes. 7, 360–367 (2017).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Kulsum-Mecci, N. et al. Effects of obesity and hypertension on pulse wave velocity in children. J. Clin. Hypertens. 19, 221–226 (2017).

    Article  Google Scholar 

  41. 41.

    Hacıhamdioğlu, B. et al. Preperitoneal fat tissue may be associated with arterial stiffness in obese adolescents. Ultrasound Med. Biol. 40, 871–876 (2014).

    PubMed  Article  Google Scholar 

  42. 42.

    Correia-Costa et al. Determinants of carotid-femoral pulse wave velocity in prepubertal children. Int. J. Cardiol. 218, 37–42 (2016).

    PubMed  Article  Google Scholar 

  43. 43.

    Pierce, G. L. et al. Arterial stiffness and pulse-pressure amplification in overweight/obese African-American adolescents: relation with higher systolic and pulse pressure. Am. J. Hypertens. 26, 20–26 (2013).

    PubMed  Article  Google Scholar 

  44. 44.

    Vogrin, B., Slak Rupnik, M. & Mičetić-Turk, D. Increased augmentation index and central systolic arterial pressure are associated with lower school and motor performance in young adolescents. J. Int. Med. Res. 45, 1892–1900 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Meyer, J., Elmenhorst, J., Giegerich, T., Oberhoffer, R. & Müller, J. Controversies in the association of cardiorespiratory fitness and arterial stiffness in children and adolescents. Hypertens. Res. 40, 675–678 (2017).

    PubMed  Article  Google Scholar 

  46. 46.

    Lurbe, E., Torro, M. I., Alvarez-Pitti, J., Redon, P. & Redon, J. Central blood pressure and pulse wave amplification across the spectrum of peripheral blood pressure in overweight and obese youth. J. Hypertens. 34, 1389–1395 (2016).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Litwin, M., Obrycki, Ł., Niemirska, A., Sarnecki, J. & Kułaga, Z. Central systolic blood pressure and central pulse pressure predict left ventricular hypertrophy in hypertensive children. Pediatr. Nephrol. 34, 703–712 (2019).

    PubMed  Article  Google Scholar 

  48. 48.

    Wójtowicz, J. et al. Central aortic pressure, arterial stiffness and echocardiographic parametersof children with overweight/obesity and arterial hypertension. Adv. Clin. Exp. Med. 26, 1399–1404 (2017).

    PubMed  Article  Google Scholar 

  49. 49.

    Tokgöz, S. T., Yılmaz, D., Tokgöz, Y., Çelik, B. & Bulut, Y. The evaluation of arterial stiffness of essential hypertension and white coat hypertension in children: a case-control study. Cardiol. Young-. 28, 403–408 (2018).

    PubMed  Article  Google Scholar 

  50. 50.

    Mir, S. M. et al. Cardiovascular functional and structural changes in children with primary hypertension. Minerva Pediatr. 68, 27–35 (2016).

    PubMed  Google Scholar 

  51. 51.

    Köchli, S. et al. Obesity, high blood pressure, and physical activity determine vascular phenotype in young children: the EXAMIN YOUTH study. Hypertension 73, 153–161 (2019).

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    AlGhatrif, M. & Lakatta, E. G. The conundrum of arterial stiffness, elevated blood pressure, and aging. Curr. Hypertens. Rep. 17, 12 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Mitchell, G. F. Arterial stiffness and hypertension: chicken or egg? Hypertension 64, 210–214 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Li, S., Chen, W., Srinivasan, S. R. & Berenson, G. S. Childhood blood pressure as a predictor of arterial stiffness in young adults: the Bogalusa Heart study. Hypertension 43, 541–546 (2004).

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Aatola, H. et al. Lifetime risk factors and arterial pulse wave velocity in adulthood: the Cardiovascular Risk in Young Finns study. Hypertension 55, 806–811 (2010).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Najjar, S. S. et al. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J. Am. Coll. Cardiol. 51, 1377–1383 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Kaess, B. M. et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308, 875 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Aatola, H. et al. Influence of child and adult elevated blood pressure on adult arterial stiffness: the Cardiovascular Risk in Young Finns Study. Hypertension 70, 531–536 (2017).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Hudson, L. D., Rapala, A., Khan, T., Williams, B. & Viner, R. M. Evidence for contemporary arterial stiffening in obese children and adolescents using pulse wave velocity: a systematic review and meta-analysis. Atherosclerosis 241, 376–386 (2015).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Dangardt, F. et al. Association between fat mass through adolescence and arterial stiffness: a population-based study from The Avon Longitudinal Study of Parents and Children. Lancet Child Adolesc. Health 3, 474–481 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Tryggestad, J. B., Thompson, D. M., Copeland, K. C. & Short, K. R. Obese children have higher arterial elasticity without a difference in endothelial function: the role of body composition. Obesity 20, 165–171 (2012).

    PubMed  Article  Google Scholar 

  62. 62.

    Köchli, S., Endes, K., Infanger, D., Zahner, L. & Hanssen, H. Obesity, blood pressure, and retinal vessels: a meta-analysis. Pediatrics 141, e20174090 (2018).

    PubMed  Article  Google Scholar 

  63. 63.

    Boreham, C. et al. Cardiorespiratory fitness, physical activity, and arterial stiffness. Hypertension 44, 721–726 (2004).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Chirinos, J. A., Segers, P., Hughes, T. & Townsend, R. Large-artery stiffness in health and disease. J. Am. Coll. Cardiol. 74, 1237–1263 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Aroor, A. R., Jia, G. & Sowers, J. R. Cellular mechanisms underlying obesity-induced arterial stiffness. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 314, R387–R398 (2018).

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Thorp, A. A. & Schlaich, M. P. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J. Diabetes Res. 2015, 1–11 (2015).

    Article  Google Scholar 

  67. 67.

    DeMarco, V. G., Aroor, A. R. & Sowers, J. R. The pathophysiology of hypertension in patients with obesity. Nat. Rev. Endocrinol. 10, 364–376 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Hermann, M., Flammer, A. & Lscher, T. F. Nitric oxide in hypertension. J. Clin. Hypertens. 8, 17–29 (2006).

    CAS  Article  Google Scholar 

  69. 69.

    Montero, D., Walther, G., Perez-Martin, A., Roche, E. & Vinet, A. Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: markers and effect of lifestyle intervention: endothelial dysfunction in childhood obesity. Obes. Rev. 13, 441–455 (2012).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Elmenhorst, J. et al. Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis 238, 9–16 (2015).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Hidvégi, E. V. et al. Reference values of aortic pulse wave velocity in a large healthy population aged between 3 and 18 years. J. Hypertens. 30, 2314–2321 (2012).

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Whelton, S. P., Chin, A., Xin, X. & He, J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 136, 493–503 (2002).

    PubMed  Article  Google Scholar 

  73. 73.

    Ashor, A. W., Lara, J., Siervo, M., Celis-Morales, C. & Mathers, J. C. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 9, e110034 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Schuler, G., Adams, V. & Goto, Y. Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur. Heart J. 34, 1790–1799 (2013).

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Kasapis, C. & Thompson, P. D. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J. Am. Coll. Cardiol. 45, 1563–1569 (2005).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Montero, D., Walther, G., Perez-Martin, A., Roche, E. & Vinet, A. Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: markers and effect of lifestyle intervention. Obes. Rev. J. Int. Assoc. Study Obes. 13, 441–455 (2012).

    CAS  Article  Google Scholar 

  77. 77.

    Fu, R. et al. Conducting quantitative synthesis when comparing medical interventions: AHRQ and the Effective Health Care Program. J. Clin. Epidemiol. 64, 1187–1197 (2011).

    PubMed  Article  Google Scholar 

  78. 78.

    Sterne, J. A. C. et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343, d4002 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Milan, A. et al. Current assessment of pulse wave velocity: comprehensive review of validation studies. J. Hypertens. 37, 1547–1557 (2019).

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Townsend, R. R. et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension 66, 698–722 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Wilkinson IB et al. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity. Artery Res. 4, 34 (2010).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

G.L., C.H., S.K., D.I., K.E. and H.H. made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data. G.L., C.H., A.S.-T. and H.H. drafted the article or revising it critically for important intellectual content. H.H. approved the final version to be published.

Corresponding author

Correspondence to Henner Hanssen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lona, G., Hauser, C., Köchli, S. et al. Association of blood pressure, obesity and physical activity with arterial stiffness in children: a systematic review and meta-analysis. Pediatr Res (2021). https://doi.org/10.1038/s41390-020-01278-5

Download citation

Search

Quick links